
VIRGINIA:

IN THE CIRCUIT COURT OF FAIRFAX COUNTY

COMMONWEALTH OF VIRGINIA )
)
) Crim. No.: FE-2019-279 

v- )
)

CLARK WATSON, )
)

Defendant )
)

MOTION FOR RECONSIDERATION AND 
MOTION FOR AMENDED PROTECTIVE ORDER OF CYBERGENETICS

COMES NOW, Cybergenetics Corporation, by counsel, Brandon R. Shapiro, pursuant to 

§8.01-277 of the 1950 Code of Virginia, as amended, for the limited appearance to request this 

Honorable Court reconsider and amend the protective order issued requiring Cybergenetics to 

provide the TrueAllele source code for the following stated reasons:

1. Cybergenetics is a Pennsylvania corporation located at 160 North Craig Street, 

Suite 210, Pittsburgh, PA 15213. Cybergenetics is the owner o f the TrueAllele® software, as 

well as its proprietary trade secret source code.

2. Cybergenetics licenses its TrueAllele technology to the Commonwealth’s 

Department o f Forensic Science (DFS) as an executable software program.

3. DFS has reported TrueAllele results as Certificates of Analysis (COA) in over 

eight hundred Virginia criminal cases.

4. Cybergenetics reported TrueAllele COAs in 2011 and 2012 in the Fairfax County 

child abduction case o f Commonwealth v. Jonathan Ramsey. Cybergenetics Chief Scientist Dr. 

Mark Perlin testified in Fairfax Court in that case in June of 2012.
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5. TrueAllele technology was found to be reliable in a December 17, 2013 Virginia 

admissibility decision by Chief Judge W. Allan Sharrett of the Sixth Judicial Circuit (Exhibit 1). 

Judge Sharrett ruled after holding a five-day Spencer hearing for TrueAllele match results in the 

double homicide case o f Commonwealth o f Virginia v. Matthew Brady in Colonial Heights 

County.

6. DFS does not have or need TrueAllele source code. Rather, the crime lab tests 

and validates its TrueAllele software in accordance with established federal validation guidelines 

and standards. Therefore, Time Allele source code is not in the possession of the Commonwealth.

7. Cybergenetics and DFS respond to subpoena duces tecum (SDT) requests made 

by defendants. A prosecutor generally files a Motion to Quash (MTQ) on a SDT request for 

source code trade secrets. One such MTQ filed in 2013 in the Loudoun County case of 

Commonwealth v. Darwin Bowman is provided as an example (Exhibit 2). Courts grant these 

MTQs.

8. The Commonwealth’s DFS produced a CO A report that is part o f the 

Commonwealth’s evidence in this matter (Exhibit 3).

Certificate for an Out-of-state Subpoena

9. According to the docket in this matter, a certificate for an out-of-state subpoena 

was entered on August 23, 2019, directed to Cybergenetics. However, Cybergenetics never 

received service of a subpoena in this matter. Instead, Cybergenetics was contacted by Fairfax 

County ACA Lauren Hahn regarding this case on September 13, 2019.

10. Prosecutor Hahn forwarded an unsigned defense motion for a certificate for a 

subpoena to Cybergenetics via email. Cybergenetics voluntarily responded to the prosecutor’s 

emergency request a few days later, on September 17, 2019, providing available materials.
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11. No motion to compel, the subpoena, or motion affecting the scope of the 

subpoena was ever filed or served upon Cybergenetics.

12. Instead, a hearing for a motion to exclude DNA was held on August 14, 2020.

13. Cybergenetics was not represented at that hearing, and it had no opportunity to 

respond to the assertions against it, which allegations apparently resulted in the issuance of the 

August 25, 2020 order compelling production from Cybergenetics.

The Role of TrueAllele in DNA Analysis

14. TrueAllele is a probabilistic genotyping computer system that interprets DNA 

evidence using a statistical model. TrueAllele is used to analyze DNA evidence, particularly in 

cases where human review might be less reliable or not possible. (Exhibit 4)

15. Cybergenetics began developing TrueAllele 25 year's ago, adding a mixture 

module 20 years ago. The casework system underwent many rounds of testing and model 

refinement over 10 years before it was used in criminal casework, with the current version 25 

released in 2009.

16. The TrueAllele computer objectively infers genotypes from DNA data through 

statistical modeling, without reference to a known comparison genotype. In this way, TrueAllele 

computing avoids human examination bias, and provides a fair match statistic.

TrueAllele's Widespread Acceptance

17. TrueAllele has been used by Cybergenetics in over 900 criminal cases, with 

expert witness testimony given in over 90 trials. TrueAllele results have been reported in 44 of 

the 50 states. (Exhibit 4)

18. TrueAllele was used to identify human remains in the World Trade Center 

disaster, comparing 18,000 victim remains with 2,700 missing people.
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19. Both prosecutors and defenders use TrueAllele for determining DNA match 

statistics. TrueAllele is also used by innocence projects and for post-conviction relief

(iConnecticut v. Ralph Birch, Connecticut v. Shawn Henning, Georgia v. Johnny Lee Gates, 

Georgia v. Jimmy Meders, Georgia v. Kerry Robinson, Idaho v. Christopher Tapp, Indiana v. 

Roosevelt Glenn, Indiana v. Darryl Pinkins, Maryland v. William Jamison, Montana v. Paid 

Jenkins, Montana v. Freddie Lawrence, New Mexico v. Gregory Hobbs, Texas v. Lydell Grant, 

Washington v. Raymond Ben).

20. TrueAllele's reliability has been confirmed in appellate precedent in Nebraska, 

New York, and Pennsylvania. See: State o f Nebraska v. Charles Simmer, 302 Neb, 369 (2019); 

People o f New Yorkv. John Wakefield, N.Y. App. Div. LEXIS 6153, A-812-29 (2019); and 

Commonwealth o f Pennsylvania v. Kevin Foley, 47 A. 3d 882 (Pa. Super. 2012).

21. Cybergenetics agrees with the conclusions that were reached in the Foley case 

(Exhibit 5), which found that (i) scientists can validate the reliability of a computerized process 

even if the source code is not available to the public; (ii) it would not be possible to market 

TrueAllele if  it were available for free; (iii) TrueAllele has been tested and validated.

TrueAllele is Considered to be Reliable

22. There is no genuine controversy as to the validity and reliability of the TrueAllele 

method. To the contrary, computer analysis of uncertain data using probability modeling is the 

scientific norm. Forensic science researchers see this as the best approach. (Exhibit 4)

23. Cybergenetics thoroughly tests its software before it is released.

24. Over thirty-five validation studies have been conducted by Cybergenetics and 

other groups to establish the reliability of the TrueAllele method and software. Eight o f these
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studies have been published in peer-reviewed scientific journals, for both laboratory-generated 

and casework DNA samples. Source code was not needed or used in any of these studies.

25. In the "peer-review" process, scientists describe their research methods, results 

and conclusions in a scientific paper, which they submit to a journal for publication. An editor at 

the journal has (at least) two independent and anonymous scientists in the field read the paper, 

assess its merits, and advise on the suitability of the manuscript for publication. The paper is 

then accepted, rejected, or sent back to the authors for revision and another round of review.

26. A "laboratory-generated" validation study uses data that has been synthesized in a 

DNA laboratory and is of known genotype composition. Five published peer reviewed 

TrueAllele papers of this type are: Perlin MW, Sinelnikov A. An information gap in DNA 

evidence interpretation. PLoS ONE. 2009;4(12):e8327; Ballantyne J, Hanson EK, Perlin MW. 

DNA mixture genotyping by probabilistic computer interpretation of binomially sampled laser 

captured cell populations: combining quantitative data for greater identification information. 

Science & Justice. 2013;52(2): 103-14; Perlin MW, Hornyak J, Sugimoto G, Miller K. 

TrueAllele® genotype identification on DNA mixtures containing up to five unknown 

contributors. Journal o f Forensic Sciences. 2015;60(4): 857-868; Greenspoon SA, Schiermeier- 

Wood L, and Jenkins BC. Establishing the limits of TrueAllele® Casework: a validation study. 

Journal o f Forensic Sciences. 2015 ;60(5): 1263-1276; Bauer DW, B uttN , Hornyak JM, Perlin 

MW. Validating TrueAllele® interpretation of DNA mixtures containing up to ten unknown 

contributors. Journal o f Forensic Sciences. 65(2) :3 80-398, 2020.

27. The published peer-reviewed Greenspoon, Schiermeier-Wood, and Jenkins 

laboratory validation study listed above (Exhibit 6) was conducted by the Virginia DFS. Study 

author Lisa Schiermeier-Wood is the DFS analyst in the instant case.

5



28. A "casework" validation study uses DNA data exhibiting real-world issues

developed by a crime laboratory in the course of their usual casework activity. Three published 

peer reviewed TrueAllele papers o f this type are: Perlin MW, Legler MM, Spencer CE, Smith 

JL, Allan WP, Belrose JL, Duceman BW. Validating TrueAllele® DNA mixture interpretation. 

Journal o f Forensic Sciences. 2011;56(6): 1430-1447; Perlin MW, Belrose JL, Duceman BW. 

New York State TrueAllele® Casework validation study. Journal o f Forensic Sciences. 

2013;58(6):1458-66; Perlin MW, Dormer K, Hornyak J, Schiermeier-Wood L, and Greenspoon 

S, TrueAllele® Casework on Virginia DNA mixture evidence: computer and manual 

interpretation in 72 reported criminal cases. PLoS ONE. 2014:9(3):e92837.

29. The published peer-reviewed Perlin, Dormer, Hornyak, Schiermeier-Wood, and 

Greenspoon casework validation study listed above (Exhibit 7) was conducted jointly by 

Cybergenetics and the Virginia DFS. Study author Lisa Schiermeier-Wood is the DFS analyst in 

the instant case.

30. The Virginia DFS published a peer-reviewed article together with Virginia 

Commonwealth University showing how TrueAllele can be used as an information measuring 

system for DNA mixture data (Exhibit 8): Stokes NA, Stanciu CE, Brocato ER, Ehrhardt CJ, 

Greenspoon SA. Simplification of complex DNA profiles using front end cell separation T and 

probabilistic modeling. Forensic Science International: Genetics. 2018;36:205-12.

31. Conducting such validations is consistent with national forensic science standards 

for the validation of probabilistic genotyping methods.

32. Relevant Federal Bureau of Investigation (FBI) standards include (a) the 2010 

Scientific Working Group on DNA Analysis Methods (SWGDAM) interpretation guidelines, (b)
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the SWGDAM 2015 guidelines on probabilistic genotyping validation, and (c) the FBI Quality 

Assurance Standard (QAS) 2020 on DNA quality assurance validation.

33. Relevant American National Standards Institute (ANSI) and AAFS Standards 

Board (ASB) joint standards include (a) the 2018 Standard 020 for mixture validation and 

interpretation, (b) the 2019 Standard 040 for DNA interpretation and comparison, and (c) the 

2020 Standard 018 for probabilistic genotyping validation.

34. Cybergenetics has documented how TrueAllele complies with all six of these 

national validation standards. These accepted scientific standards are based on empirical testing 

of probabilistic genotyping software on actual DNA data. Source code is not involved.

3 5. Regulatory bodies in New York and Virginia have had independent scientists

review validation studies before they granted approval for their state crime laboratories to use 

TrueAllele for casework. The Virginia Scientific Advisory Committee and Forensic Science 

Board approved TrueAllele for use at DFS in 2013 (Exhibits 9 and 10).

36. TrueAllele has been admitted into evidence after opposition challenge in twenty- 

nine courts, located in California, Florida, Georgia, Indiana, Louisiana, Massachusetts, Nebraska, 

New York, Ohio, Pennsylvania, South Carolina, Tennessee, Virginia, Washington, United States, 

Northern Ireland and Australia.

37. Twenty-seven admissibility decisions in the United States are; People o f 

California v. Dupree Langston, Kern County (Kelly-Frye), BF139247B, January 10, 2013; State 

of Florida v. Lajayvian Daniels, Palm Beach County (Frye), 2015CF009320AMB, October 31, 

2018; State of Georgia v. Adedoja Bah, Douglas Judicial Circuit (Harper), 17CR00938, October 

16, 2019; State of Georgia v. Alexander Battle, Ben Hill County (Harper), 16-CR-082, May 22, 

2019; State o f Georgia v. Monte Baugh and Thaddeus Howell, Coweta County (Harper), 2017 R
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618, March 11, 2019; State of Georgia v. Nathaniel Day, Tifton Judicial Circuit (Harper), 

2018CR141, October 23, 2019; State o f Georgia v. Thaddus Nundra, South Georgia Circuit 

(Harper), 18-CR-134, January 21, 2019; State o f Georgia v. Guy Sewell, Floyd County (Harper), 

17-CR-1675 JFL004, August 7, 2019; State of Indiana v. Randal Coalter, Perry County 

(Daubert), 62C01-1703-MR-192, August 2, 2017; State of Indiana v. Dugniqio Forest, 

Vanderburgh County (Daubert), 82D03-1501-F2-566, June 3, 2016; State o f Indiana v. Vaylen 

Glazebrook, Monroe County (Daubert), 53C02-1411-F1-1066, February 16, 2018; State of 

Indiana v. Malcolm Wade, Monroe County (Daubert), 53C02-1411-F3-1042, August 3, 2016;

. State of Louisiana v. Chattley Chesterfield and Samuel Nicolas, East Baton Rouge Parish 

(Daubert), 01-13-0316 (II), November 6, 2014; State of Louisiana v. Harold Houston, Jefferson 

Parish (Daubert), 16-3682, May 19, 2017; State of Louisiana v. Kyle Russ, East Baton Rouge 

Parish (Daubert), 01-14-0566, April 30, 2019; Commonwealth of Massachusetts v. Heidi 

Bartlett, Plymouth County (Daubert), PLCR2012-00157, May 25, 2016; State of Nebraska v. 

