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Executive Summary

Hypothesis: In today’s forensic laboratory, a greater range of crime classifications are being

considered for DNA analysis (e.g., property crimes) and ever more challenging evidence items

are being submitted (e.g., low copy number).  Many labs have responded to this increase in

submissions by introducing automation into their workflow.  The resultant increase in analytical

capacity, in turn, has created bottlenecks at data interpretation and case file technical review.  To

resolve these bottlenecks, the New York State Police Forensic Investigation Center has

undertaken to test whether Cybergenetics TrueAllele® Casework statistical modeling system is

capable of unattended STR DNA data review and interpretation.

Materials: In this validation study, we re-analyzed 41 cases (all adjudicated, except for two

proficiency tests) previously analyzed by competent DNA analysts at the Forensic Investigation

Center.  To span the range of interpretation challenges commonly encountered in forensic

casework, these 41 cases were relatively equally distributed between sexual assaults containing

victim and suspect reference samples along with various bodily swabs, with more complex

multiple-victim homicides involving upwards of 30 evidence items.  The study has 368 items

covering most commonly submitted evidence including vaginal swabs, anal swabs, oral swabs,

penile swabs, dried secretions, blood stains, semen stains, weapons, cigarette butts, condoms,

human hair, bite marks, and fingernail scrapings.

Methods: The NYSP generated the original electronic data files generated using Applied

Biosystems genetic analyzers.  Cybergenetics uploaded these files to the TrueAllele Casework
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system.  The data and results were then available for retrospective comparison to the data

gleaned from the corresponding case reports issued by the NYSP.  The authors evaluated

genotype concordance in all 368 items of evidence, monitored TrueAllele Casework’s ability to

separate mixture genotypes across a range of mixing weights and complexities, evaluated the

mixture weight percentages determined by TrueAllele Casework, and compared the statistical

match weight of evidence obtained by traditional means (NYSP protocol) to those calculated by

the software.

Results: In this study, we first examined 4,958 alleles in 202 single-source profiles in 41

previously examined cases, and found the genotypes inferred by the statistical computing system

to be in complete concordance.  The results of computer genotype inference over a wide range of

mixture items, whether in complex or difficult cases, were in accord with those determined using

standard validated procedures at the State Police Crime lab.  Without any knowledge of the STR

profile of the suspect, the computer system more effectively ascertained the profile of the

perpetrator and, commonly, provided more profile information than the standard non-automated

manual process.  The computer automatically provided likelihood ratios and, in every case

examined, preserved more identification information as measured by comparison of likelihood

ratios.

Conclusion: The statistical TrueAllele system conveniently utilizes STR DNA data accepted

from in-house genetic analyzers.  Moreover, as intended, the system has demonstrated the

potential to relieve bottlenecks due to increased automation.  The interpretation of STR DNA

data by TrueAllele probability modeling offers enhanced objectivity through reduced examiner
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bias in forensic DNA casework. The system allows the genetic testing laboratory workflow to be

designed so that there is no previous exposure of the reporting analyst(s) to the DNA profiles of

a suspect or pool of suspects until the laboratory report is prepared.  The system achieves greater

resolution in statistical inference of mixture genotypes than current standard practices.  Most

importantly, the system offers increased statistical strength of match.
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Introduction

DNA evidence resides at the center of modern criminal justice, and it is used to help apprehend,

convict and exonerate suspects.  An ideal DNA system would provide identification information

with speed, accuracy and objectivity.  These desirable features are already found in the data

generation process, in which a DNA laboratory transforms biological specimens into quantitative

computer signals.  However the second phase – data interpretation – is still largely conducted by

a human review process.

With pristine DNA data (e.g., reference samples), human review can work well.  But DNA

casework evidence is usually not pristine.  Extracted under real-world conditions, DNA evidence

is often mixed (having multiple contributors), damaged (by heat or bacteria) or low template

(thus hard to discern with any certainty).

Uncertain DNA data may suggest multiple genotype possibilities, thereby reducing identification

information.  Human review of uncertain DNA can be a time-consuming process that does not

fully elicit all the information that the data contain.  Moreover, human comparison of DNA

evidence and suspect may not be entirely objective.

Computer interpretation of DNA evidence can overcome these issues.  Specifically, it is:

• Fast, with parallel computers turning out solutions every few minutes;

• Accurate, able to employ mathematical models that fully preserve all of the identification

information residing in the DNA data; and
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• Objective, interpreting evidence without ever seeing a single suspect genotype.

Such computer processing can effectively handle the mixed, damaged and low level DNA

evidence that currently consume much of the human review effort.

To properly use such a computer system, it is essential to know its capabilities and limitations.

For example, how well does it handle two, three or more unknown contributors?  How damaged

or low level can the DNA be?  Can independent evidence be mathematically combined to make a

more informative identification?

This validation study determined the applicability of Cybergenetics TrueAllele® Casework, a

commercial computer system for the mathematical interpretation of DNA evidence.  We

analyzed 368 items of anonymized adjudicated evidence from the NYSP FIC, including 88

mixture samples.  We found that the DNA match information calculated by the TrueAllele

computer exceeded the reported human review score in every case.  We also measured the

reproducibility of TrueAllele inference using match information.

We begin this report by describing methods for the computer interpretation of quantitative DNA

mixture data, the TrueAllele Casework system and the validation metrics that we used.  We then

describe the case materials used in the study, and our item classification approach.  We provide

an illustrative case example for each class of mixture item.  We present our validation results,

quantifying the efficacy and reproducibility of TrueAllele Casework interpretation on this

mixture data set.
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Methods

Interpreting uncertain DNA evidence

A definite genotype can be determined when a person’s DNA produces clean data.  However,

when the data signals are less definitive, or when there are multiple contributors to the evidence,

uncertainty arises.  This uncertainty is expressed in the resulting genotype, which may describe

different genetic identity possibilities.  Such genotype uncertainty may translate into reduced

identification information when comparison is made with a suspect.

