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Overview

This document provides scientific background and mathematical formulas for statistical
modeling in the TrueAllele system. The document complements previously published

descriptions of the hierarchical Bayesian model for genotype separation.

Data

Short tandem repeat (STR) data originate as charge-coupled device (CCD) camera counts
that are collected on a genetic analyzer from fluorescently end-labeled DNA fragments as
they are separated by size via gel electrophoresis. These multi-spectral CCD signals are
isolated by their fluorescent dyes using a color separation matrix to form dye-specific
signals via matrix inversion.

Signal analysis identifies a DNA data peak corresponding to a particular DNA
fragment. Using allelic and internal size ladders, the analysis determines a DNA peak’s size
(bp) and allele length (repeats), as well as the DNA quantity measured in relative
fluorescent units (rfu). A data vector records the DNA quantity (including zero) for every

fragment size.



We model the quantitative data at STR locus / (of L loci) using several variables.

Data vector d, forms a pattern that maps DNA product lengths into their observed

quantitative peak heights.

We linearly model the data vector d, using a truncated (= 0) multivariate normal
distribution N, of the mean vector y, and covariance matrix X, as
dl ~N, (:ul’zl)
We write the peak data covariance matrix X, as
r,=0"-V+1’
where ¢ is amplification dispersion, 7* is detection variation, and V, is a diagonal matrix

diag(d,) of peak heights.

Data Usage

TrueAllele determines statistical parameters directly from the data, mining DNA evidence
for statistical information. The fully Bayesian system does not require calibration (i.e.,
setting parameters from historical laboratory data unrelated to evidence data).

TrueAllele inputs and uses all the data. There are no thresholds, since uncertainty is
determined statistically from the data. There is an optional rfu cutoff, usually set at ten rfu
(within the background noise), well below allelic peak events. Should alleles be observed
below this level, the cutoff can be lowered or turned off.

Allele dropout occurs when alleles that are present in the genotypes do not appear
in the data signal. Bayesian modeling accounts for all genotype possibilities, whether or
not component alleles manifest themselves in the genotyping data. TrueAllele assesses
allele dropout through a likelihood function, assigning lower probabilities to genotype
proposals that have less support in the data. TrueAllele addresses allele drop-in events in a
similar way. There are no explicit drop parameters - Bayes theorem with an informative
likelihood function addresses data drop phenomena.

Using all the data is thorough and preserves identification information. Eliminating

human data decisions (choosing loci, peaks, artifacts) removes human bias from the



interpretation process. Users cannot “control their data.” The user supplies the data,
makes few assumptions (number of contributors, sampling time, degradation option), and
the rest is done automatically by the computer system.

TrueAllele can answer questions about different data combinations. Data from
multiple items or amplifications can be used in a joint genotype analysis. Known genotypes
(e.g., a victim present in a mixture, ascertained by case context or match statistics) can help
reduce problem complexity.

A comparison genotype (e.g., a suspect) cannot be part of interpreting evidence.

The computer does not know the “answer” when it separates genotype from evidence. A
match comparison is only made afterwards. Guaranteeing that genotype inference is

entirely separate from match statistic calculation helps ensure process objectivity.
Mass

DNA is packaged in the cell nucleus. This cell packaging is opened when DNA is extracted
from a biological sample and made available for laboratory analysis. The mass, or number
of intact DNA molecules examined in a test tube, is modeled as a normal random variable.

The total DNA quantity at locus [ is given by mass parameter m,. The locus mass

m, prior is a (nonnegative) truncated normal distribution on feasible total peak rfu values.

m, ~ N, (5000, 50007

Genotype

Individuals inherit DNA from two parents. Therefore, at a given genetic locus on an

autosomal chromosome, a cell has two alleles (STR length variants), one from each parent.

This pair of alleles is called a genotype. A genotype is represented as a vector of all possible

allele sizes, with each vector entry containing a number of alleles at that particular size.
With K contributors to the data, we represent the k” contributor genotype

parameter at locus / as a vector g, ,, where the DNA length entries contain allele counts



that sum to 1. A heterozygote genotype vector g, , contains two 1/2 entries, while a
homozygote has a single 1 entry; all other vector entries are 0.
The genotype prior probability Pr{gk’l = x} at allele pair x=[i j] is a product of

population allele frequencies { f;}.

froi=]

B ™ 21 f, i#]

TrueAllele’s likelihood function assesses a genotype candidate value to determine
how well it explains the observed data. The likelihood is larger when the quantitative data
is better accounted for by a predicted peak height pattern based on the allele pair value.