Charles Simmer, Douglas County (Daubert), CR16-1634, February 2, 2018; People o f New York

v. John Wakefield, Schenectady County (Frye), A -812-29, February 11, 2015; People of New 

York v. Casey Wilson, Chemung County (Frye), 2013-331, May 1, 2019; State of Ohio v. David 

Mathis, Cuyahoga County (Daubert), CR-16-611539-A, April 13, 2018; State of Ohio v.

Maurice Shaw, Cuyahoga County (Daubert), CR-13-575691, October 10, 2014; Commonwealth 

o f Pennsylvania v. Kevin Foley, Indiana County (Frye); State of South Carolina v. Jaquard 

Aiken, Beaufort County (Jones), 20121212-683, October 27, 2015; State of Tennessee v. 

Demontez Watkins, Davidson County (Daubert), 2017-C-1811, December 17, 2018; 

Commonwealth of Virginia v. Matthew Brady, Colonial Heights County (Spencer-Frye),

CR11000494, July 26, 2013; State of Washington v. Emanuel Fair, King County (Fiye), 10-1-
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09274-5 SEA, January 12, 2017; United States v. Lenard Gibbs, Northern District o f Georgia 

(Daubert), L17-CR-207, May 30, 2019.

38. The Pennsylvania Superior Court affirmed the Foley decision on February 15, 

2012, 2012 PA Super 31, No. 2039 WDA 2009 (Exhibit 1). The New York State Supreme Court 

affirmed the Wilson decision on August 15, 2019, 175 A.D.3d 158 (3d Dep’t 2019). The 

Nebraska Supreme Court affirmed the Simmer decision on November 1, 2019, 302 Neb. 369.

39. Chief Judge W. Allan Sharrett of the Sixth Judicial Circuit of Virginia found 

TrueAllele to be reliable in 2013 under the Spencer standard in Commonwealth o f Virginia v. 

Matthew Brady (Exhibit 1).

40. The DFS TrueAllele CO A (Exhibit 3) in this case reports that a match between 

the left chest area of Washim Khan’s shirt and Clark Watson is minimally 180 quadrillion (1.80 

x 1017) times more probable than a coincidental match to an unrelated person. This likelihood 

ratio (LR) o f 180 quadrillion provides an upper bound on the false positive error rate. Based on 

LR mathematics, the chance that someone who didn’t contribute their DNA to the mixture has a 

match statistic as large as the reported LR is no more than one in 180 quadrillion.

Background on Software Source Code

41. People write a computer program in a programming language using "source 

code". This source code is later translated into computer-readable "executable" software.

(Exhibit 4)

42. The source code details step-by-step human-readable instructions that describe to 

the computer and programmers how the program operates.

43. TrueAllele is written in MATLAB (for MATrix LABoratoiy), a high-level 

mathematical language for programming and visualizing numerical algorithms made by the
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MathWorks (Natick, MA). Thus, source code is written in language that humans are capable of 

understanding, but only if they are fluent in reading, writing and interpreting the particular 

language that the program is written in,

44. TrueAllele has about 170,000 lines o f computer source code, written by multiple 

programmers over two decades. The computer code is dense mathematical text. It can take 

hours for a person to read through even a few dozen lines of MATLAB to decipher what it does. 

Reading at ten lines per hour would entail eight and a half person-years to review all the source 

code.

45. It is wholly unrealistic to expect that reading through True Allele source code 

would yield meaningful information.

Why TrueAllele is a Trade Secret

46. People can easily copy a computer program if they have its source code. Source 

code contains the software design, engineering know-how, and algorithmic implementation of 

the entire computer program. (Exhibit 4)

47. Cybergenetics has invested millions of dollars over two decades to develop its 

TrueAllele system, the company's flagship product. Although the technology is patented, the 

source code itself is not disclosed by any patent and cannot be derived horn any publicly 

disclosed source. Patent protection is not automatic, and litigation can cost tens of millions of 

dollar's.

48. Cybergenetics considers the TrueAllele source code to be a trade secret. 

Cybergenetics does not disclose the source code to anyone outside the company. In fact, the 

source code has never been disclosed. The source code is not distributed to most employees of
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Cybergenetics, and copies are not provided to individuals, businesses or government agencies 

that use or license the software.

49. The fact that the source code is kept secret provides Cybergenetics with a 

significant advantage over others who do not have access to the source code and do not have the 

programming know-how or are not willing to make the investment necessary to develop 

comparable software.

50. Cybergenetics operates in a highly competitive commercial environment. In 

recent years, at least ten other groups have developed similar software.

51. There is keen interest from competitors to find out how to replicate TrueAllele. 

The TrueAllele software represents a technological breakthrough that has not been successfully 

replicated by any other company as of this date.

52. Disclosure of the TrueAllele source code trade secret would cause irreparable 

harm to the company, enabling competitors to easily copy the company’s proprietary products 

and services.

53. Ownership of the TrueAllele program and source code provides Cybergenetics 

with an advantage over its competitors who do not know the proprietary code and could not 

legally duplicate it.

54. Cybergenetics takes reasonable measures to protect the secrecy o f the source 

code. For example, all information relating to the source code is housed on secure computers. 

TrueAllele Source Code is a Trade Secret Protected by Virginia Law

55. TrueAllele source code is a trade secret that the law protects from disclosure,

a) It is well established that the law affords the owner of a trade secret protection

’’against the disclosure or unauthorized use o f the trade secret.” MicroSfrategy
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Inc. v. Li, 601 S.E.2d 580, 588 (Va. 2004) citing Kewanee Oil Co. v. Bicron 

Corp., 416 U.S. 470, 475, (1974).

b) The Virginia Code defines a trade secret as information that (1) derives 

independent economic value from not being generally known and (2) is the 

subject of reasonable efforts to maintain its secrecy. Va.Code § 59.1-

336, Strategic Enter. Sols., Inc. v. Ikuma, 77 Va. Cir. 179, 2008 WL 8201356 

(Va. Cir. Ct. 2008).

c) Virginia Courts have recognized that software components, as part of a computer 

program, may constitute trade secrets that are afforded protection from 

disclosure, MicroStrategy Inc., 601 S.E.2d at 588.

d) Cybergenetics5 TrueAllele DNA interpretation software clearly satisfies the two 

components of the definition of a hade secret, and should therefore, be afforded 

protection from disclosure.

Irremediable Risks of Source Code Disclosure

56. Third party review of source code can divulge proprietary trade secrets wholly 

unrelated to reliability, but valuable to competitors. Once a review results in a release o f hard- 

earned engineering know-how, that disclosure cannot be reversed. The source code reviewer's 

knowledge can be written into other software systems, shared with interested parties, or sold for 

profit. There are no adequate remedies for redress once this proprietary information has been 

released. (Exhibit4)

57. The credibility and trustworthiness of retained witnesses who testify about the 

alleged need for forensic source code has been undermined in cross-examination (New York v. 

Jaquan Collins, Pennsylvania v. Michael Robinson). Permitting such individuals to see
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proprietary information that is immaterial to a case is not reasonable, nor is it in the interest of 

justice.

58. Protective orders for source code are sometimes used in expensive civil litigation 

for patent infringement, which is not germane to criminal proceedings. Protective orders may 

fail to protect valuable trade secrets, leading to unwanted disclosure of proprietary designs, 

methods, and know-how {Superspeed LLC v. Google, United States District Court for the 

Southern District of Texas; Bradford Technologies, Inc. v. NCVSoftware, com. United States 

District Court for the Northern District of California; Apple v. Samsung, United States District 

Court for the Northern District of California; Eli Lilly & Co. v. Gottstein, United States Court of 

Appeals for the Second Circuit; Smith & Fuller, PA v. Cooper Tire & Rubber C o United States 

Court o f Appeals for the Fifth Circuit).

59. There is no real effective remedy once a protective order is violated. Courts 

typically merely reimburse the fees that were incurred by the party whose secrets were revealed. 

In a case involving source code that is a trade secret, however, once the source code has been 

revealed in breach of a protective order, it generally loses its status as a trade secret. The genie 

can't be put back in the bottle, and reimbursement of legal fees does nothing to compensate for 

the loss of commercial value.

60. Cybergenetics uniquely provides accurate, objective, and neutral DNA 

identification information for criminal justice. TrueAllele DNA match results are used by both 

prosecution and defense for an unbiased statistical assessment of biological evidence. Crime 

laboratories rely on their validated TrueAllele systems for effective interpretation of complex 

DNA data. Jeopardizing the existence o f Cybergenetics through a disclosure o f its source code is 

unreasonable, and does not serve the interests of justice.
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Why TrueAllele Source Code is Not Needed

61. Cybergenetics offers the TrueAllele software for license by crime labs and to 

other interested parties. (Exhibit 4)

62. Cybergenetics provides opposing experts the opportunity to review the TrueAllele 

process, examine results, and ask questions. This review can be done in Cybergenetics's 

Pittsburgh office, or through an Internet Skype-like meeting. Cybergenetics regularly explains 

the system, and the results obtained in a case, to both prosecution and defense. This introduction 

to the True Allele method, the case data, and the application of the method to the data, is a logical 

first step in understanding how the system works. Source code is not necessary.

63. The TrueAllele method is inherently objective, since the computer determines 

evidence genotypes without any knowledge of the comparison reference genotypes or user 

manipulation of DNA data. Hence there is no possibility of examination bias when determining 

genotypes from the DNA data. Match statistics, whether inclusionary or exclusionary, are 

calculated only afterwards by comparing evidence genotypes with reference genotypes. Source 

code is not needed to understand that the TrueAllele process is objective.

64. Cybergenetics provided discovery material for this case on an optical disc. The 

DVD contains documents related to True Allele’s reliability, such as background reading, over 

thirty validation studies and publications, regulatory approvals, general acceptance, and 

admissibility rulings. There are tutorial videos that describe TrueAllele methods and explain 

how the system works, as well as continuing legal education talks. The VUIer™ software for 

reviewing TrueAllele results is provided (with both Windows and Macintosh installers), along 

with instructions and user manuals. Case-specific files were disclosed by the Virginia DFS.
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Source code is not needed to access these materials, read the files, use the executable VUIer 

software, or examine the computer results.

65. TrueAllele processing is available on-line through Cloud computing. Therefore, 

the system’s capability can be operated as an Internet service, without purchasing a product. Any 

party can operate TrueAllele on the Cloud, and process their own DNA case or validation data.

66. Moreover, Cybergenetics makes this TrueAllele Cloud capability available to 

opposing parties at no charge so that they can conduct their own testing (Exhibit 11). Source 

code is not needed for assessing TrueAllele reliability, which is done by testing the executable 

program on actual data.

67. Although the source code for TrueAllele is a secret, the methodology it employs 

and implements has been disclosed. Cybergenetics has published the core mathematics of 

True Allele’s underlying mathematical model for over 20 years. These publications include peer- 

reviewed scientific papers (1995, 2001, 2009, and 2011), and patent specifications (2000 and 

2001) .

68. Cybergenetics provides a compilation of these mathematical methods in a single 

summary document (Exhibit 12). This information discloses True Allele’s genotype modeling 

mechanism, and enables others to understand or replicate the basic method. Indeed, at least ten 

other groups have developed their own software that uses TrueAllele’s linear mixture analysis 

approach. The source code is not necessary or helpful to understand or test the methodology 

or reliability o f the analysis.

69. DFS scientist Dr. Susan Greenspoon is the principal scientist on Virginia 

validation studies for TrueAllele technology. Dr. Greenspoon has written, “The primary aims of 

validation work are to determine if the product performs as advertised, to develop an expertise in
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the use o f the product, to assess the accuracy, precision and reproducibility (where applicable) of 

the technology, and to understand its limitations. We have achieved these goals without the 

source code to TrueAllele® Casework, as is true for the many different technologies and products 

that we use daily in the laboratory.” (Exhibit 13).

70. Moreover, as Dr. Greenspoon continued in her statement, “Our ability to use a 

given technology for forensic DNA profiling is verified by thorough validation work, not 

studying the source code. We have never requested the source code for the TrueAllele® 

Casework software because it was not necessary in order to determine the reliability of 

TrueAllele® Casework.”

71. Access to source code does not help identify problems in commercial 

probabilistic genotyping software. In a peer-reviewed scientific paper (Exhibit 14), the 

developers o f the commercial STRmix™ software wrote that “any miscode found that has been 

identified in STRmix™ development or use, was identified by examination o f the program’s 

output and not the source code. It would be nearly impossible to identify subtle errors in code by 

viewing the code. The identification has always been a result of comparison of the results 

produced by a program to some known control. The results of these comparisons then trigger the 

examination of a specific section of the code in order to discover the source o f the discrepancy.” 

Courts Have Ruled that TrueAllele Source Code is Not Needed

72. Courts in Virginia and in other states have ruled that defendants do not need 

TrueAllele source code to assess the software’s reliability.