The DNA identification task can thus be understood as a two-step process:

1. objectively inferring genotypes from evidence data, accounting for allele pair uncertainty

using probability, and

2. subsequently matching genotypes, comparing evidence with a suspect relative to a

population, to express the strength of association using probability.

The match strength is reported as a single number, the likelihood ratio (LR), which describes the

gain in identification information produced by having examined the DNA evidence.

The TrueAllele® system is a computer implementation of this two-step objective genotype

inference approach.  TrueAllele infers genotypes from DNA data through mathematical

modeling (1, 2).  To capture all the identification information present in the data, the system

represents genotype uncertainty using probability.  These uncertain genotypes are stored on a
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TrueAllele database so that they can be compared with suspects for investigative and evidential

identification.  The TrueAllele user asks interpretation questions of DNA data, visually reviews

the computer's answers, and generates match reports to use in court.

The TrueAllele technology

Cybergenetics TrueAllele technology for automated interpretation and reporting of DNA

evidence is based on biology, mathematics and computation (3).  This section describes the

TrueAllele workflow from a system and user perspective.

Analysis

The DNA interpretation process requires quality-checked quantitative data.  The TrueAllele

Analysis computer starts with the laboratory's original electronic DNA files, and works with the

user to check and quantify these raw data signals, in order to produce interpretation-ready data.

For each 96-well plate of DNA samples and controls, Analysis applies multiple rules to the

signals to ensure that good data move forward on to interpretation.  The computer gives the lab
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feedback about any data issues that it finds.  The process is fast, taking a few minutes of user

time for a typical DNA plate.

To assess the DNA data signals in Analysis, a user opens a folder of electronic DNA sequencer

files.  He then asks the TrueAllele computer to check the DNA sizing calibration data, and looks

for any problems with these (and other) control samples.  Man-machine communication is

exchanged visually, with the user pointing his mouse at the screen to explore an issue, and the

computer responding by rendering a data image or figure that focuses on the user's question.

After the computer has processed the peak events in the DNA data signals, the user has a data

file of quality-checked quantified peaks ready for the database.

Data

After peaks are quality checked in the Analysis phase, we can view them in the TrueAllele Data

interface.  This gives the user another opportunity to review the peaks before interpretation.  The

TrueAllele computer can signal the presence of any possible artifacts in the data, so that the user

can evaluate the peak and take action upon it if necessary.  Once the quality-checked peaks have

been reassessed, they are ready for upload to a TrueAllele database, and then used in TrueAllele

interpretation.

To upload quality-checked quantified peaks into a database, the user opens a "Visual User

Interface for easy review" (VUIer™) Data window.  He first connects to a TrueAllele database

that will store the data.  After opening the file created in the Analysis phase, the data peaks
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appear on the screen as intuitive visually rendered signals.  Each data injection is shown within

its own track.  The user can ask the computer to show possible lingering data artifacts, along

with pertinent data information.  This annotating information is stored with the peak file on the

database.  When the data review is complete, the user uploads the peak data to the database,

making it available for creating TrueAllele interpretation requests.

Database

The uploaded DNA data reside on a TrueAllele PostgreSQL relational database.  The database is

like an electronic filing cabinet that permits information retrieval simultaneously from multiple

file folders.  The database provides persistent and secure storage for all the information needed

by the TrueAllele user and system.  The (over seventy five) database tables provide quantitative

DNA data, TrueAllele interpretation questions, the computed results, and supporting

information, such as population frequencies.  The database also helps administer system

activities, and supports the monitoring expert system that coordinates the system.

The user logs on to a TrueAllele database to initiate processing or to review results.  The user's

interactions are mediated through the TrueAllele VUIer software installed on their computer.

The VUIer database client exchanges DNA case data with the database, and presents information

visually on the computer screen.  All the user modules (e.g., Data, Request, Review, Report)

automatically generate database queries and DNA visualizations through the VUIer.  Typical

displayed case information includes DNA data, genotype probability, mixture weight distribution

and match rarity likelihood ratio values.
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Request

Once the data are on the database, we can ask DNA interpretation questions that the TrueAllele

computer can solve for us.  Each question involves one or more DNA evidence items, and can be

run under different problem solving conditions.  (Example conditions are how many unknown

contributor genotypes to find, how much computer time to use, or whether to account for

degraded DNA.)  While a victim reference may be optionally included in a question, for total

objectivity a suspect genotype is never used.  Questions can be asked one at time, in duplicate for

reproducibility, or in batches of a hundred or more.  Regardless, once a question has been posed,

the statistical calculating is done entirely by computer.

To ask interpretation questions in a case, the user opens a VUIer Request window.  After

connecting to her evidence database, she selects the DNA data that she wants to use.  These data

images appear visually in the interface, with each signal in its own track.  She then forms visual

DNA items (each corresponding to an evidence sample) from the track signals.  Finally, she

makes each case interpretation request by indicating one or more DNA items, and setting

optional problem solving parameters.  Once she is satisfied with her questions, the user uploads

her interpretation requests to the TrueAllele database for computer processing.
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Computing

After the user has posed DNA interpretation questions, a TrueAllele server interpretation

computer automatically retrieves a request and its data from the database.  TrueAllele

interpretation uses all the data to infer a genotype distribution and mixture weight for each DNA

contributor.  To infer a genotype distribution, the computer explores various peak patterns to

statistically model the data.  Throughout this modeling process the computer considers many

different variables, such as genotype, mixture weight, stutter and preferential amplification.  As a

result, the reported genotype distribution reflects how well a set of proposed patterns fit the data.

Patterns that closely fit the data receive higher probabilities, and patterns that do not receive

lower probabilities.  A separate TrueAllele server computer then matches the inferred genotype

distribution against provided references, and calculates a likelihood ratio statistic.