For the /* data observation d,, atlocus/, the likelihood function for a genotype g, is the

probability Pr{dlgi lg,, = x,...} of the data conditioned on genotype value x, where "...
denotes the other model variable values, given by the data distribution d, ~ N, (1,,%)).

Combining the prior genotype probability together with / independent genetic data
observations, we can compute the posterior genotype probability using Bayes theorem as
the product of prior probability and joint likelihood functions. The probability mass

function (pmf) ¢(x) of genotype g, , is the joint probability distribution

1
Pr{gk,, =xl d,,l,dl,z,...,dl,i,...} oc Pr{gk,l = x}-HPr{dl’i lg,, = x,...}
i=1

over all the relevant random variables.
Mixture Weight

A mixture contains DNA from two or more people. The relative amount of DNA from a
person contained in the mixture is a mixture weight value between zero and one. The sum
of the mixture weights over all the people contributing the mixture is one.

The mixture weight parameter at locus [ is a vector w, whose K contributor

K
components sum to 1, so that Zwk,, =1. A hierarchical model of mixture weight at every
k=1



locus provides a better fit to the data. We therefore draw each individual locus weight w,

as a hierarchical prior from a common DNA template mixture weight w using a truncated

(simplex) multivariate normal distribution as
Wi = N[o,l]"" (W’ 2 I)

The mixture weight covariance is an identity matrix scaled by a mixture variance .
The template mixture weight w is assigned a uniform prior probability over the K
contributor simplex.
w ~ Dir(1)
The mixture variance y* has an inverse gamma prior probability distribution.

v~ ~Gam(1/2,1/200)
Genotype Combination

Genotypes are combined in a mixture by adding together contributor vectors, with each
contributor weighted by its mixture weight. The sum is a genotype vector that describes
the total number of alleles in the sample at each fragment size.

A quantitative linear model of data pattern d, atlocus [/ has an expected vector

value u, given by the weighted genotype sum

K
H,=m, 'zwk,z "8y
=l

Amplification Variance

The polymerase chain reaction (PCR) is an imperfect copying mechanism. A PCR cycle does
not automatically double the number of copies of a particular DNA fragment. Rather, the
number of fragment copies randomly increases each round by a factor between one and
two. This random branching process follows the mathematics of a Poisson counting

process, which can be modeled as a positive-valued distribution having a variance that

scales with fragment quantity y as ¢*- y.



The data variation parameter ¢ has an inverse gamma prior probability
distribution.

o~ ~Gam(10, 20)

Background Variance

Instrument noise arises from a genetic analyzer’s laser signal, optical path, CCD camera,
and other sources. This background noise is independent of the PCR process, and can be
modeled as a normal distribution having a fixed variance parameter.

The data variation parameter 7° has an inverse gamma prior probability
distribution.

77 ~ Gam(10, 500)

PCR Stutter

The DNA polymerase enzyme can drop or add a repeated STR unit when replicating an STR
fragment. The Markov chain process forms a random pattern of fragment lengths centered
about the primary allele length. This PCR stutter pattern is far more pronounced with the
mono- or di-nucleotide repeat loci used in genetics, and attenuated somewhat with the
tetra- or penta-nucleotide repeats used in forensics.

The stutter amount increases with the number of repeats, and can be modeled as a

regression line. Let x be the number of repeat units, and y the stutter proportion. Then
the linear model relating increasing stutter amount to repeat length at a locus is:
y ~N(a+bx,6§)
Prior probabilities for the PCR stutter model parameters are:
a~N(0,1)
b~N(0,10°)
o;*~Gam(0.5,0.5:107)

The stutter proportion is constrained to lie between 0% and 15%.



Relative Amplification

PCR amplifies shorter DNA fragments more efficiently than longer ones. This relative
amplification displaces allele mass away from longer alleles toward short ones.

The allele mass rebalancing increases with the size difference between alleles, and
can be modeled as normally distributed variation in allele height. Let Ax be the difference

in repeat units, and Ay the difference in allele peak heights. Then the linear model relating
allele height difference to size difference at a locus is:
Ay ~N(c-ax,07)
Prior probabilities for the relative amplification model parameters are:
c~N(0,107)
0,2 ~Gam(0.5,0.5-10°)

Differential Degradation

Polymerase requires a connected DNA fragment in order to make a copy. One or more
breaks in a DNA sequence will prevent PCR copying. The chance of having no breaks in a
fragment (unimpeded copying) follows an exponential decay curve in the fragment length
variable, with a decay rate proportional to the density of DNA breaks.