73. In his 2013 Spencer decision on TrueAllele reliability, Chief Judge W. Allan 

Sharrett o f the Sixth Judicial Circuit of Virginia denied a defendant’s request for source code 

(Exhibit 1). He wrote, “The first [Daubert factor] is whether the science could and had been
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tested. Id. at 593. Here, much is made of the inability to thoroughly test the TrueAllele protocol, 

because its source code is unknown. However, the Court places great emphasis on the 

observation in Commonwealth v. Foley, 38 A.3d 882, 2012 Pa. Super. 31 (Pa. Super. Ct 2012) 

that validation studies are the best tests of the reliability of source codes. In this case, validation 

studies have been performed with positive results. They have not shown that the TrueAllele 

system is junk science; they have shown, in fact, that it is reliable.”

74. The Loudoun County Commonwealth’s Attorney’s Office was granted a 2013 

Motion to Quash a Subpoena Duces Tecum in Commonwealth o f Virginia v. Darwin Bowman 

(Exhibit 2). The MTQ noted: ‘In regard to the first requested item, the Source Code or Pseudo 

code for TrueAllele is proprietary information. In fact, the Pennsylvania Superior Court, in a 

ruling upholding the validation of TrueAllele in Indiana County, Pa., addressed the defendant’s 

claim that “no outside scientist can replicate or validate Dr. Perlin's methodology because his 

computer software is proprietary.” Commonwealth v. Foley, 2012 PA Super 31, 38 A.3d 882, 

888-89 (Pa. Super Ct., 2012). The Court went on to state that “Foley's third reason for exclusion 

is misleading because scientists can validate the reliability o f a computerized process even if the 

‘source code’ underlying that process is not available to the public. TrueAllele is proprietary 

software; it would not be possible to market TrueAllele if  it were available for free.” Id. at 889.’

75. The Commonwealth of Pennsylvania Superior Court decided the TrueAllele 

source code trade secret issue in their 2012 appellate admissibility ruling in Commonwealth v. 

Kevin Foley (Exhibit 5). Their opinion stated, ‘Foley’s third reason for exclusion is misleading 

because scientists can validate the reliability of a computerized process even if the “source code” 

underlying that process is not available to the public. TrueAllele is proprietary software; it would 

not be possible to market TrueAllele if  it were available for free.’
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76. The Pennsylvania Superior Court opinion continued, ‘Nevertheless, TrueAllele 

has been tested and validated in peer-reviewed studies. One study used laboratory-generated 

DNA samples and found that quantitative analysis performed by TrueAllele was much more 

sensitive than qualitative analysis such as that performed by the FBI. See Perlin & Sinelnikov, 

An Information Gap in DNA Evidence Interpretation, 4 PLoS ONE e8327, at 10 (2009), 

available at http://dx.doi.org/10.1371/journal.pone.0008327. A recent paper entitled “Validating 

TrueAllele® DNA Mixture Interpretation” used DNA samples from actual cases and reached 

similar results. See Perlin et ah, Validating TrueAllele® DNA Mixture Interpretation, 56 Journal 

o f Forensic Sciences 1430 (2011). The study “validated the TrueAllele genetic calculator for 

DNA mixture interpretation” and found that “ [w]hen a victim reference was available, the 

computer was four and a half orders of magnitude more efficacious than human review.” Both 

of these papers were published in peer-reviewed journals; thus, their contents were reviewed by 

other scholars in the field.’

77. In a 2015 unpublished Decision for a Writ of Mandate, the California Court of 

Appeals ruled on why TrueAllele source code was not needed in People v. Martell Chubbs 

(Exhibit 15). Judge Willhite wrote “Chubbs has received extensive infoimation regarding 

TrueAllele’s methodology and underlying assumptions, but he has not demonstrated how 

TmeAllele’s source code is necessary to his ability to test the reliability o f its results. We 

therefore conclude that Chubbs has not made a prima facie showing of the particularized need 

for TrueAllele’s source code.”

78. In a 2015 Decision and Order, Chief Administrative Judge (Outside New York 

City) Michael Coccoma ruled on why TrueAllele source code was not needed in People o f New 

Yorkv. John Wakefield (Exhibit 16). Judge Coccoma wrote, ‘Simply put, the Defendant’s
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Crawford argument is misplaced. The source code is not a witness, it is not testimonial in nature, 

and it is not “a surrogate for accusatoiy in-court testimony.”'

79. In a 2016 Memorandum Order, Allegheny County Judge Jill Rangos ruled on why 

TrueAllele source code was not needed in Commonwealth o f Pennsylvania v. Michael Robinson 

(Exhibit 17). Judge Rangos wrote, “As the defense has argued that Foley is not controlling on 

the question o f materiality o f the source code, this Court held a two-day hearing and considered 

expert testimony and argument. After considering the testimony, this Court determined that the 

source code is not material to the defendant's ability to pursue a defense.”

80. Judge Rangos continued, “An order requiring Cybergenetics to produce the 

source code would be unreasonable, as release would have the potential to cause great harm to 

Cybergenetics. Rather than comply, Dr. Perlin could decline to act as a Commonwealth expert, 

thereby seriously handicapping the Commonwealth's case.”

81. In a 2017 Findings of Fact and Conclusions of Law on Defense Motion to Compel 

Cybergenetics’ TrueAllele Casework Source Code, King County Judge Mariane Spearman ruled 

on why TrueAllele source code was not needed in State o f Washington v. Emanuel Fair (Exhibit 

18). In her ten-page Order, Judge Spearman wrote, “The Defense has not articulated with 

particularity what material information, if  any, could be found by reviewing the source code. As 

several experts who work in the field of forensic DNA testing have testified, an examination of 

the source code is not necessary in order to determine the reliability of TrueAllele and validate it 

for casework.”

82. Judge Spearman continued, “The Defense has failed to meet its burden to show 

that disclosure of the source code is material and reasonable. Based upon the factual findings set 

forth above, this Court is not persuaded that a review of the source code is necessary in order to
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determine whether TrueAllele is reliable. The defense demand for the source code is not material 

or reasonable because the testimony in this ease from both state and defense experts establishes 

that scientists can confirm the reliability o f TrueAllele without access to the source code. This 

testimony is consistent with the holding of other courts that have addressed this same issue.”

83. Judge Spearman concluded, “Further, the usefulness o f disclosing the source code 

is outweighed by a substantial risk o f financial harm to Cybergenetics, Scientists can confirm the 

reliability of Trueallele without access to the source code. Dr. Perlin and Cybergenetics have a 

legitimate interest in keeping the source code, a trade secret, confidential,”

Virginia DFS Analysts are Qualified to Testify About TrueAIIele Evidence

84. The four trained and certified DFS TrueAIIele scientists have learned the 

software’s underlying scientific principles, and regularly testify about the computer’s results to 

juries. The DFS analyst in this case, Lisa Schiermeier-Wood, took Cybergenetics training 

courses in TrueAIIele science and software, and in 2012 completed an advanced course in 

solving DNA mixture cases using the system (Exhibit 19).

85. Moreover, DFS analyst Schiermeier-Wood is coauthor of two peer-reviewed 

TrueAIIele validation studies that scientifically establish the system’s reliability. See: Perlin 

MW, Doimer K, Hornyak J, Schiermeier-Wood L, and Greenspoon S, TrueAIIele® Casework on 

Virginia DNA mixture evidence: computer and manual interpretation in 72 reported criminal 

cases. PLoS ONE. 2014:9(3):e92837; and Greenspoon SA, Schiermeier-Wood L, and Jenkins 

BC. Establishing the limits o f TrueAIIele® Casework: a validation study. Journal o f Forensic 

Sciences. 2015;60(5): 1263-1276 (Exhibits 6 and 7).

Cybergenetics Response to Prosecutor’s Emergency Discovery Request
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86. Cybergenetics responded to prosecutor ACA Hahn’s emergency discovery request 

made on Friday, September 13, 2019. The company was not acting to comply with any 

subpoena or court order; indeed, one did not even exist at the time. Rather, Cybergenetics 

voluntarily assisted the Commonwealth in its usual helpful manner. Within several business 

days, on Tuesday, September 17, 2019, the company responded to informal requests listed in a 

draft “Defendant's Motion for a Certificate to compel the production o f documents” by providing 

4 GB of available documents (Exhibit 20) and additional material.

87. Cybergenetics standard disclosure materials include an invitation to review 

TrueAIIele source code under confidentiality. Following up on that offer, the defendant’s 

attorney requested Cybergenetics standard non-disclosure agreement (NDA) for out-of-court 

confidential source code disclosure. On September 26, 2019, Cybergenetics voluntarily sent him 

a draft NDA. This NDA represented a negotiable out-of-court offer, and was not a response to 

any subpoena or court order (which did not exist at the time). Cybergenetics had told ACA Hahn 

that the company was very flexible, and was happy to remove cost requirements or location 

restrictions from the agreement. Evidently Cybergenetics’ message about its NDA flexibility 

was not relayed to the defense.

Cybergenetics is Has Made its TrueAIIele Technology Available to the Defendant

88. Cybergenetics believes in transparency. The TrueAIIele algorithms have been 

published. Moreover, Cybergenetics has collated descriptions of its algorithms, and provided 

them to the defense.

89. Cybergenetics believes in transparency. Source code review is not needed for any 

scientific assessment o f TrueAIIele operation or reliability. Nonetheless, in light of the 

Protective Order, Cybergenetics has made TrueAIIele source code available for inspection by the

21



defense team during normal business hours at the law offices of Carroll & Nuttall, located near 

the Courthouse at 10521 Judicial Drive, Suite 110, Fairfax, VA 22030.

90. Cybergenetics believes in transparency. Empirical testing of interpretation 

software on empirical DNA is the scientific and legal standard for assessing reliability. Toward 

that end, we again remind the defense of Cybergenetics ’ standing offer to have free access to the 

TrueAIIele application software, so that the defense can test the system at no cost.

RESPECTFULLY SUBMITTED

CYBERGENETICS 
By Counsel

4L

CARROLL & NUTTALL, P.C.

Brandon R. Shapiro, require 
Virginia State Bar No. 71442 
10521 Judicial Drive, Suite 110 
Fairfax, Virginia 22030 
Telephone: 703-273-7007
Facsimile: 703-273-7207
Email: brandon.shapiro@caiTollnuttall.com 
Counsel for Cybergenetics
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CERTIFICATE OF SERVICE

I hereby certify that, on the
J
day of September 2020, a true and correct copy of the

foregoing was hand-delivered to the following:

Bryan Kennedy, Senior Assistant Public Defender 
4103 Chain Bridge Road 

Suite 500
Fairfax, VA 22030 

bkennedy@fai.idc.virginia.gov

Lauren Hahn, Esq. 
Assistant Commonwealth's Attorney 

4110 Chain Bridge Road 
Suite 114

Fairfax, VA 22030 
lauren.hahn@fairfaxcounty.gov

7 , . .
"Brandon R. Shapiro
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V I R G I N I A :

IN THE CIRCUIT COURT FOR THE CITY OF COLONIAL HEIGHTS 

COMMONWEALTH OF VIRGINIA,

v. Case Nos. CR11-465-01,--02,-03 & -04
and CRll-494-01,~02,-03, & -04

MATTHEW FRANKLIN BRADY

ORDER FOR APMISSIBILTY OF DNA EVIDENCE

CAME ON July 26,2013, the parties to consider the hearing for the admissibility o f the 

DNA evidence and certificate o f analysis in the Matthew Franklin Brady case. The 

Commonwealth was represented by Warren Von Schuch, Senior Special Assistant 

Commonwealth and A. Gray Collins, III, Deputy Commonwealth Attorney, while the defendant 

was represented by Stephanie Miller, lead counsel from the Capital Defender’s Office, Joseph 

Vigneri, Capital Defender, Jessica Bulos, Assistant Capital Defender, and Jon Thombrugh, local 

counsel for the defendant. The defendant Matthew Franklin Brady was present during the five 

day hearing.

After reading the opening statements, hearing five days o f testimony and hearing oral 

arguments, which is hereby incorporated by reference, the Court FINDS and states as follows:

The defense's motion to submit written argument is denied, as it would not assist tire Court in the 

determination of the issues before it. The Court, therefore, is prepared, based upon the evidence it has 

heard and the arguments o f counsel, to offer and to render its opinion.

Context is important: this is an admissibility hearing, not a hearing judging the weight o f 

the evidence; and we have arrived at this point after a long process o f legal development that



spans at least three quarters of a century.

The standard that the Court starts with is set forth in Billips v. Commonwealth, 274 Va. 805,

810,652 S .E.2d 99,102 (2007), where the Virginia Supreme Court stated that the burden of making a 

prima facie showing regarding the foundation of such evidence rests upon the proponent of the evidence. 

In this case, this means that the Commonwealth must initially make a prima facie case of tire reliability of 

the scientific method offered.

The background for the admissibility of expert testimony dates back to tire 1923 so-called “Frye 

test,” wherein the Court stated that the trial court must be convinced not only of the reliability of the 

scientific evidence, but also of its general acceptance within the scientific community. Frye v. United 

States, 293 F. 1013 (D.C. Cir. 1923).

Over the years, Frye eroded. In Ellis v. Int 7 Playtex, Inc,, 745 F.2d 292 (4th Cir. 1984), 

the Fourth Circuit noted that the Frye rule had come under increasing attack because o f the 

importance it placed on the judge's subjective ability to “count heads” among experts in the 

scientific community. Id, at 304.

Critics and courts that have rejected Frye have argued that the acceptability o f scientific 

data should be debated by experts in front of the jury in an era when scientific data is playing an 

increasingly important role at trial. Id, at 304. Thus, Frye began to erode because there was no reason 

not to let the jury see and evaluate the same data that experts were relying on to reach their conclusions.