The TrueAllele parallel compute servers can process multiple requests at the same time.  For

example, solving a DNA interpretation question in duplicate creates two independent

calculations, establishing statistical reproducibility.  We routinely run 24 parallel TrueAllele

processes on our system, each one working on a different case.  A typical DNA mixture takes

about an hour or so to solve, so the overall throughput can be quite high (e.g., over 300 cases a

day).  When the problem solving is done, the computer stores its results (inferred genotype

distributions, mixture weights, likelihood ratios, etc.) on the database for downstream review.
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Review

Once the requests have finished processing, we can review the computer interpretation results.

During this review process, we can see several aspects of the DNA case.  For example, we can

examine a contributor's genotype probability distribution, either visually or in a table.  It is this

key genotype variable, and its probability uncertainty, that establishes genetic identity.  With

multiple DNA contributors, we can visually review mixture information with informative

pictures of mixture weight probability.  The quantitative match information can be seen visually

at the different genetic loci.

The user first opens a VUIer Review window, and selects a request from the database.  A Profile

window appears, visually displaying computed genotype probability distributions.  From here,

the user can navigate to other windows, including ones for the original Data and the Mixture

separation.  When TrueAllele finds a match between an evidence contributor and a suspect, the

Match window and tables show quantitative LR match information.  An Explain window

visually explains the computer's reasoning.  A user can always ask more questions by exiting

Review and returning to the Request module, where he can create new TrueAllele interpretation

questions.

Report

After the interpretation requests have been processed by the computer and reviewed by the

analyst, we are ready to generate reports for court presentation.  TrueAllele generates the



TrueAllele Casework Developmental Validation 15 of 46

customizable report automatically based on user selected options.  A typical report consists of an

evidence interpretation summary, lab information, a match rarity statement and detailed locus

results.  The reported match statistic incorporates appropriate population allele frequencies, and

can apply a coancestry coefficient (theta) for a statistic with population substructure.

For automatic report generation, the user opens the VUIer Report window.  After connecting to a

TrueAllele database, the user downloads genotypes of interest: evidence contributors, suspect

references, and population frequencies.  The probability distributions of each genotype are

displayed together visually in the VUIer Report window.  The user can review different matches

of evidence contributors to suspect references, and generate a report for any match.  She can

export her report from VUIer as a text document, and import it into a spreadsheet program.

Comparison metrics

There are different ways to compare DNA inference results.  Some comparisons are qualitative,

such as examining genotype or mixture weight probability distributions.  Results can be

compared quantitatively using the LR DNA match association score.

Likelihood ratio match information

The identification information of the STR data is captured in a single number, the LR that

describes the gain in information resulting from having looked at the data (4).  We use this
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generally accepted LR gold standard for quantifying the efficacy and reproducibility of DNA

interpretation methods, and making comparisons between methods.  Scientists generally use the

logarithm (powers of ten, or "order of magnitude") of the LR as the information measure.

With a strong DNA match of evidence to suspect relative to a population, the LR is typically

over a million (log(LR) > 6).  The LR can reach into quintillions (log(LR) > 18) when using 13

STR loci on unambiguous DNA data.  A mismatch will have a very small LR under 1, typically

less than a quadrillionth (log(LR) < -15).  Thus the LR numerically quantifies the extent of

match, based on DNA data (5, 6).  This numerical LR presentation of scientific evidence is more

precise than using qualitative words like "inclusion" or "exclusion" (7), binary decisions that are

perhaps best left to the trier of fact.

The LR logarithm pervades all of our study Results.  For method efficacy, we use the log(LR) to

measure the identification information inferred from the DNA data.  For relative efficacy results,

we again use the LR, since the information gain of one method over another is just the logarithm

of their LR ratios.  We quantify reproducibility through log(LR) variation within a case.  The

productivity of DNA processing can be assessed by the probability that a sample will produce a

reportable LR match score.
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Genotype probability distribution

Uncertainty in DNA evidence translates into genotype uncertainty.  All mixture interpretation

methods report out a list of allele pair possibilities, associating them with probabilities.  It can be

instructive to examine and compare these inferred genotype probability distributions.

In our Case Examples, we will look directly at the genotype likelihood or probability distribution

resulting from different interpretation methods on mixture data.  For more quantitative

assessment, it is useful to translate these genotype probabilities into LRs and determine their

match information.  That translation reduces the genotype's multidimensional probability

distribution over allele pairs at multiple loci into a single information number, the log(LR).

Mixture weight probability distribution

Individuals contribute their DNA to a mixture item in a certain proportion, or "mixture weight".

Analysts often try to infer this mixture weight (mean and variance) for the DNA template from

some genetic loci using quantitative peak height data and contributor genotypes.  Computers can

use all of the loci to infer the mixture weight of the DNA template (2).

In the Results section, we shall use mixture weight as an auxiliary variable that helps us assess

the complexity of a mixture item.  A small mixture weight can mean a lower quantity of

contributor DNA, which may reduce match information through stochastic effects.  In a 50:50
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mixture that is interpreted without a victim reference, more allele pair combinations are possible,

and this genotype uncertainty can decrease match information.

Validation methods

This report centers on the scientific validation of the TrueAllele Casework DNA interpretation

system (3).  The statistical approach uses DNA match information as the key metric (8), since

that is the single measure of association used by law enforcement and the courts (9).

Efficacy

The outcome of any genotype inference from evidence data is a probability distribution over

allele pair values at each locus.  These probabilities arise from Bayesian inference (10), using a

population prior and a likelihood function.

Computer-based modeling methods (11, 12), such as the TrueAllele system (13), employ a

quantitative likelihood function that compares proposed patterns with STR peak heights.  Human

review of DNA mixtures is commonly done qualitatively using the Combined Probability of

Inclusion (CPI) or Combined Likelihood Ratio (CLR) (14).  A qualitative binary method, such as

CPI or CLR, forms a genotype list of length N that contains reportable allele pairs, each one

assigned a likelihood of 1 N  (9).
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A LR compares this evidence genotype to a suspect genotype, relative to a population genotype,

through their probability distributions to obtain match information (9).  Thus the LR provides a

universal mechanism for comparing match information between genotypes inferred by different

mixture interpretation methods, relative to the same suspect and population (15).