Since TrueAllele models the DNA mass and variation of each experiment separately,
no additional modeling is needed when DNA degradation or inhibition is the same for all
contributors. However, when there is differential degradation between the different
contributors, the decay rate of each contributor’s DNA can be determined by logarithmic

modeling of the exponential process.

Let x be allele size, y contributor allele amount, and Vo the effective contributor

amount following DNA degradation. Then the linear model relating effective allele amount

to allele size for a contributor at a locus is:



y
log| =£ ~N(—/l-x,0';)
y
Prior probabilities for the differential degradation model parameters are:

A~N (0107
0,2 ~Gam(0.5,0.5:107)

Hierarchical Modeling

TrueAllele models variables hierarchically, subdividing them by experiment. Thus one
parameter can expand into many parameters, one for each STR locus experiment, and
another one for the group. This expansion of variables permits modeling that is more
customized to the data, yielding more accurate answers.

For example, contributor mixture weights are determined for each locus experiment

as the set of variables {w, }, and also for the DNA template as group variable w .

K
d, ~ N+[ml 'zwk,z 'gk,z’zzj
=1

W, ~ N[o,l]K" (W, W2 . I)

W~ Dir(l)
Statistical Computing

The joint probability distribution is fully specified as the product of the likelihood and prior

distributions. Using a Metropolis-Hastings sampler, we iteratively draw from the posterior
probability distributions of {g, ,}, {w,}, {m,}, w, 6%, 7°, y* and other variables using
Markov chain Monte Carlo (MCMC) computer methods.

Once beyond the initial burn in phase, the Markov chain samples from the joint

posterior probability distribution. Marginalizing these posterior samples to each genotype



random variable g, , for contributor k atlocus /, we obtain the desired posterior

probability functions g(x) for the genotypes.

Match Statistic

The likelihood ratio (LR) is the information gained in the hypothesis H odds by having
observed data
_0(Hldyd,.d)

LR O(H)

Here, hypothesis H is that the suspect contributed to the DNA evidence, and the DNA data
comprises the questioned evidence d,,, the reference population allele frequencies d, and
suspect profile d,.

Standard Bayesian rearrangements tell us that the LR can also be written as the
ratio of conditional probabilities
Pr{d,|H.d,.d;}
Prid, [H.d,.dy}

LR =

where H is the alternative hypothesis that someone else contributed to the evidence.

Suppose that there is uncertainty in the evidence genotype having pmf g(x) or in the

suspect genotype with pmf s(x). Then this genotype uncertainty is expressed in the LR as

;2@ (x)-s(x)
S )

xeG

where 1, (x) is the likelihood function of the evidence genotype Q and r(x) is the pmf of

reference population genotype.

Bayes theorem lets us rewrite this ratio of likelihood sums as a numerically
equivalent sum of posterior genotype probability product ratios. Probability can be more
intuitive and easier to explain than likelihood.

LR = 2 C]();)(;)(x)

xeG



This genotype probability formulation expresses the LR as a sum of ratios that compare

match probability to coincidence.
Co-ancestry Correction

The LR for the hypothesis that a person contributed their DNA to evidence items 1 and 2 is

calculated from genotype probability distributions via:

D A (x)- Ay (x)- 70y (x)

xeG

LR =
2 Zﬂ'l(x)'lz(y)'”g(%}’)

xeG yeG

The joint prior probability 7,(x,y) function is just the product of independent
population priors 7(x)and 7(y) when not accounting for co-ancestry (i.e,, 6 =0).

However, it is more accurate and conservative to recognize that people in a human
population share common ancestors (i.e., 8 >0).

The conditional match formulae for the homozygote and heterozygote cases
developed by Balding and Nichols were given in the National Research Council (NRC) II
report equations 4.10a and 4.10b, derivable from the probability ratio z,(x,y)/7,(x). The

corresponding joint prior probabilities 7,(x,y) at a particular value of 6 are:

p.[(1-6)p,+0 ] (1-6)p,+26][(1-0)p, +36 ]

To(aa.aa)= (1+6)(1+26)
_ 4p, [(l_e)pa +9]Ph I:(l_e)ph +9:|(1_9)
7o (ab.ab) = (1+6)(1+20)

In situations where the genotype allele pair values are not the same, the joint probabilities

7,(x,y) can be similarly calculated from their Dirichlet distributions, as described in

Chapter 4 of Evett and Weir’s DNA interpretation textbook.

10
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