In Virginia, in Walrodv. Matthews, 210 Va. 382, 388, 171 S.E.2d 180, 185 (1969), our 

Supreme Court observed that M[i]n matters of this kind which are not of common knowledge we must 

accept the opinion of experts. . .  Evidence of this kind is competent, unless it is palpably absurd, and it 

is not made incompetent by the fact that other experts may have reached another conclusion, Always it 

should be scrutinized with care, but the manner in which it is weighed has nothing do with its



admissibility.” Id. at 389, 171 S,E.2d at 185-86. The matter before this Court is not one of 

common knowledge,

Two decades later, the Virginia Supreme Court in Spencer v. Commonwealth, 240 Va. 78, 

393 S.E.2d 609 (1990) put a finer point on Walrod, and elaborated that “[w]ide discretion must be 

vested in the trial court to determine, when unfamiliar scientific evidence is offered, whether the 

evidence is so inherently unreliable that a  lay jury must be shielded from it, or whether it is of such 

character that the jury may safely be left to determine credibility for itself.” Id. at 98,393 S.E.2d at 621.

Thus, the Court reads together Billips, Walrod, and Spencer.

The Commonwealth must make a prima facie case of the reliability of the scientific method 

offered. In considering and asking itself what that prima facie case is, the Court does not engage in a Fiye 

test. Rather, it starts with the proposition stated in Walrod, that evidence of this kind is competent, unless 

it is palpably absurd; and elaborated upon in Spencer, that the test is whether evidence is so inherently 

unreliable that a lay jury must be shielded from it.

Two principles emerge, each of them long-standing traditions in Virginia jurisprudence. One is 

the principle of judicial restraint, that yields to the trier of fact in determining matters, to the greatest 

extent possible; the second, a principle of trust in our triers of fact, and in particular, a principle of bust in 

our system of trial by jury.

In determining the Billips threshold of evaluating a prima facie case, the Court is guided, but not 

bound by, the factors in Daubert v. Merrell Dow Pharmaceuticals, 509 U,S. 579 (1993), to which 

case both Counsel have referred.

The Court observes the following in examining the four' Daubert factors:

The first is whether the science could and had been tested. Id. at 593. Here, much is made 

of the inability to thoroughly test the TrueAIIele protocol, because its source code is unknown.



However* the Court places great emphasis on the observation in Commonwealth v. Foley> 3 8 

A,3d 882* 2012 Pa, Super, 31 (Pa. Super. Ct- 2012) that validation studies are the best tests of the 

reliability o f source codes, In this case* validation studies have been performed with positive results. 

They have not shown that the TrueAIIele system is junk science; they have shown, in fact, that it is 

reliable.

The second factor in Daubert is whether the protocol has been subjected to peer review and 

publication. Daubert, 509 U.S. at 593. There have been a number of peer-reviewed articles and peer- 

reviewed publications regarding TrueAIIele. Indeed, the Division of Forensic Science has its own 

validation study that is, by its nature, a peer review of the TrueAIIele system. In the Court’s 

opinion, then, TrueAIIele has been subjected to peer review and has had several peer-reviewed 

published studies.

The third factor in Daubert is the error rate and the standards of controlling the operation of the 

technique. Id, at 594. Certainly there are rates of error here, as might be expected with any scientific 

method of this sort; but there is no evidence that these rates of error are unacceptable, or compromise 

the validity of TrueAIIele. The Division of Forensic Science clearly found them acceptable.

TrueAIIele, additionally, has its own standards for controlling the operation of the 

technique. The Court notes the rigorous training with which Ms. Greenspoon and her staff at the 

Division o f Forensic Science were provided, and the continuing support, as well. Further, 

TrueAIIele utilizes widely accepted standards: MCMC, Bayesian theory, MATLAB and probabilistic 

modeling.

Finally, the fourth Daubert factor is the question of general acceptance, Id. at 594, though this 

factor is not controlling. There was, for example, no acceptance, much less general acceptance of the 

science approved in Spencer when it was decided.



However, general acceptance is a factor that is relevant in this case. The Court notes that 

TrueAIIele has been accepted by NIST, and Dr, Perlin has conducted extensive lectures and conferences 

concerning it. The Court infers that he has done so for a number o f years, and that he continues 

to do so.

It is also important to note that Virginia’s Division of Forensic Science described TrueAIIele as a 

valuable tool that has been held admissible in courts in Virginia, in other states in the United States, and in 

the United Kingdom, Additionally, Dr, Perlin has testified in five circuit courts In Virginia.

The fact that Dr. Perlin has previously been accepted as an expert in courts in Virginia, 

and that his testimony has been admissible is also of some importance, though neither controlling 

nor determinative, because its admissibility was not contested in those cases.

TrueAIIele has also been accepted by New York State, and was used significantly In the 

September 11 th bombing investigation. TrueAIIele has certainly found greater acceptance than the 

analytical techniques utilized in Spencer enjoyed at the time of their acceptance.

In looking at the Daubert factors, then, and considering them in applying the law in Walrod and 

Spencer, the Court's opinion is that the Commonwealth has, pursuant to Billips, made a prima facie case of 

the reliability o f the scientific method offered, Tire Court further finds that evidence offered under 

TrueAIIele is not palpably absurd, and it is not so inherently unreliable that a lay jury must be shielded 

from it,

TrueAIIele is , indeed, of such character that a jury may safely be left to consider all scientific evidence 

before it at the time of trial, and consistent with the instructions which will be given by the Court, the jury may 

be safely left to determine credibility for itself.

After reviewing the facts and analysis above, IT IS THEREFORE ADJUDGED, 

ORDERED AND DECREED the following;



1. The Commonwealth has made a prima facie case of the reliability of the 

TrueAIIele scientific method offered.

2. The evidence offered under TrueAIIele is not palpably absurd,

3. The evidence is not so inherently unreliable that a lay jury must be shielded from 

it.

4. The evidence is of such character that a jury may safely be left to consider all 

scientific evidence before it at the time of trial, and that consistent with the 

instructions, which will be given by the Court, the jury may be safely left to 

determine credibility for itself.

It is further ORDERED that the DNA evidence, including the certificate of analysis by 

the TrueAIIele system, is hereby admissible at all further hearings and trials,

ENTERED: /Z- /  /  7 //^

We ask for this:

Willimn Bray, Esqture
Commonwealth's Attorney for the City o f Colonial Heights

STACY L, STAFFORD, CLERK 
COLONIAL HEIGHTS CIRCUIT COURT

BY;.
550 Boulevard, Deputy Clerk
Colonial Heights, VA 23834 
(804) 520-9293 
(804) 520-9229 (fax)

14/aa/] k/.
William Davenport, Esquire j j  /
Commonwealth's Attorney mV Chesterfield County
P.O. Box 25 
Chesterfield, VA 23832 
(804) 748-1221 
(804)717-6277 (fax)



s e e n  a n d  m ^ e c r e o  mr b

Josepj^vgnei^Esquire 
Capital Defender 
Capital Defender’s Office 
1602 Rolling Hills Drive, Suite 212 
Henrico, VA 23229 
(804) 662-7166 
(804) 662-7172 (fax)

______ for the Deffenphnt
10303 Memory Lane;'Suite 102C 
Chesterfield, VA 23832 
(804) 751-0751 
(804) 751-1824 (fax)

Stephanie Miller, Esquire 
Senior Capital Defender 
Capital Defender’s Office 
1602 Rolling Hills Drive, Suite 212 
Henrico, VA 23229 
(804) 662-7166 
(804) 662-7172 (fax)
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V I R G I N I A
IN THE CIRCUIT COURT FOR LOUDOUN COUNTY 

COMMONWEALTH OF VIRGINIA :

v.

DARWIN BOWMAN, 
Defendant.

CASE NO. 22005

MOTION TO QUASH SUBPOENA DUCES TECUM

COMES NOW Cybergenetics Corporation, by Counsel, and moves the Court to 

quash the subpoena duces tecum requested by the Defendant, and in support thereof states 

as follows:

1. The defendant, Darwin Bowman, is charged with several crimes, including Capital 

Murder, in violation of Virginia Code Section 18.2-31,

2. The Virginia Department of Forensic Science contracted with Cybergenetics 

Corporation to conduct an analysis o f DNA recovered at the scene of the crime,

3. The defense has requested a subpoena duces tecum requiring Cybergenetics 

Corporation to provide several things including:

• The source code or pseudo code for TrueAIIele©;

® An executable version o f TrueAIIele©;

• Case-Specific data:

o All specific input data and files for work done in conjunction with 
the Supplemental report of July 14, 2011, relating to FS Lab #1881 
(Virginia Department of Forensic Sciences);

o All specific output data and files for work done in conjunction with 
the Supplemental report of July 14, 2011, relating to FS Lab #1881 
(Virginia Department o f Forensic Sciences)*

o The specific run parameters for the sample in this case.

i



e Validation studies:

o The specific input data and files 

o All specific output data and files;

o The specific run parameters for the validation samples to include:

■ Samples described in “Validating TrueAIIele DNA Mixture 
Interpretation”, Perlin et ah, J.Forensic Sci, 2011, 56(6)

H All other samples that comprise the basis for the accuracy 
and reliability o f TrueAIIele©, including both published and 
unpublished data.

4. Va. Sup. Ct. R. 3A:12 (b) states that “Where subpoenaed writings and objects are 

o f such nature or content that disclosure to other parties would be unduly 

prejudicial, the court, upon written motion and notice to all parties, may grant such 

relief as it deems appropriate, including limiting disclosure, removal, and 

copying..”

5. In regard to the frrst requested item, the Source Code or Pseudo code for 

TrueAIIele© is proprietary information. In fact, the Pennsylvania Superior Court, 

in a ruling upholding the validation of TrueAIIele© in Indiana County, Pa., 

addressed the defendant’s claim that “no outside scientist can replicate or validate 

Dr. Perlin’s methodology because his computer software is proprietary.” 

Commonwealth v, Foley, 2012 PA Super 31, 38 A.3d 882, 888-89 (Pa. Super Ct., 

2012). The Court went on to state that “Foley's third reason for exclusion is 

misleading because scientists can validate the reliability of a computerized process 

even if  the ‘source code’ underlying that process is not available to the public. 

TrueAIIele is proprietary software; it would not be possible to market TrueAIIele if 

it were available for free.” Id. at 889.

6. The source code (or a pseudo code) is a trade secret of Cybergenetics Corporation.
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Disclosure of this proprietary material would make it impossible for the company to 

provide the commercial technology.

7. Both of the defense experts in this case develop their own software and provide 

commercial services based on that software. As this essentially makes them 

competitors of Cybergenetics, the release o f trade secrets to direct competitors 

would be unduly prejudicial to Dr. Perlin and Cybergentics Corporation. Further 

this Court, as a matter of public policy should not be placed in a position of 

unbalancing the scales between commercial competitors.

8. Dr, Perlin or a representative of Cybergenetics Corporation is willing to meet with 

the defense (either in person or via an internet meeting) both to go over the results 

o f this case and to explain to them on a TrueAIIele© computer how the system 

works.

9. In regards to the second item requested by the defense, the base price of a 

TrueAIIele© system if  $60,000, and is made available for purchase to government 

DNA laboratories. Cybergenetics does not provide free systems.

10. Dr. Perlin or a representative of Cybergenetics Corporation is willing to meet with 

the defense (either in person or through an internet meeting) both to go over the 

results of this case and to explain to them on a TrueAIIele© computer how the 

system works,

11. In regards to the third item requested by the defense, the case specific data relating 

to the Supplemental Report of July 14, 2011 will be provided to the defense.

12. In regal'd to the fourth item requested by the defense, Cybergenetics corporation 

works with data files only, and has no access to the underlying biological samples.

3



13. The data files addressed in these validation studies are related to criminal cases in 

other jurisdictions. Cybergenetics Corporation does not feel it has the authority to 

release personal and confidential records.

14. Cybergenetics Corporation is willing to conduct additional TrueAIIele© testing on 

a limited set o f defense-provided data to further their understanding of the system, 

its operation, and its reliability.

15. The two experts for the defense, Dr. Rudin and Dr. Lohmeuller are acting as experts 

in a Five hearing in Southern Virginia challenging TrueAIIele© and it’s software. 

These two experts, who are conducting essentially the same hearing less than two 

months after the scheduled date of their testimony in Loudoun County, have 

requested neither an executable copy of TrueAIIele© nor the source code requested 

in this case. In fact no subpoena duces tecum was requested in that case for any 

items. It is baffling how the defense is able to prepare for the exact same hearing in 

another jurisdiction with the same experts without these items while the defense in 

this case finds them necessary.

For the above stated reasons, the Commonwealth respectfully requests that her motion 

be granted and the Court enter an order quashing items one (source code), two (executable 

version of TrueAIIele©), and four (requesting data files in relation to the validation studies) 

of the above-mentioned subpoenas duces tecum.
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Respectfully Submitted, 
COMMONWEALTH OF VIRGINIA

Ryan W. Perry
Assistant Commonwealth's Attorney 
VSB No: 71354
20 East Market Street, Leesburg, VA 20176 
Office: (703) 777-0242 
Facsimile: (703) 777-0160 
oca@loudoun.gov

CERTIFICATE OF SERVICE

I, Ryan W. Perry, hereby certify that on this 24th day o f May, 2013, a true copy of this 
Motion to Quash was electronically mailed to Jonathan Shapiro, counsel for the defendant.