The log(LR) is a standard measure of information that describes how much information was

gained in a hypothesis H by observing some data (4, 16).  The LR is often defined as the ratio of

posterior odds to prior odds, as follows

(1) LR =
O H data( )
O H( )

In forensic DNA identification, hypothesis H is that the suspect contributed to the DNA data.

The prior odds of the hypothesis is denoted as O H( )  before seeing any DNA data, and the

posterior odds as O H data( )  after having examined the data.

(The "odds", as in a game of chance, is the ratio of two probabilities – that of some event

occurring or hypothesis being true, relative to that of the opposite alternative.  In football, for

example, the hypothesized event may be that a team will win a game against a particular

opponent.  The "odds" then quantifies our belief in the team's chance of winning.  A LR would

describe how much information we gain about the team's chance of winning from some new data

that we learn about the situation.)

All currently reported match statistics (e.g., TrueAllele, kinship, CLR, CPI) can be viewed as

LRs (9).  Therefore, we can compare the relative efficacy of two mixture interpretation methods
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by examining the difference in their log(LR) scores.  For a set of cases, we can also look at the

mean value of these information differences.

In this project we will compare differences in identification information between quantitative and

qualitative mixture interpretation methods (3).  When the victim genotype is known and used, the

difference is log(TrueAllele) – log(CLR).  When the victim is not available for genotype

inference, this information difference is log(TrueAllele) – log(CPI).

Through these measures of efficacy, the validation study can verify that the TrueAllele system

extracts at least as much information as current manual review methods.  Moreover, the efficacy

measures can quantify the extent of additional information that the computer is able to derive

from the data.

Reproducibility

An important aspect of scientific reliability is a method's reproducibility (17).  The

reproducibility of a set of measurements is conventionally reported as the standard deviation of

these numbers (18).  Any mixture interpretation method applied to some DNA data will infer a

genotype, which yields a single information log(LR) measurement when compared with a

suspect and population.  Independent interpretations using the same method on the same DNA

mixture data, relative to the same suspect and population, produce a set of log(LR) information

values.  From this set of measurements, we can assess the method's reproducibility by computing

a standard deviation of the inferred match information for a case.
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To sharpen the reproducibility estimate of a mixture interpretation method, we use more cases.

The "within-case" standard deviation !w  (19) describes the method's reproducibility over a

population of mixture cases (8).  We can compute !w  as the root mean square deviation of

replicated log(LR) information scores, relative to the mean value within each case (19), as

(2) !w
2 =

sij "!si( )2
j=1

Ji

#
i=1

I

#

Ji
i=1

I

#

Here, I is the number of cases, Ji is the number of independent interpretations of the ith case, sij is

the log(LR) score of the jth interpretation of the ith case, and si  is the mean score of the sij values

within the ith case.

Through these measures of match information reproducibility, the validation study can quantify

the reliability of the TrueAllele system under different casework situations.  This quantification

is done by assessing reproducibility on subgroups of DNA items of differing sample complexity

(number of contributors, mixture weight, DNA amount, DNA degradation, etc.).
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Case Materials

Evidence items

In this validation study, we re-analyzed 41 cases (all adjudicated, except for two proficiency

tests) previously analyzed by competent DNA analysts at the Forensic Investigation Center.  To

span the range of interpretation challenges commonly encountered in forensic casework, these 41

cases were relatively equally distributed between sexual assaults containing victim and suspect

reference samples along with various bodily swabs, with more complex multiple-victim

homicides involving upwards of 30 evidence items (Table 1A).  The 368 study items were

derived from 206 distinct biological source samples.  These samples cover most of the

commonly submitted evidence sources, including vaginal swabs, anal swabs, oral swabs, penile

swabs, dried secretions, blood stains, semen stains, weapons, cigarette butts, condoms, human

hair, bite marks, and fingernail scrapings (Table 1B).

The TrueAllele-inferred mixture weights of these evidence items were broadly distributed

between 0 and 1 (Figure 1).  We wanted to study actual mixtures, and not consider nonmixture

samples or blanks.  We therefore focused on the 88 evidence items that had a mixture weight

between 0.05 and 0.95 (inclusive).
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Classification

Evidence items were classified as simple, intermediate or complex.  There were about twice as

many items in each of the simple and complex categories than there were in the intermediate

category (Table 1C).  The number and nature of the contributors to the items were tabulated, as

shown (Table 2).

Simple.  All the simple mixture case items had two contributors (Table 2, simple).  For most of

these cases, one contributor was known and the task was to infer the unknown second

contributor.  There were no low template DNA sources.  The data showed clear major and minor

contributors.  The DNA sources in the simple category were primarily from sexual assault

differential extractions.

Intermediate.  Mixture items in the intermediate category were more challenging.  Some items

were derived from low template DNA sources, while others contained contributors in

approximately equal 50:50 mixture weights.  Some mixture items contained two or three

contributors, with multiple unknown contributors appearing in about half the items (Table 2,

intermediate).

Complex.  Mixture items in the complex category had two or three contributors, often with

multiple unknown contributors (Table 2, complex).  The STR data showed peak imbalance, and

contributors with approximately equal 50:50 mixture weights (i.e., no clear major or minor
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distinction). Some samples were amplified from low template DNA.  Several of these cases also

had multiple suspect or victim references.

Case Examples

We present three illustrative mixture items, one in each category: simple, intermediate and

complex.  The samples become progressively more interesting, and respectively entail one, two

and three unknown contributors.

Simple

In this simple case, the data suggest that there are two contributors.  The evidence is from a

sexual assault, so one contributor is known to be the victim.  This constraint fixes one genotype

in the mixture, so the task is then to infer the one unknown contributor genotype.  With just one

genotype to infer, the problem is similar to a single source scenario.  A highly informative

genotype would lead to a large match score.

Mixture.  With the genotype of the known contributor fixed, inferring the contributor mixture

weight is straightforward for a computer.  The sharp bell curve shown indicates good genotype

separation, with a relatively certain mixture weight of 60% and a standard deviation of 3%

(Figure 2A).
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Genotype.  A genotype probability distribution was inferred for the unknown contributor (Figure

2B).  At each locus, there is single definite allele pair having probability one.  Since the victim's

genotype was known, the unknown major contributor has a definite genotype (no probability

uncertainty), as with a single source profile.

Explanation.  Using the Explain window in the TrueAllele interface, we can see how the

computer models the data.  The peak data is modeled here with proposed genotype pattern at

locus D7 (Figure 3A).  We know the [10, 12] victim genotype.  The proposed [8, 8] allele pair

for the unknown contributor genotype produces a pattern that closely fits the data (Figure 3B).

No other allele pair candidate can properly account for the quantitative peak data, assuming a

60% mixture weight and a known first victim contributor.

Information.  With a unique genotype possibility for the unknown contributor at every locus, the

match strength was 247 quintillion, or 20.4 log units of information.  The strong match score

here is the same as it would be for a (single source) random match probability, since the inferred

genotype is definite.

Intermediate

In this intermediate case, the data suggest a DNA mixture of two unknown individuals.  The task

here then is to infer a separate genotype probability distribution for each of the two unknown

contributors.  The computer must also infer each contributor’s mixture weight.  Inferring two

unknown contributor genotypes can be more complex than inferring one (as in the previous
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problem), and may yield less identification information.  We quantify our uncertainty in the

inferred genotypes and mixture weight using probability.

Mixture. For this two contributor case, the computer inferred mixture weights of 64% (Figure

4A, major contributor shown in blue) and 36% (minor contributor, orange).  The uncertainty

introduced through having a second unknown genotype was translated into a somewhat broader

mixture weight probability distribution, with a standard deviation of 4.3% (Figure 4A).

Genotype.  The computer inferred two genotypes (Figure 4B, blue major and orange minor).

Each genotype shows the allele pair probability distribution at every locus.  At most loci (e.g.,

FGA), there is more than one possibility, and the allele pair probabilities are shown.  Note that

for each contributor, at most loci, the inferred genotype suggests that one of these allele pair

candidates is quite probable, as indicated by a long probability bar that approaches 1.

Explain.  The likelihood of a genotype candidate expresses how well its model fits the data.  The

64% major contributor allele pair [10 12] (Figure 5A, blue), together with the 36% minor [11 13]

(orange) at locus D5, form a pattern (Figure 5B, gray) that closely fits the quantitative STR data.

Therefore this genotype value pair has a high likelihood of being correct.  However, most

proposed genotype values do not fit the data all that well.  A typical unlikely minor contributor

allele pair [9 13] (Figure 5C, orange) forms a pattern (Figure 5D, gray) that is discordant with the

quantitative data.  The hypothesized [9 13] predicts a "9" allele peak where there is none, and

does not account for the "11" allele peak.  The evident mismatch between model and data makes

this allele pair choice extremely unlikely, both to our eye and to TrueAllele's likelihood function.
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Information.  DNA data uncertainty affects the inferred genotype, which in turn affects the

identification information.  In this case, with two unknown contributors, the inferred

probabilities were relatively high at the matching allele pairs, though less certain than in the

simple case.  Therefore, the match rarity between the major contributor and suspect decreased

two log units to 18.1, or 1.52 quintillion.

Complex

In this complex case, the data suggest that there are three contributors to the DNA mixture

sample. None of these contributors are known.  The key task is to infer a genotype for each

contributor.  With more contributors to infer, we expect the genotype probability distributions to

be less certain.  Such less definite genotypes should yield less match information.

Mixture.  Looking at the mixture weights, we show the inferred probability distribution for each

contributor (Figure 6A).  We see the weight distributions of the most abundant 60% major

contributor (blue), the intermediate 27% minor contributor (green), and the lowest 12% minor

contributor (orange).  The observed mixture weight at each locus has stochastic variation, so the

template's mixture weight data uncertainty is represented through probability.  Here, the mixture

weights have highly confident standard deviations of around 3%.

Genotype.  For each contributor, the system inferred a genotype (Figure 6B).  The most abundant

major contributor (greatest mixture weight) produced the most definite probability distribution
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(blue).  As the amount of a contributor in the mixture decreases, its genotype distribution grows

more diffuse (green). The lowest minor contributor has the most uncertain probability

distribution (orange).  This probability diffusion trend is clearly seen at locus D7, proceeding

across the figure from greater confidence (left) to less (right).

Explain.  The Explain interface shows data patterns, together with genotype models (Figure 7A).

Note that each color corresponds to the allele pairs of a contributor at the CSF locus.  A

predicted model pattern that closely fits the observed quantitative data has a high likelihood.

However, patterns from other allele pair alternatives might also fit the data, as reflected in the

diffuse genotype distributions (Figure 6B).  A better fit to the data tends to produce a higher

allele pair probability (Figure 7B).

Information.  A genotype having many likely allele pair possibilities can reduce match

information.  The major contributor inferred genotype here matched a reference with a high LR

strength of 513 quadrillion (17.7 log units), relative to an ethnic population database.  The

intermediate minor 27% contributor genotype had a LR of 372 billion (11.6 log units).  The

minor 12% contributor genotype LR match strength was 186 billion (11.3 log units).  The more

diffuse inferred genotype probability distributions of the two minor contributors produced match

strengths below a trillion.  The three LR scores that TrueAllele inferred from this three unknown

contributor mixture item are lower than in the intermediate case, but are larger than the world's

population and quite useful for human identification.
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Validation Results

There is often little agreement on the posterior probability distribution of a genotype inferred

from DNA mixture data (20).  However, for any genotype, its log(LR) against a known suspect

relative to a reference population provides a standard measure of identification information.