Ryan W. Perry
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Commonwealth o f Virginia
DEPARTMENT OF FORENSIC SCIENCE ORIGINAL

CERTIFICATE OF ANALYSIS

May 16,2019

Centra! Laboratory 
700 N. 5th Street 
Richmond, VA 23219

Tel. No.; (804)786-4707
Fax: (804) 786-6907

TO: SUSAN SHARP
SUSAN ANDERTON
FAIRFAX COUNTY POLICE DEPARTMENT 
MCCONNELL PSTOC 
4890 ALLIANCE DRIVE 
FAIRFAX, VA 22030

SUPPLEMENTAL REPORT

FS Lab # N15-348

Your Case #: 

Victim (s): 

Suspect(s):

20143340137 

KHAN, Washim Bar 

WATSON, Clark Devell

Evidence Submitted By:

Item 1 
Item 2

Evidence Submitted By: 

Item 10

Susan Sharp

Buccal swabs from Washim Khan 
Shirt from Washim Khan

Susan Anderton

Buccal swabs from Clark Watson

Date Received: 01/14/2015

Date Received: 02/15/2019

STATISTICAL ANALYSIS METHODS
• The DNA PowerPlex® 16 and PowerPlex® Fusion profiles referenced in this report were previously developed and 

addressed in Certificates of Analysis dated January 8, 2016 and March 5, 2019,
• The TrueAIIele® Casework system processed each evidence item in independent replicate computer analyses in which 

possible DNA contributor genotypes were inferred from the evidence profiles,
o The term “genotypes” used in this context refers to a probability distribution over allele pairs.

• The likelihood ratio statistical method addressed below has been applied in accordance with the Scientific Working Group 
on DNA Analysis Methods (SWGDAM) 2017 Interpretation Guidelines and Departmental procedures.

• The DNA match statistics calculated herein used the population allele frequencies generated by the Virginia Department of 
Forensic Science, and a theta co-ancestry coefficient of 1 %.

• The D12S391, DYS391 and Amelogenin loci are not used for statistical purposes.

RESULTS:

Item 1 - Buccal swabs from Washim Khan 
Rem 2 - Shirt from Washim Khan 
Item 10 - Buccal swabs from Clark Watson

Assuming the DNA profile data previously developed from the left chest area of Washim Khan's shirt is a mixture of one or two 
unknown contributors and Washim Khan, TrueAIIele® Casework system objectively inferred genotypes solely from these data. Two 
or three unknown contributors were also considered. Following duplicate/reproducible analyses, the computer then compared each 
inferred evidence contributor genotype to the provided reference genotype (Clark Watson), relative to reference populations, to 
compute likelihood ratio (LR) DNA match statistics.

Page 1 o f2
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Commonwealth of Virginia
DEPARTMENT OF FORENSIC SCIENCE

CERTIFICATE OF ANALYSIS

<A 1 “7

Fairfax County Police Department
FS Lab H N15-348 SUPPLEMENTAL REPORT
Your Case 20143340137
May 16, 2019

ORIGINAL

Based on these results, Clark Watson cannot be eliminated as a contributor to this DNA mixture profile, A match between the left 
chest area of Washim Khan's shirt and Clark Watson is:

180 quadrillion times more probable than a coincidental match to an unrelated African American person,
6.3 quintillion times more probable than a coincidental match to an unrelated Caucasian person, and 
6.5 quintillion times more probable than a coincidental match to an unrelated Hispanic person.

Date(s) of Testing: 3/22/19 - 5/16/19, Supporting examination documentation is maintained in the case file. The above listed 
methods are those approved for use at the time of analysis. Current methods can be found in the Forensic Biology Procedures 
Manuals, which can be found at www.dfs.virginia.g6v/documentation-publications/manuals/.

The disposition of the evidence and the results of other requested examinations are the subject of another report.

Attest:

I certify that I performed the above analysis or examination as an employee of the Department of Forensic Science and that the above is an accurate record of the results 
and interpretations of that analysis or examination.

Lisa C.^Schiernie ter-Wood 
Forensic Scientist

Page 2 o f2
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DECLARATION OF MARK W. PERLIN
I, Mark W. Perlin, declare I have personal knowledge of the following, and if called upon to 

do so, could and would testify competently to the matters contained herein:

1. I hold the following academic degrees: a B.A. in Chemistry from SUNY/ Binghamton, 

a Ph.D. in Mathematics from CUNY/Graduate School, an M.D. horn the University of Chicago 

Pritzker School of Medicine, and a Ph.D. in Computer Science from Carnegie Mellon University. I 

have been issued thirteen patents. Prior to founding my own technology company, I was a senior 

research faculty member of Carnegie Mellon University's School of Computer Science. I have been 

qualified to testify as an expert in thirty “five jurisdictions. I am currently a scholar-in-residence 

faculty member in the Forensic Science and Law program at Duquesne University.

2. I reside at 5885 Marlborough Road, Pittsburgh, PA 15217.

3. Cybergenetics is a Pennsylvania corporation located at 160 North Craig Street, Suite 

210, Pittsburgh, PA 15213. Cybergenetics is the owner of the TrueAIIele software, as well as its 

proprietary source code.

The Role of TrueAIIele in DNA Analysis

4. TrueAIIele is a probabilistic genotyping computer system that interprets DNA 

evidence using a statistical model.

5. TrueAIIele is used to analyze DNA evidence, particularly in cases where human 

review might be less reliable or not possible.

6. A definite genotype can be readily determined when abundant DNA from one person 

produces unambiguous genetic data.

7. However, when data signals are less definitive, or when two or more people contribute 

to the evidence, uncertainty arises.

8. This uncertainty is expressed in the derived contributor genotype, which may describe 

different genetic identity possibilities.

9. Such genotype uncertainty may translate into reduced identification information when 

a comparison is made with a suspect,

10. The DNA identification task can thus be understood as a two-step process:
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(1,) objectively inferring genotypes from evidence data, accounting for allele pair 

uncertainty using probability, and

(2.) subsequently matching genotypes, comparing evidence with a suspect relative 

to a population, to express the strength of association using probability.

11. The match strength is reported as a single number, the likelihood ratio (LR), which 

quantifies the change in identification information produced by having examined the DNA evidence.

12. The TrueAIIele® Casework system is Cybergenetics’ computer implementation of this 

two-step DNA identification inference approach.

13. Cybergenetics began developing TrueAIIele 25 years ago, adding a mixture module 20 

years ago.

14. The casework system underwent many rounds of testing and model refinement over 

10 years before it was used in criminal casework, with the current version 25 released in 2009.

15. The TrueAIIele computer objectively infers genotypes from DNA data through 

statistical modeling, without reference to a known comparison genotype.

16. To preserve the identification information present in the data, the system represents 

genotype uncertainty using probability.

17. These probabilistic genotypes are stored on a relational database.

18. Subsequent comparison with suspects or other individuals provides identification 

information that can be used as evidence.

TrueAIIele's Widespread Acceptance

19. TrueAIIele has been used in over 900 criminal cases, with expert witness testimony 

given in over 90 trials. TrueAIIele results have been reported in 44 of the 50 states,

20. Courts accepting TrueAIIele evidence include California, Florida, Georgia, Idaho, 

Indiana, Louisiana, Maryland, Massachusetts, Michigan, Nebraska, New Hampshire, New York,

Ohio, Pennsylvania, South Carolina, Tennessee, Texas, Virginia, Washington, West Virginia, 

Wyoming, United States (Northern District of Georgia, Middle and Eastern Districts of Louisiana, 

Eastern District o f Virginia), United States Marine Corps, Northern Ireland, and Australia.

21. Over 10 crime laboratories have purchased the TrueAIIele system for their own in-
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house use, and 8 labs are on-line with their validated systems.

22. TrueAIIele was used to identify human remains in the World Trade Center disaster, 

comparing 18,000 victim remains with 2,700 missing people.

23. Both prosecutors and defenders use TrueAIIele for determining DNA match statistics. 

TrueAIIele is also used by innocence projects and for post-conviction relief (Connecticut v. Ralph 

Birch, Connecticut v. Shawn Henning, Georgia v. Johnny Lee Gates, Georgia v. Jimmy Meders, 

Georgia v. Kerry Robinson, Idaho v. Christopher Tapp, Indiana v. Roosevelt Glenn, Indiana v. 

Darryl Pinkins, Maryland v. William Jamison, Montana v. Paul Jenkins, Montana v. Freddie 

Lawrence, New Mexico v. Gregory Hobbs, Texas v. Lydell Grant, Washington v. Raymond Ben).

24. TrueAllele's reliability has been confirmed in appellate precedent in Nebraska, New 

York, and Pennsylvania. See: State o f Nebraska v. Charles Simmer% 302 Neb. 369 (2019); People o f  

New Yorkv. John Wakefield, N.Y. App. Div. LEXIS 6153, A-812-29 (2019); and Commonwealth o f  

Pennsylvania v. Kevin Foley, 47 A.3d 882 (Pa. Super. 2012).

25. The TrueAIIele calculation is entirely objective: when it determines the genotypes for 

the contributors to the mixture evidence, the computer has no knowledge of the comparison 

genotypes. Genotype comparison and match statistic determination are only done after genotypes 

have been computed. Moreover, the computer uses all the data, without user intervention. In this 

way, TrueAIIele computing avoids human examination bias, and provides a fair match statistic.

26. I agree with the conclusions that were reached in the Foley case, which found that (i) 

scientists can validate the reliability of a computerized process even if the source code is not 

available to the public; (ii) it would not be possible to market TrueAIIele if it were available for free; 

(iii) TrueAIIele has been tested and validated.

TrueAIIele is Considered to be Reliable

27. There is no genuine controversy as to the validity and reliability of the TrueAIIele 

method. To the contrary, computer analysis o f uncertain data using probability modeling is the 

scientific norm. Forensic science researchers see this as the best approach,

28. Cybergenetics thoroughly tests its software before it is released.

29. Over thirty-five validation studies have been conducted by Cybergenetics and other

3



1

2

3

4

5

6
7

8

9

10

11

12

13

14

15

16

17

18

19

20

21
22

23

24

25

26

27

28

groups to establish the reliability o f the TrueAIIele method and software. Eight of these studies have 

been published in peer-reviewed scientific journals, for both laboratory-generated and casework 

DNA samples. Source code was not needed or used in any o f these studies.

30. In the "peer-review" process, scientists describe their research methods, results and 

conclusions in a scientific paper, which they submit to a journal for publication. An editor at the 

journal has (at least) two independent and anonymous scientists in the field read the paper, assess its 

merits, and advise on the suitability of the manuscript for publication. The paper is then accepted, 

rejected, or sent back to the authors for revision and another round o f review.

31. A "laboratory-generated" validation study uses data that has been synthesized in a 

DNA laboratory, and is o f known genotype composition. Five published TrueAIIele papers o f this 

type are: Perlin MW, Sinelnikov A. An information gap in DNA evidence interpretation. PLoS ONE. 

2009;4(12):e8327; Ballantyne J, Hanson EK, Perlin MW. DNA mixture genotyping by probabilistic 

computer interpretation o f binomially-sampled laser captured cell populations: combining 

quantitative data for greater identification information. Science & Justice. 2013 ;52(2): 103 - X 4; Perlin 

MW, Hornyak J, Sugimoto G, Miller K. TrueAIIele® genotype identification on DNA mixtures 

containing up to five unknown contributors. Journal o f Forensic Sciences. 2015 ;60(4):857-868; 

Greenspoon SA, Schiermeier-Wood L, and Jenkins BC. Establishing the limits of TrueAIIele® 

Casework: a validation study. Journal o f Forensic Sciences. 2015;60(5): 1263-1276; Bauer DW, Butt 

N, Hornyak JM, Perlin MW. Validating TrueAIIele® interpretation of DNA mixtures containing up to 

ten unknown contributors. Journal o f Forensic Sciences. 65(2):3 80-398, 2020.

32. A "casework" validation study uses DNA data exhibiting real-world issues developed 

by a crime laboratory in the course of their usual casework activity. Three published TrueAIIele 

papers of this type are: Perlin MW, Legler MM, Spencer CE, Smith JL, Allan WP, Belrose JL, 

Duceman B W. Validating TrueAIIele® DNA mixture interpretation. Journal o f Forensic Sciences. 

2011 ;56(6): 1430-1447; Perlin MW, Belrose JL, Duceman BW. New York State TrueAIIele® 

Casework validation study. Journal o f Forensic Sciences. 2013 ;58(6): 1458-66; Perlin MW, Dormer 

K, Hornyak J, Schiermeier-Wood L, and Greenspoon S, TrueAIIele® Casework on Virginia DNA 

mixture evidence: computer and manual interpretation in 72 reported criminal cases. PLoS ONE.
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2014:9(3):e92837.

33. Conducting such validations is consistent with the FBI's 2010 Scientific Working 

Group on DNA Analysis Methods (SWGDAM) interpretation guidelines. TrueAIIele complies with 

the 2015 SWGDAM validation guidelines for probabilistic genotyping systems. Regulatory bodies 

in New York and Virginia have had independent scientists review validation studies before they 

granted approval for their state crime laboratories to use TrueAIIele for casework.

34. TrueAIIele has been admitted into evidence after opposition challenge in twenty-nine 

courts, located in California, Florida, Georgia, Indiana, Louisiana, Massachusetts, Nebraska, New 

York, Ohio, Pennsylvania, South Carolina, Tennessee, Virginia, Washington, United States, Northern 

Ireland and Australia.