Since TrueAllele computes LRs, as do human mixture interpretation methods (e.g., CPI, CLR),

we can quantitatively assess and compare DNA interpretation methods.

Efficacy

The log(LR) provides a measure of efficacy – how well an interpretation method works, in terms

of the quantitative identification information it can extract from DNA data.  Here we use the LR

to describe the absolute efficacy of TrueAllele interpretation, as well as its relative performance

when compared with human review.

For absolute efficacy, we compare the log(LR) information scores of simple, intermediate and

complex cases in this data set (Figure 8).  We see that, on average, simpler cases (blue) have

more identification information (16.28 log units), intermediate cases (green) less information

(13.14 log units), and complex ones (orange) even less (11.87 log units) (Table 3).

For relative efficacy, it would be helpful to know whether the TrueAllele computer is as (or

more) informative than human review.  We can determine this by comparing computer and
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human review log(LR) statistics that were produced by analyzing the same DNA mixture data.

In this study, we used mixture case items with two contributors to effect this comparison.

When a known victim reference genotype is available, the task is to infer the one unknown

second contributor.  To do this, a person often uses a CLR mixture interpretation method.  For

comparison on eight two person mixtures, we had the TrueAllele system look for one unknown

genotype, assuming the victim reference.  We see that in every case, the computer inferred more

information on duplicate runs (Figure 9, blue, green) than a person using CLR did (orange) from

the same data.  On these eight cases, the average log(LR) match score improvement was 4.67 log

units, or about 50 thousand.

Without a known victim reference genotype, one must infer both unknown contributors.  This is

often done by a person by applying the CPI method.  We identified eight appropriate two person

mixture items for comparison.  We ran the TrueAllele system in duplicate on these data as a two

unknown contributor problem, without any references.  In every case, TrueAllele probability

modeling (Figure 10, blue, green) inferred more information than human CPI review (orange)

from the same data.  On this set of eight items, the average log(LR) match score improvement

was 6.24 log units, or over one million.

Reproducibility

We measured interpretation reproducibility by examining the variation of log(LR) match score

resulting from duplicate computer runs on the evidence item.  These variation data can be
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combined across many case items using equation (2) to compute the within-group standard

deviation.

Qualitatively, we see that one unknown mixture problems are more reproducible than are two

unknown problems (Figures 9 and 10).  Across the spectrum of all 88 mixture items, we see that

more informative results tend be more reproducible (Figure 11).  In this figure, the two replicate

TrueAllele runs (blue, green) are shown sorted by log(LR) information.  As information

decreases (from left to right), we see more divergence between an item's two inferred match

information values.

Quantifying reproducibility by item complexity, we confirm that greater data certainty and LR

scores produce (on average) more reproducible interpretations (Table 3).  The simple items have

a within-group standard deviation of 0.102.  The intermediate samples double that variation to

0.255, while complex ones double the spread yet again to 0.437.

The observed with-in group standard deviations (Table 3) are all less than the population

sampling variation of around one log unit found in reported LRs.  We conclude that TrueAllele

mixture interpretation is highly reproducible in all the data situations that we examined.

Productivity

Not all items of evidence in current laboratory practice yield a reportable quantitative DNA

match statistic.  Instead, an analyst may sometimes report out an item in "consistent with",
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"cannot be excluded" or "insufficient" language, without attaching a LR number.  The TrueAllele

computer, though, has no choice but to infer a genotype that can later be used in an LR match

comparison.  If the data are uninformative, that fact is reflected in a diffuse genotype distribution

and a low LR score.

How informative are TrueAllele's LR values in each sample item category?  The computer is

programmed to report a LR statistic on every genotype comparison that it makes.  We see that on

this data set, TrueAllele yielded an average LR match values of about 1016 (10 quadrillion) for

simple items, 1013 (10 trillion) for intermediate ones, and 1012 (trillion) for complex cases (Table

3).  So, regardless of item complexity, TrueAllele mixture interpretation usually produces an

informative result on each item that it examines.

How often does human review produce a numerical LR match value?  For the 35 simple items,

human review in this study yielded a LR value (e.g., CPI, CLR) 49% of the time (Table 2,

number and fraction reported by lab with LR statistic).  The yield was less for the 20

intermediate items, with just 25% generating a numerical match score.  With the 33 complex

cases, only 21% of items produced a LR score.  Overall, the laboratory's human review reported

a numerical DNA match statistic for 29 of the 88 mixture samples, for a frequency of one

statistic produced for every three items (33%).

TrueAllele interpretation always produces a LR match score for an item.  However, with human

review, a lab must analyze three mixture items (on average) in order to produce one match

statistic.  A TrueAllele-based interpretation process might therefore enable a laboratory to
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consistently process fewer items of evidence.  Such a sample volume reduction might accelerate

turnaround time, and consume fewer reagents with less expenditure of human effort.

Other comparisons

We computed the mixture weight manually on spreadsheets for two person mixtures using those

loci where the contributor allele sets did not overlap.  At each locus, the contributor peak height

sum was divided by the allele peak height total to estimate mixture weight.  Examining the

differences between TrueAllele-computed mixture weight (using all loci in a probability model

computation) and these rougher human spreadsheet estimates, we see good agreement between

the values (Figure 12).

Using the TrueAllele-computed log(LR) DNA match information scores, we see a distribution of

DNA match information values with a median value centered around 15 log units (Figure 11).