35. Twenty-seven admissibility decisions in the United States are: People of California v. 

Dupree Langston, Kem County (Kelly-Frye), BF139247B, January 10, 2013; State of Florida v. 

Lajayvian Daniels, Palm Beach County (Fiye), 2015CF009320AMB, October 31, 2018; State of 

Georgia v. AdedojaBah, Douglas Judicial Circuit (Harper), 17CR00938, October 16, 2019; State of 

Georgia v. Alexander Battle, Ben Hill County (Harper), 16-CR-082, May 22, 2019; State of Georgia 

v. Monte Baugh and Thaddeus Howell, Coweta County (Harper), 2017 R 618, March 11, 2019; State 

of Georgia v. Nathaniel Day, Tifton Judicial Circuit (Harper), 2018CR141, October 23, 2019; State 

of Georgia v. Thaddus Nundra, South Georgia Circuit (Harper), 18-CR-134, January 21, 2019; State 

of Georgia v. Guy Sewell, Floyd County (Harper), 17-CR-1675 JFL004, August 7, 2019; State of 

Indiana v. Randal Coalter, Perry County (Daubert), 62C01-1703-MR-192, August 2, 2017; State of 

Indiana v. Dugniqio Forest, Vanderburgh County (Daubert), 82D03-1501-F2-566, June 3, 2016; State 

o f Indiana v. Vaylen Glazebrook, Monroe County (Daubert), 53C02-1411-F1-1066, February 16, 

2018; State of Indiana v. Malcolm Wade, Monroe County (Daubert), 53C02-1411-F3-1042, August 

3, 2016; State of Louisiana v. Chattley Chesterfield and Samuel Nicolas, East Baton Rouge Parish 

(Daubert), 01-13-0316 (II), November 6, 2014; State of Louisiana v. Harold Houston, Jefferson 

Parish (Daubert), 16-3682, May 19, 2017; State of Louisiana v. Kyle Russ, East Baton Rouge Parish 

(Daubert), 01-14-0566, April 30, 2019; Commonwealth o f Massachusetts v. Heidi Bartlett, Plymouth 

County (Daubert), PLCR2012-00157, May 25, 2016; State o f Nebraska v. Charles Simmer, Douglas
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County (Daubert), CR16-1634, February 2, 2018; People of New York v. John Wakefield, 

Schenectady County (Frye), A-812-29, February 11, 2015; People o f New York v. Casey Wilson, 

Chemung County (Frye), 2013-331, May 1, 2019; State of Ohio v. David Mathis, Cuyahoga County 

(Daubert), CR-16-611539-A, April 13, 2018; State o f Ohio v. Maurice Shaw, Cuyahoga County 

(Daubert), CR-13-575691, October 10, 2014; Commonwealth of Pennsylvania v. Kevin Foley, 

Indiana County (Fiye); State of South Carolina v. Jaquard Aiken, Beaufort County (Jones), 

20121212-683, October 27, 2015; State o f Tennessee v. Demontez Watkins, Davidson County 

(Daubert), 2017-C-1811, December 17, 2018; Commonwealth of Virginia v. Matthew Brady, 

Colonial Heights County (Spencer-Frye), CR11000494, July 26, 2013; State of Washington v. 

Emanuel Fair, King County (Frye), 10-1-09274-5 SEA, January 12, 2017; United States v, Lenard 

Gibbs, Northern District of Georgia (Daubert), l:17-CR-207, May 30, 2019.

36. The Pennsylvania Superior Court affirmed the Foley decision on February 15, 2012, 

2012 PA Super 31, No. 2039 WDA 2009. The New York State Supreme Court affirmed the Wilson 

decision on August 15, 2019, 175 A.D.3d 158 (3d Dep’t 2019). The Nebraska Supreme Court 

affirmed the Simmer decision on November 1, 2019, 302 Neb. 369.

37. Cybergenetics has a strong financial incentive to ensure the reliability of its widely 

used TrueAIIele system.

. 38. Cybergenetics continually tests its software and conducts scientific validation studies 

to ensure TrueAllele's reliability. Source code is not used in validation studies.

39. Cybergenetics improved the speed, accuracy and generality of the user interface LR 

match statistic calculation in February of 2014. The previous LR estimate could understate the match 

statistic by around a factor often. Genotype computation was not affected. This change is described 

in Cybergenetics application note "TrueAIIele® VUIer™ Likelihood Ratio Calculation."

Background on Software Source Code

40. People write a computer program in a programming language using "source code".

41. This source code is later translated into computer-readable "executable" software.

42. The source code details step-by-step human-readable instructions that describe to the 

computer and programmers how the program operates.
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43. TrueAIIele is written in MATLAB (for MATrix LAB oratory), a high-level 

mathematical language for programming and visualizing numerical algorithms made by the 

MathWorks (Natick, MA).

44. Here is an example of MATLAB source code, simplified from a few lines of the 

MathWorks built-in "mhsample" function that performs Metropolis-Hastings statistical sampling:

U = log(rand(nchain,nsamples+burnin));

for i = l-burnin:nsaraples 

y = propmd(x0); 

q l -  logproppdf(xO,y); 

q2 == logproppdf(y ,x0); 

rho = (ql+logpdf(y))-(q2+logpdf(x0));

Ui = U(:,i+burnin); 

acc = Ui<= min(rho,0); 

x0(acc,:) = y(acc,:); 

accept = accept+(acc);

end

45. Thus, source code is written in language that humans are capable of understanding, but 

only if they are fluent in reading, writing and interpreting the particular language that the program is 

written in.

46. TrueAIIele has about 170,000 lines of computer source code, written by multiple 

programmers over two decades. The computer code is dense mathematical text. It can take hours for 

a person to read through even a few dozen lines o f MATLAB to decipher what it does. Reading at 

ten lines per hour would entail eight and a half person-years to review all the source code.

47. In my opinion, it is wholly unrealistic to expect that reading through TrueAIIele source 

code would yield meaningful information.

Why TrueAIIele is a Trade Secret

48. People can easily copy a computer program if  they have its source code.

49. Source code contains the software design, engineering know-how, and algorithmic
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implementation of the entire computer program.

50. Cybergenetics has invested millions o f dollars over two decades to develop its 

TrueAIIele system, the company's flagship product. Although the technology is patented, the source 

code itself is not disclosed by any patent and cannot be derived from any publicly disclosed source. 

Patent protection is not automatic, and litigation can cost tens o f millions of dollar's.

51. Cybergenetics considers the TrueAIIele source code to be a trade secret.

Cybergenetics does not disclose the source code to anyone outside the company. In fact, the source 

code has never been disclosed. The source code is not distributed to most employees of 

Cybergenetics, and copies are not provided to individuals, businesses or government agencies that 

use or license the software.

52. The fact that the source code is kept secret provides Cybergenetics with a significant 

advantage over others who do not have access to the source code and do not have the programming 

know-how or are not willing to make the investment necessary to develop comparable software.

53. Cybergenetics operates in a highly competitive commercial environment.

54. In recent years, at least ten other groups have developed similar* software.

55. There is keen interest from competitors to find out how to replicate TrueAIIele. The 

TrueAIIele software represents a technological breakthrough that has not been successfully replicated 

by any other company as o f this date.

56. Disclosure of the TrueAIIele source code trade secret would cause irreparable harm to 

the company, enabling competitors to easily copy the company's proprietary products and services.

57. Ownership of the TrueAIIele program and source code provides Cybergenetics with an 

advantage over its competitors who do not know the proprietary code and could not legally duplicate 

it.

58. Cybergenetics takes reasonable measures to protect the secrecy of the source code.

For example, all information relating to the source code is housed on secure computers.

59. TrueAllele's source code derives value from remaining secret, and it has never been 

disclosed to the public.

60. In contrast to so-called "open source" programs, for-profit companies generally do not

8
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make their source codes available to the public. The relatively few companies that have an open 

source business model tend to operate in a very large market, utilize free programmer coding, 

conduct little innovation, and earn their main revenue by providing software services.

61. Commercial software programs are extensively validated while in development and 

before release and commercialization. By their nature, open source programs typically are not 

validated prior to release, because the process of perfecting software is costly. Open source forensic 

DNA analysis software programs tend to be relatively short programs consisting of several hundreds 

of lines of code that realistically can be reviewed by a human being.

62. Open source software suffers from a lack of version control and quality assurance, 

since any unrelated party can make code changes and release untested products. This chaotic 

development approach is in marked contrast to the more controlled reliability and versioning 

requirements o f forensic software that is used in criminal proceedings.

Irremediable Risks of Source Code Disclosure

63. Third party review of source code can divulge proprietary trade secrets wholly 

unrelated to reliability, but valuable to competitors. Once a review results in a release of hard-earned 

engineering know-how, that disclosure cannot be reversed. The source code reviewer’s knowledge 

can be written into other software systems, shared with interested parties, or sold for profit. There are 

no adequate remedies for redress once this proprietary information has been released.

64. The credibility and trustworthiness o f retained witnesses who testify about the alleged 

need for forensic source code has been undermined in cross-examination (New York v. Jaquan 

Collins, Pennsylvania v. Michael Robinson). Permitting such individuals to see proprietary 

information that is immaterial to a case is not reasonable, nor is it in the interest of justice.

65. Protective orders for source code are sometimes used in expensive civil litigation for 

patent infringement, which is not germane to criminal proceedings. Protective orders may fail to 

protect valuable trade secrets, leading to unwanted disclosure of proprietary designs, methods, and 

know-how (Superspeed LLC v. Google, United States District Court for the Southern District of 

Texas; Bradford Technologies, Inc. v. NCVSoftware, corn, United States District Court for the 

Northern District of California; Apple v. Samsung, United States District Court for the Northern

9
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District of California; Eli Lilly & Co. v. Gottstein, United States Court o f Appeals for the Second 

Circuit; Smith & Fuller, PA v. Cooper Tire & Rubber Co., United States Court of Appeals for the 

Fifth Circuit).

66. There is no real effective remedy once a protective order is violated. Courts typically 

merely reimburse the fees that were incurred by the party whose secrets were revealed. In a case 

involving source code that is a trade secret, however, once the source code has been revealed in 

breach of a protective order, it generally loses its status as a trade secret. The genie can't be put back 

in the bottle, and reimbursement of legal fees does nothing to compensate for the loss of commercial 

value.

67. Cybergenetics uniquely provides accurate, objective, and neutral DNA identification 

information for criminal justice. TrueAIIele DNA match results are used by both prosecution and 

defense for an unbiased statistical assessment of biological evidence. Crime laboratories rely on their 

validated TrueAIIele systems for effective interpretation of complex DNA data. Jeopardizing the 

existence of Cybergenetics through a disclosure o f its source code is unreasonable, and does not serve 

the interests of justice.

Why TrueAIIele Source Code is Not Needed

68. Cybergenetics offers the TrueAIIele software for license by crime labs and to other 

interested parties.

69. The company currently charges a base license fee of $40,000,

70. Individuals and companies can also submit samples to Cybergenetics for testing and 

analysis for a fee.

71. Cybergenetics provides opposing experts the opportunity to review the TrueAIIele 

process, examine results, and ask questions. This review can be done in Cybergenetics's Pittsburgh 

office, or through an Internet Skype-like meeting. Cybergenetics regularly explains the system, and 

the results obtained in a case, to both prosecution and defense. This introduction to the TrueAIIele 

method, the case data, and the application of the method to the data, is a logical first step in 

understanding how the system works. Source code is not necessary.

72. The TrueAIIele method is inherently objective, since the computer determines

10
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evidence genotypes without any knowledge of the comparison reference genotypes or user 

manipulation of DNA data. Hence there is no possibility of examination bias when determining 

genotypes from the DNA data. Match statistics, whether inclusionary or exclusionary, are calculated 

only afterwards by comparing evidence genotypes with reference genotypes. Source code is not 

needed to understand that the TrueAIIele process is objective.

73. TrueAllele's reliability was established on the evidence in this case. The report and its 

supporting case packet described the system's sensitivity, specificity and reproducibility on the DNA 

evidence. The case packet gives the data and parameter inputs used in running the program in the 

case. The packet also includes a case-specific mini-validation study of reported TrueAIIele match 

statistics, measuring match specificity by comparison with non-contributor genotypes. Source code 

is not needed to understand or interpret these materials.

74. Additional discoveiy material for this case was provided on an optical disc. The DVD 

contains documents related to TrueAllele’s reliability, such as background reading, over thirty 

validation studies and publications, regulatory approvals, general acceptance, and admissibility 

rulings. There are tutorial videos that describe TrueAIIele methods and explain how the system 

works, as well as continuing legal education talks. The VUIer™ software for reviewing TrueAIIele 

results is provided (with both Windows and Macintosh installers), along with instructions and user 

manuals. Case-specific files (data, reports, PowerPoint, case packet, VUIer input) are disclosed, 

enabling a thorough expert review. Source code is not needed to access these materials, read the 

files, use the executable VUIer software, or examine the computer results.

75. Cybergenetics offers commercial services for validating DNA mixture interpretation 

methods. Any party can provide DNA validation data and obtain these services to assess TrueAIIele 

reliability. Since TrueAIIele is an objective process, and produces unbiased DNA identification 

results that do not "know" comparison genotypes during analysis, it is easy for Cybergenetics to 

perform these studies. Source code is not needed for obtaining these services.