Using the TrueAllele-computed mixture weight (for the suspect-matching contributor), we see a

roughly uniform distribution of mixture weight across the items (Figure 1).  Pairing each item's

log(LR) match information together with its mixture weight, scatter plots show (for each of the

three classifications) how increasing item complexity is associated with reduced match

information, and somewhat lower mixture weight (Figure 13 and Table 3).
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Discussion

Science (21) and the law (22) often require forensic expert testimony to have a sound scientific

basis.  To demonstrate the reliability of DNA testing, forensic scientists conduct extensive

validations of their STR data generation methods (23-25).  Given the wide disparities found in

DNA mixture interpretation results (26) and the ongoing controversy surrounding mixture

interpretation methods (27, 28), clearly these methods should similarly be subject to scientific

scrutiny.  However, most mixture interpretation methods have not been validated to determine

their efficacy and reproducibility.  Without such rigorous validation, though, mixture

interpretation may be subject to challenge in court (29).

Two analysts may independently review the same mixture data and arrive at different allele (or

genotype) lists (26).  It can be hard to quantify these qualitative discrepancies, or to make

comparisons between different methods.  Fortunately, in a validation study, the match statistic

provides a single number that captures the identification information extracted from the data,

relative to a known subject and a reference population.  For DNA mixture interpretation methods

currently in use (including CPI, CLR and TrueAllele), these match rarity numbers are all LRs

(9).  Since log(LR) is a standard measure of information (4), these numbers can be compared

both within and between case interpretations to form the basis of a quantitative statistical

validation study (8).

The advent of genetic calculators enables a computer interpretation of DNA evidence.  While

computers have inferred genotypes from genetic data for quite some time (30), they have only
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recently been used for forensic identification (2, 31, 32).  Computers offer three principal

advantages in the interpretation process:

• Productivity.  Computer review can help the analyst conduct rapid and accurate DNA

data review (33).  Reliable computing can eliminate the (often time-consuming) human

review of cases that are impossible to solve, infer genotypes from extremely difficult

mixture samples, and accelerate the processing of straightforward data.

• Information.  Human review typically makes simplifying assumptions that can discard

considerable identification information contained in the DNA evidence (27).  A computer

can use a statistical model to fully examine the quantitative peak height data.

• Objectivity.  Human mixture interpretation methods sometimes use the suspect genotype

to help infer or report results (34).  A mathematically programmed computer can infer a

genotype directly from the evidence data without using any suspect information, and then

compute a match LR statistic from this genotype.

There is currently some controversy regarding the manual interpretation of uncertain DNA

evidence.  Some scientists dispute the proper way to qualitatively examine DNA mixtures (20,

27, 35, 36), with particular concern about stochastic effects and setting thresholds.  However, a

quantitative data variance model (3) can determine the probability distributions of the peak data.

In this way, the TrueAllele computer system exploits stochastic effects for more informative

genotype inference, and obviates the need for thresholds.

Forensic scientists also debate ways to objectively examine DNA evidence (37-40).  The concern

is that prematurely exposing a human examiner to a suspect profile can introduce observer bias.
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The TrueAllele method, however, uses a two-step probability approach: first inferring genotypes

from the evidence, and only afterwards making any LR comparison with the suspect.  This

"parallel unmasking" of independent evidence and suspect genotypes entirely eliminates any

such objectivity concern.

In this report, we validated the TrueAllele genetic calculator for DNA mixture interpretation

using statistical measures of efficacy and reproducibility based on log(LR) match information.

When a victim reference was available, the computer was four and a half orders of magnitude

more efficacious than human review on the same data.  Without a victim reference, the average

efficacy of the computer increased to six orders of magnitude.  The computer methods were

highly reproducible, as measured by within-case log(LR) standard deviation on duplicate runs.

Scientifically validated computer systems that can reliably solve DNA mixture cases could have

a positive impact on criminal justice.  For the forensic scientists and their laboratory, a computer

assistant can help reduce the time, cost and uncertainty of DNA mixture review.  Moreover,

when testifying in court, scientists who report on match results using validated mixture

interpretation methods will be less subject to challenge.  By extracting (on average) a million

times more identification information than the prevalent inclusion method from the same DNA

evidence, quantitative computer interpretation provides the police with greater investigative

power, the prosecutor with greater evidentiary power, and the defense with greater exculpatory

power.  Widespread deployment of these objective, information-rich computer-based

productivity tools may help society by enhancing public safety.
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Figure Legends

Figure 1.  Item mixture weights.  The distribution of mixture weight over the case items is shown

as a histogram.

Figure 2.  Simple example: infer. The TrueAllele VUIer interface shows (A) the mixture weight

posterior probability distribution as a histogram over the interval [0, 1].  The VUIer also shows

(B) the genotype posterior probability distribution of the allele pairs at each locus as a horizontal

bar chart.

Figure 3.  Simple example: explain.  The TrueAllele VUIer shows an explanation for the

observed data peaks.  (A) In Model view, the known victim allele pair (gray) is added to the

proposed unknown contributor allele pair (blue) in a mixture weight proportion to form a pattern.

(B) In Pattern view, the model pattern is expanded to include variables for PCR artifacts and

other second order effects.

Figure 4.  Intermediate example: infer.  With two unknown contributors, the VUIer Review

mode (A) Mixture window shows template mixture weight probability distributions for the major

(blue) and minor (orange) contributors.  (B) We also see in Review the genotype probability

distributions for each contributor (blue, orange) at every locus.

Figure 5. Intermediate example: explain.  The VUIer Explain window shows (A) the weighted

genotype allele pair candidates from the major (blue) and minor (orange) contributors.  (B) The
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expanded peak pattern includes other STR variables, and fits the observed data peaks well.  Also

shown is an example of a poor candidate genotype, using the Explain window's (C) genotype

view to see an unlikely minor contributor [9 13] allele pair (orange).  We see that (D) the pattern

produced (gray) does not fit the data peaks well.

Figure 6.  Complex example: infer.  There are three unknown contributors in this DNA item.

(A) The VUIer Mixture window shows mixture weight probability distributions for the major

(blue), greater minor (green) and lesser minor (orange) contributors.  (B) The VUIer Profile

window shows  the posterior genotype probability distributions for each contributor (blue, green,

orange) at every locus.