76. TrueAIIele processing is available on-line through Cloud computing. Therefore, the 

system's capability can be operated as an Internet service, without purchasing a product. Any party 

can operate TrueAIIele on the Cloud, and process their own DNA case or validation data. Moreover,
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Cybergenetics makes this TrueAIIele Cloud capability available to opposing parties at no charge so 

that they can conduct their own testing. Source code is not needed for assessing TrueAIIele 

reliability, which is done by testing the executable program on actual data.

77. Although the source code for TrueAIIele is a  secret, the methodology it employs and 

implements has been disclosed. Cybergenetics has published the core mathematics of 

TrueAIIele’s underlying mathematical model for over 20 years. These publications include scientific 

papers (1995, 2001, 2009, and 2011) and patent specifications (2000 and 2001). Cybergenetics 

provides a compilation of these mathematical methods in a single summary document. This 

information discloses TrueAIIele’s genotype modeling mechanism, and enables others to understand 

or replicate the basic method. Indeed, at least ten other groups have developed their own software 

that uses TrueAIIele’s linear mixture analysis approach. The source code is not necessary or helpful 

to understand or test the methodology or reliability of the analysis.

78. To my knowledge, source code is not generally made available for most other 

commercial software that is regularly used and relied upon in the area of forensic DNA identification. 

Such software includes Life Technology's "Genemapper ID" for generating and analyzing DNA data 

signals, the Federal Bureau of Investigation's "PopStats" for producing DNA match statistics or 

"CODIS" for maintaining a DNA database, and Microsoft "Excel" for conducting additional DNA 

data analysis. Source code is not needed to assess the reliability of these essential software programs, 

since they have all been tested and validated.

79. When TrueAIIele source code discovery has been requested by an opposing party, no 

court has ever ultimately required its disclosure. The requesting parties have been unable to show 

why source code would be material, reasonable, and in the interest of justice. Courts have denied 

such discovery requests in California, Maryland, New York, Ohio, Pennsylvania, Virginia, and 

Washington, often providing written rulings {California v. Mar tell Chubbs, New York v. John 

Wakefield, Ohio v. Maurice Shaw, Pennsylvania v. Chelsea Arganda and Chester White, 

Pennsylvania v. Kevin Foley; Pennsylvania v. Michael Robinson, Washington v. Emanuel Fair). 

Source code was not needed in any o f these cases.
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I declare the above is true and correct under penalty of perjury under the law of the 

Commonwealth of Pennsylvania, executed this __ day of September 2020 in Pittsburgh, 

Pennsylvania.

By:
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Appellant, Kevin James Foley, appeals from the judgment of sentence

entered on June 1, 2009, by the Honorable William J. Martin, President

Judge of the Court of Common Pieas of Indiana County, Criminal Division.

After careful review, we affirm.

In the early morning hours of April 13, 2006, Dr. John Yelenic, a 

dentist living alone in Blairsville, Pennsylvania, was brutally assaulted and 

murdered in his home. After an eight-day jury trial, Foley, a Pennsylvania 

State Police Trooper who was living with Dr. Yelenic's estranged wife,1 was

* Retired Senior Judge specially assigned to the Superior Court.
1 The Commonwealth refers to Dr. Yelenic's wife as his "soon-to-be ex-wife." 
Appellee's Brief, at 37. However, Dr. Yelenic and his wife were married at 
the time of the murder, and representatives of Dr. Yelenic's estate were 
unable to obtain a posthumous divorce. See Yelenic v. Clark, 922 A.2d 
935, 936 (Pa. Super. 2007).
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found guilty of first-degree murder and sentenced to life imprisonment. This 

timely appeal followed.

Appellant presents the following issues for our review:

I. WHETHER THE TRIAL COURT ERRED IN PRECLUDING THE 
TESTIMONY OF BETTY MORRIS AT TRIAL, WHERE THE 
EVIDENCE WAS RELEVANT AND ADMISSIBLE TO 
DEMONSTRATE THE MOTIVE OF ANOTHER PERSON TO 
COMMIT THE CRIME?

II. WHETHER THE TRIAL COURT ERRED IN ADMITTING THE 
TESTIMONY OF DR. MARK PERLIN, IN VIOLATION OF THE 
FRYE TEST FOR THE ADMISSIBILITY OF NOVEL 
SCIENTIFIC TESTIMONY?

III. WHETHER THE VERDICT WAS AGAINST THE WEIGHT OF 
THE EVIDENCE?

IV. WHETHER THE TRIAL COURT ABUSED ITS DISCRETION IN 
ADMITTING THE SHOE PRINT EVIDENCE AT TRIAL?

V. WHETHER THE TRIAL COURT ERRED IN INSTRUCTING THE 
JURY ON THE PERMISSIVE INFERENCE OF MALICE FROM 
THE USE OF A DEADLY WEAPON?

Appellant's Brief, at 4. We proceed to the merits.

Foley's first claim is that the trial court erred in excluding the

testimony of Bette Morris.2 The trial court may exercise its discretion in

deciding whether to admit evidence, and our review of the trial court's

evidentiary decisions is limited to determining whether the trial court abused

2 In his brief, Appellant refers to this witness variously as "Betty Morris," 
"Bette Morris," and "Bette Davis." Appellant's Brief, at 4, 23. This opinion will 
refer to her as Bette Morris, which is consistent with the notes of testimony 
and Appellee's brief. See N.T., March 17, 2009, at 134, 141.

i
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its discretion. See Commonwealth v* Moser, 999 A.2d 602, 605 (Pa. 

Super. 2010). The triai court abused its discretion only if its ruling "reflects 

manifest unreasonableness, or partiality, prejudice, bias, or ill-will, or such 

lack of support to be clearly erroneous." Id.

During the criminal investigation of this case, Bette Morris said to a 

law enforcement officer that on two occasions she had observed Dr. Yelenic 

engaged in intimate acts with his next door neighbor, Melissa Uss. According 

to Foley's counsel, if placed on the stand, Bette Morris would deny that she 

had ever made such observations, and then counsel would treat her as a 

hostile witness and impeach her with the statement she gave police. See 

N.T., March 17, 2009, at 135. When the Commonwealth objected that this 

evidence was irrelevant, Foley's counsel explained that it was intended to 

show that Melissa Uss's husband had a motive to kill Dr. Yelenic: "[A] jury 

could infer that somebody who was having a romantic affair with Dr. Yelenic, 

the husband might be inclined to do something and that is a fair inference 

from that." Id., at 137. However, when the trial court asked whether the 

defense had any evidence that Melissa Uss's husband knew of the supposed 

intimate acts, defense counsel conceded that he had no such evidence. See

- 3 -
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id. According to the defense, Bette Morris's observations were made when 

Mr. Uss was in the military and not at home.3 See id., at 135.

The trial court excluded the testimony of Bette Morris on the grounds 

that it was "a mere suggestion of motive and therefore irrelevant and 

inadmissible." Opinion and Order of Court, November 4, 2009, at 10. 

Generally, "proof of facts showing the commission of the crime by someone 

else is admissible." Commonwealth v. Boyle, 368 A.2d 661, 669 (Pa. 

1977). However, the Pennsylvania Supreme Court has held that facts 

suggesting that someone had a motive should not be considered by the jury 

if the person had no knowledge of the suggestive facts. See 

Commonwealth v* Giovanetti, 19A.2d 119, 125 (Pa. 1941).

In Giovanetti, the murder victim had an employer-provided life 

insurance policy with his wife, the defendant, listed as the beneficiary. See 

id. The trial court refused the defendant's request to instruct the jury that it 

could consider the insurance policy as evidence of her motive only if it found 

that she knew about the policy before the murder. See id. The Supreme 

Court reversed, holding that the wife's knowledge of the policy was 

necessary for it to be considered as evidence of her motive to kill. See id.

3 Although Foley called Melissa Uss as a witness, he did not ask her any 
questions regarding the alleged romantic relationship with Dr. Yelenic. See 
N.T., March 16, 2009, at 106-15. Foley did not call her husband as a 
witness.

- 4 -
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The trial court's decision to preclude the testimony of Bette Morris had 

a sufficient basis in the governing law and was not an abuse of discretion, 

Although intimate contact between the victim and Melissa Uss may suggest 

that her husband had a motive, "merely suggesting that someone else may 

have had a motive is not evidence." Commonwealth v. Rivers, 644 A.2d 

710, 715 (Pa. 1994). The trial court acted within its discretion in rejecting 

the testimony as irrelevant because the husband had no knowledge of the 

intimate contact, See Giovanetti, 19 A.2d at 125, Because there was no 

other evidence corroborating the suggestion that Mr. Uss was a killer 

motivated by jealousy, the trial court's decision to preclude the testimony of 

Bette Morris was a permissible exercise of discretion.

Foley's reliance on Commonwealth v. Ward, 605 A.2d 796 (Pa, 

1992), is misguided. In that case, the defendant was a police informant who 

was convicted of arson. The trial court precluded evidence that the people 

whom he had informed against had threatened him and had committed the 

arson in retaliation against him, See id,, at 797, In addition, the trial court 

precluded testimony from "an American Red Cross worker as to appellant's 

request for assistance following the fire, the organization's investigation, and 

its subsequent provision of emergency fund vouchers for clothing," which the 

defendant sought to introduce in order to "undermine the Commonwealth's 

evidence of motive by arguing the unlikelihood that appellant would destroy

- 5 -
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all of his own worldly possessions merely because of a disagreement with his 

brother." Id.

Ward is distinguishable from the instant case. In Ward, the 

defendant's offer of proof indicated that the other potential perpetrators 

knew that the defendant had given information about them to the police. 

See id. Further, the precluded evidence from the Red Cross worker 

concerned the defendant's own motive to commit the crime rather than 

someone else's motive. Unlike the testimony at issue in the instant case, the 

evidence at issue in Ward was relevant, and its exclusion violated the 

defendant's fundamental right to introduce relevant, admissible evidence. 

See id. (citing Chambers v. Mississippi, 410 U.S. 284 (1973)).

Foley's next claim is that the trial court erred in admitting the DNA- 

related testimony of Dr. Mark Perlin. A sample containing DNA from the 

victim and another person was found underneath the fingernail of the victim. 

This mixed sample was tested in a laboratory at the FBI, and three experts - 

Dr. Perlin, Dr. Robin Cotton, and Jerrilyn Conway, an FBI forensic scientist - 

used the FBI's data in developing their testimony. Each of the experts 

determined that Foley's DNA profile was consistent with DNA found in the 

sample. The experts differed in their estimates of the probability that 

someone other than Foley would possess DNA matching the DNA found in 

the sample - Conway testified that the probability that another Caucasian 

could be the contributor was 1 in 13,000; Dr. Cotton testified that the

- 6 -
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probability was 1 in 23 million; and Dr. Perlin testified that it was 1 in 189 

billion.

As with other evidentiary decisions/ the trial court may exercise its 

discretion in deciding whether to admit expert testimony. See 

Commonwealth v. Ventura, 975 A.2d 1128, 1140 (Pa. Super. 2009). The 

trial court's decision will be reversed only if the appellate court finds an 

abuse of discretion or an error of law. See id.

Foley claims that Dr. Perlin's testimony is inadmissible because it fails 

the Frye4 test for the admissibility of scientific evidence. See Appellant's 

Brief/ at 31. Pennsylvania continues to adhere to the Frye test, which 

provides that "novel scientific evidence is admissible if the methodology that 

underlies the evidence has general acceptance in the relevant scientific 

community." Betz v. Pneumo Abex LLC, 998 A.2d 962, 972 (Pa. Super. 

2010) (en banc) (citing Grady v. Frito~Layf Inc., 839 A.2d 1038 (Pa. 

2003)). The Frye test is a two-step process. See id. First, the party 

opposing the evidence must show that the scientific evidence is "novel" by 

demonstrating "that there is a legitimate dispute regarding the reliability of 

the expert's conclusions." Id. If the moving party has identified novel 

scientific evidence, then the proponent of the scientific evidence must show 

that "the expert's methodology has general acceptance in the relevant

4 Frye v. United States, 293 F. 1013 (D.C. Cir. 1923).
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scientific community" despite the legitimate dispute. Id. (internal quotation 

marks omitted).

The trial court did not expressly determine whether Dr. Perlin's 

testimony was "novel scientific evidence." Opinion and Order of Court, March 

3, 2009, at 2-3. Instead, the court found that Dr. Perlin's methodology was 

a refined application of the "product rule," a method for calculating 

probabilities that is used in forensic DNA analysis. See id.f at 2. The 

Pennsylvania Supreme Court has held that scientific evidence based on the 

product rule is admissible in the Commonwealth. See Commonwealth v. 

Blasioli, 713 A,2d 1117, 1118 (Pa. 1998). Because Dr. Perlin's calculations 

were made using newer technology, the trial court rhetorically asked "at 

what point does the use of the product rule become novel science." Opinion 

and Order of Court, March 3, 2009, at 2. The trial court went on to find that 

Dr. Perlin's methodology was generally accepted. See /</., at 3, 5.

We find that Dr. Perlin's testimony was not "novel" as that term is 

defined in the governing law, and thus the trial court did not abuse its 

discretion in admitting the testimony. The "novelty" of scientific testimony 

turns on whether "there is a legitimate dispute regarding the reliability of the 

expert's conclusions," which is not necessarily related to the newness of the 

technology used in developing the conclusions. Betzf 998 A.2d at 972. In 

Betz, the court noted that novelty "is not restricted to new science," and 

"even 'bedrock' scientific principles may be subject to a Frye analysis" if

-  8  -
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those principles become disputed. Id., at 973-74. Conversely, where there is 

no dispute, Frye should be "construed narrowly so as not to impede 

admissibility of evidence that will aid the trier of fact in the search for truth." 