Figure 7. Complex example: explain.  The VUIer Explain window shows how (A) the weighted

genotype allele pair candidates from the major (blue) and two minor (green, orange) contributors

help explain the data.  (B) The peak pattern includes other explanatory STR variables.

Figure 8. Item information. The distribution of item match information (as inferred by

TrueAllele) is shown as a histogram of log(LR) counts for each complexity category.  The

simple items (blue) are distributed more to the right than the intermediate items (green).  The

leftmost distribution is for the complex items (orange), which tend to be less informative.

Figure 9.  Match information comparison with one unknown contributor.  The log(LR) match

information values are shown for each of the eight one unknown cases.  The results for duplicate
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LR1 computer runs (blue, green) and the reported CLR value (orange) are sorted by information

divergence.

Figure 10.  Match information comparison with two unknown contributors.  The log(LR)

information values are shown for each of the eight two unknown cases.  The results for the

duplicate LR2 computer runs (blue, green) and the reported CPI value (orange) are sorted by

information divergence.

Figure 11.  Duplicate item match information.  All the items are sorted by descending match

information.  For each item, the log10(LR) information values of the independent first (blue) and

second (green) TrueAllele computer runs are shown.  We observe a median information value of

15 log(LR) units, and that variation between runs increases with decreasing identification

information.

Figure 12.  Mixture weight comparison.  The mixture weights of two contributor items were

determined by two different quantitative allele peak methods.  A histogram of the differences is

shown.  Human calculation was done using a spreadsheet that used peak heights from alleles that

could be separated by contributor.  TrueAllele used all of the peak height data at all loci in a

Markov chain computation.  We observe that the human approximation is in reasonable

agreement with the computer solution.

Figure 13.  Mixture weight vs. information.  For each category, a scatterplot is shown of mixture

weight vs. log(LR) for all items in that category.  We see that (A) simple items tend to have more
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identification information and higher mixture weights than other items.  The (B) intermediate

items have less information and a lower mixture weights, while the (C) complex items have the

least information, on average.

Table Legends

Table 1.  Case items.  Subtotals organized by (A) type of crime, (B) source of biological sample

and (C) classification.

Table 2.  Item complexity.  The rows are organized into three groups, based on the simple,

intermediate and complex classification.  In the left half of the table, the number of contributors

is shown, arranged by total, known and unknown contributor columns.  The right half shows the

number of items, giving the total number, how many of those items were reported out by the

human review laboratory with a match statistic, and the corresponding fraction.  (Since the

TrueAllele computer always generates a match statistic when making a genotype comparison, its

fraction would always be 1.)

Table 3.  Efficacy and reproducibility.  The rows organize the evidence items by their

classification as simple, intermediate or complex.  The columns are for the average log(LR)

match information and mixture weight in each category.
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Research Papers

We have attached three relevant scientific articles written by Dr. Mark Perlin, along with a

contextually useful newsletter.

Linear Mixture Analysis.  This 2001 peer reviewed Journal of Forensic Sciences paper presents

the linear model used for modeling quantitative STR peak data.  The key idea is that the amount

of allele DNA that goes into a PCR amplifier is roughly proportional to the observed peak

heights.  When mathematically described, that insight permits accurate determination of

genotypes from DNA mixture data.

Match Likelihood Ratio.  This 2009 peer reviewed Law, Probability and Risk paper introduces

the match LR (MLR) approximation to the standard LR.  It shows how genotypes can be first

inferred, and then subsequently matched, giving useful examples.  The MLR provides a simple

explanation of the LR.  All of these MLR ideas can be applied to the exact LR form that we used

in our validation study.

Information Gap.  This 2009 peer reviewed PLoS ONE validation paper compares TrueAllele

probability computer modeling with current human review methods of DNA mixtures.  The

paper shows that while human review can reliably proceed down to about 100 pg of DNA,

mathematical computation can extend this range down to about 10 pg of DNA.  That is, DNA

laboratories produce data that contain considerable identification information that is often

discarded.  The paper also describes the use of TrueAllele in the Foley homicide case.
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The Foley Case.  This 2009 Cybergenetics newsletter describes the Pennsylvania homicide

Commonwealth vs. Foley case.  In the 2009 criminal trial, TrueAllele computer interpretation of

DNA mixture was introduced into court as evidence after a Frye hearing that established the

general acceptance of the underlying principles in the relevant scientific community.  While the

CPI method produced a LR score of 13,000, computer review of the same data using probability

modeling yielded a LR score of 189 billion.  These results are consistent with our observations in

this validation study – computer review is typically a million times more informative than human

review of the same DNA mixture evidence.
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Figure 12
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Table 1

A
Type

sexual assault 32
homicide 3
assault 4
miscellaneous 2

41

B
Source

vaginal swab 17
anal swab 7
penile swab 1
semen stain 39
clothing item 10
bedding item 3
weapon 11
cigarette butt 2
condom 1
dried secretion 8
hair 3
bite mark 2
fingernail 9
blood stain 69
miscellaneous 24

206

C
Category

simple 35
intermediate 20
complex 33

88



Table 2

contributors items

complexity

total
number
in DNA
item

how many
knowns

how many
unknowns

total
number

number
reported
by lab
with LR
statistic

fraction
reported
by lab
with LR

statistic

simple 2 1 1 30 15 0.500
2 0 2 5 2 0.400

35 17 0.486

intermediate 2 1 1 10 2 0.200
2 0 2 7 2 0.286
3 1 2 1 0 0.000
3 0 3 2 1 0.500

20 5 0.250

complex 2 1 1 8 2 0.250
2 0 2 17 0 0.000
3 1 2 5 3 0.600
3 0 3 3 2 0.667

33 7 0.212

88 29 0.330



Table 3

Information
average

Within-group
standard deviation

Simple 16.28 0.102

Intermediate 13.14 0.255

Complex 11.87 0.437