Id., at 972.

Here, we find no legitimate dispute regarding the reliability of Dr.

Perlin's testimony. Dr. Perlin used proprietary software called TrueAIIele to

interpret the data he received from the FBI. See N.T., March 12, 2009, at

130. Foley claims that Dr. Perlin's testimony should have been excluded for

three reasons: (1) "as of the date of the pre-trial hearing, no forensic

laboratory in the United States used Perlin's TrueAllel [sic] method in

analyzing a mixed sample of DNA for forensic purposes"; (2) "the TrueAllel

[sic] system had never been used in a court of law in any jurisdiction in the

United States on a mixed DNA sample to give a likelihood ratio"; and (3) no

outside scientist can replicate or validate Dr. Perlin's methodology because

his computer software is proprietary. Appellant's Brief, at 35.

Foley's first claim does not amount to a showing of "novelty" because

it does not show a "legitimate dispute regarding the reliability of the expert's

conclusions." Betz, 998 A.2d at 972. Regardless, Foley understates the

extent of usage of Dr. Perlin's system. As Dr. Perlin testified:

The TrueAIIele technology is used by New York State for all of 
their data banking and bringing their casework system on board.
The Allegheny County Crime Lab has been using our system as a 
service and recently purchased the system for looking at 
mixtures in complex cases and DNA evidence. The World Trade 
Center engaged us to reanalyze all of the data and rematch it

- 9 -
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using our methods from the eighteen thousand (18,000) or so 
victim remains and the three thousand (3000) missing people 
and so on and there are other groups that we work with.

N.T., Mar. 12, 2009, at 132.

In addition, the United Kingdom's Forensic Science Service uses 

TrueAiieie technology to analyze crime scene evidence and build the UK 

National DNA Database, which is the largest of its kind in the world. See 

Forensic Science Service Expands License for Cybergenetics Automated DNA 

Data Review Technology; Pioneering TrueAIIele Software Helps Builds [sic] 

World's Largest DNA Database, Business Wire, July 26, 2004, available at 

http://tinyurl.com/8yxh8hd (last visited Nov. 21, 2011); see also Opinion 

and Order of Court, March 3, 2009, at 5.

Foley's second reason for excluding the testimony is not persuasive 

because "novelty" of a scientific methodology does not turn on its previous 

use in court. During cross-examination, Dr. Periin testified that he did not 

know whether any users of TrueAIIele had used it in a case that went to trial. 

See N.T., March 12, 2009, at 133-34. Even if Foley is correct that TrueAIIele 

has never been used in court, this. would not prove novelty. The 

Commonwealth's "continued adherence to the Frye test is based upon its 

interest in having judges be guided by scientists when assessing the 

reliability of a scientific method, and not the other way around." Betz, 998 

A.2d at 979 (internal quotation marks omitted). If this court assessed 

"novelty" of scientific evidence based on its previous use in court, we would

-  1 0  -
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be failing to defer to scientists in assessing the reliability of scientific 

methods. Rather than looking to previous uses in court, we find "novelty" 

only if there is a dispute among scientists. See Betz, 998 A.2d at 972.

Foley's third reason for exclusion is misleading because scientists can 

validate the reliability of a computerized process even if the "source code" 

underlying that process is not available to the public. TrueAIIele is 

proprietary software; it would not be possible to market TrueAIIele if it were 

available for free. See N.T., Hearing, February 18, 2009, at 54. 

Nevertheless, TrueAIIele has been tested and validated in peer-reviewed 

studies. One study used laboratory-generated DNA samples and found that 

quantitative analysis performed by TrueAIIele was much more sensitive than 

qualitative analysis such as that performed by the FBI. See Perlin & 

Sinelnikov, An Information Gap in DNA Evidence Interpretation, 4 PLoS ONE 

e8327, at 10 (2009), available at

http://dx.doi.org/10.1371/journal.pone.0008327. A recent paper entitled 

"Validating TrueAIIele® DNA Mixture Interpretation" used DNA samples from 

actual cases and reached similar results. See Perlin et al., Validating 

TrueAIIele® DNA Mixture Interpretation, 56 Journal of Forensic Sciences 1430 

(2011). The study "validated the TrueAIIele genetic calculator for DNA 

mixture interpretation" and found that "[w]hen a victim reference was 

available, the computer was four and a half orders of magnitude more

- 11 -
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efficacious than human review."5 Id., at 1444. Both of these papers were 

published in peer-reviewed journals; thus, their contents were reviewed by 

other scholars in the field.

Because Foley has failed to establish the existence of a legitimate 

dispute over Dr. Perlin's methodology, he has failed to show that Dr. Perlin's 

testimony constituted "novel" scientific evidence. See Betz, 998 A.2d at 

972. Therefore, we find that the trial court's decision to admit the testimony 

was not an abuse of discretion. Absent a legitimate dispute, there is no 

reason to "impede admissibility of evidence that will aid the trier of fact in 

the search for truth." Id.

Foley's next claim is that the trial court abused its discretion when it 

admitted evidence related to bloody shoeprints found at the murder scene. 

Foley claims that a new trial should be awarded because this evidence was 

irrelevant and highly prejudicial. See Pa. R, Evid. 402, 403. As noted above, 

this court will find an abuse of discretion only if the trial court's ruling 

"reflects manifest unreasonableness, or partiality, prejudice, bias, or ill-will, 

or such lack of support to be clearly erroneous." Commonwealth v. Moser, 

999 A.2d 602, 605 (Pa. Super. 2010).

Foley claims the shoeprint evidence was irrelevant because "[t]he shoe 

prints found at the scene could not be authoritatively determined to be any

5 In this case, a victim reference was available because the evidence was 
taken from the victim's fingernail. See N.T., March 12, 2009, at 89.
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particular brand/ style, or size of shoe." Appellant's Brief, at 61. At trial, the 

Commonwealth introduced expert testimony from an FBI forensic examiner 

that the shoeprints at the crime scene apparently were left by an Asics 

brand running shoe with the model name "Gel Creed" or "Gel Creed Plus." 

N.T., March 13, 2009, at 45. The FBI forensic examiner noted that he could 

not state his opinion with one hundred percent certainty because the FBI 

database does not contain reference information for every shoe 

manufactured in the world. See id., at 47

The Commonwealth also introduced testimony from Terry Schalow, a 

product manager for Asics America Corporation. He testified that the 

shoeprint was left by an Asics Gel Creed, Gel Creed Plus, or a knockoff of 

this type of shoe. See id., at 18-19. The size was between ten and twelve 

and a half. See id., at 18. Only about 25,000 Gei Creed shoes were sold in 

the United States. See id., at 20. Importantly, Foley ordered a size ten Gel 

Creed from Asics in August 2003. See id., at 25, 27.

Contrary to Foley's position, the uncertainty in this testimony goes to 

its weight rather than its admissibility. Foley emphasizes that neither expert 

could state with absolute certainty that the shoeprints were left by size 10 

shoes manufactured by Asics and purchased by Foley. However, to be 

relevant and admissible, "evidence need not be conclusive." 

Commonwealth v. Crews, 640 A.2d 395, 402 (Pa. 1994). Evidence is 

relevant if it logically tends to establish a material fact in the case or tends

- 13 -
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to support a reasonable inference regarding a material fact. See id. Here, 

the shoeprint evidence supported a reasonable inference that Foley was at 

the scene of the crime. This relevant, though inconclusive, evidence was 

admissible, and "its weight and persuasiveness were properly matters for 

the jury to determine." Id., at 403.

Foley's charge that the shoeprint evidence was "highly prejudicial" is 

also not persuasive. See Appellant's Brief, at 64. The Pennsylvania Rules of 

Evidence provide that "[although relevant, evidence may be excluded if its 

probative value is outweighed by the danger of unfair prejudice, confusion 

of the issues, or misleading the jury, or by considerations of undue delay, 

waste of time, or needless presentation of cumulative evidence." Pa. R. Evid. 

403 (emphasis added). Evidence is not unfairly prejudicial simply because it 

is harmful to the defendant's case. See Commonwealth v. Page, 965 A.2d 

1212, 1220 (Pa. Super. 2009). Rather, exclusion of evidence on this ground 

"is limited to evidence so prejudicial that it would inflame the jury to make a 

decision based upon something other than the legal propositions relevant to 

the case." Id. While the shoeprint evidence tended to support an inference 

that Foley committed the crime, there is no reason to believe that it 

improperly inflamed the jury. Thus, the trial court did not abuse its 

discretion by admitting the shoeprint evidence.

Next, we turn to Foley's claim that the jury's verdict was against the 

weight of the evidence. Foley preserved this claim for appellate review by

- 14 -
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raising it with the trial judge in a post-sentence motion. See Pa. R. Crim. P.

607; see also Opinion and Order of Court, November 4, 2009, at 1. Our

standard of review is well-settled:

The finder of fact is the exclusive judge of the weight of 
the evidence as the fact finder is free to believe all, part, or none 
of the evidence presented and determines the credibility of the 
witnesses.

As an appellate court, we cannot substitute our judgment 
for that of the finder of fact Therefore, we will reverse a jury's 
verdict and grant a new trial only where the verdict is so 
contrary to the evidence as to shock one's sense of justice. A 
verdict is said to be contrary to the evidence such that it shocks 
one's sense of justice when "the figure of Justice totters on her 
pedestal, or when "the jury's verdict, at the time of its rendition, 
causes the trial judge to lose his breath, temporarily, and causes 
him to almost fall from the bench, then it is truiy shocking to the 
judicial conscience.''

Furthermore,

where the trial court has ruled on the weight claim below, 
an appellate court's role is not to consider the underlying 
question of whether the verdict is against the weight of the 
evidence. Rather, appellate review is limited to whether 
the trial court palpably abused its discretion in ruling on 
the weight claim.

Commonwealth v* Cruz, 919 A.2d 279, 281-82 (Pa. Super. 2007) 

(citations omitted).

We find that the trial court did not abuse its discretion in finding that 

the verdict was not against the weight of the evidence. Over the course of 

the eight-day trial, copious evidence linking Foley to the crime was 

presented to the jury. This evidence was comprehensive and credible 

enough to support the verdict.

- 15 -
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At the time of the murder, Foley was living with Dr. Yelenic's 

estranged wife. Foley had expressed his hatred of Dr. Yelenic to numerous 

individuals - Foley had said that he wished Dr. Yelenic would die, and on one 

occasion Foley asked a fellow police officer to help him kill Dr. Yelenic. On 

three occasions, Foley attempted to have Dr. Yelenic investigated and 

arrested for child abuse, and Foley was frustrated by his lack of success.

Foley had an opportunity to commit the crime. At the approximate 

time of the murder, he was driving from a hockey game in Delmont to his 

home in Indiana, which took him past Blairsville, where Dr. Yelenic resided.

Foley's DNA profile was consistent with DNA found under Dr. Yelenic's 

fingernail, and the most conservative estimate of the likelihood that 

someone else would possess a consistent profile was one in 13,000.6 On the 

night before the murder, Foley had no abrasion on his forehead, but on the 

morning following the murder he had an injury on his forehead described by 

three eyewitnesses as "a fingernail scratch" and by others as a cut that 

appeared to be "fresh."

The shoeprint evidence, discussed above, supported a reasonable 

inference that Foley was present at the scene. Foley said that he did not 

remember what happened to the size 10 pair of Gel Creed shoes he ordered 

in 2003.

6 Foley does not challenge the reliability of the scientific methodology 
underlying this estimate.
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Dr. Yelenic was slashed by a sharp instrument, and Foley was known 

by his colleague to be a "knife guy" who habitually flicked open and shut a 

knife that he carried with him. In fact, Foley once accidentally sliced open a 

supervisor's pair of pants in the groin area when he was walking past him. 

When informed of Dr, Yelenic's death shortly after the discovery of the 

murder, Foley was unemotional, expressed no curiosity about the nature or 

cause of death, and only asked which law enforcement agency was in charge 

of the investigation. After the murder, Foley stopped playing with his knife 

and started wearing Nike brand shoes instead of Asics.

Given this evidence, the verdict is hardly shocking to the judicial 

conscience. The court below acted within the bounds of its discretion as the 

finder of fact. Thus, we reject Foley's claim that the verdict was against the 

weight of the evidence.

Finally, we turn to Foley's argument that the trial court erred in 

instructing the jury on the permissive inference of malice from the use of a 

deadly weapon. The trial court instructed the jury that tt[i]f you believe that 

the defendant intentionally used a deadly weapon on a vital part of John J. 

Yelenic's body, you may regard that as an item of circumstantial evidence 

from which you may, if you choose, infer that the defendant acted with 

malice." N.T., March 18, 2009, at 229.

Foley concedes that the Supreme Court of Pennsylvania has approved 

this charge in a homicide case. See Commonwealth v. Jones, 912 A.2d

- 17 -
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268, 279-80 (Pa. 2006), Nevertheless, Foley argues that "this is an 

unconstitutional charge that deprived him of due process and should now be 

overruled." Appellant's Brief, at 65. However, this court has a "duty and 

obligation to follow the decisional law of [the Supreme Court of 

Pennsylvania]." Commonwealth v. Shaffer, 734 A.2d 840, 844 n.6 (Pa. 

1999). "The primary role of the Superior Court is to apply existing law to the 

cases that come before us. It is not our function to attempt reversing viable 

Supreme Court rulings . . . ." L.B. Foster Co. v. Charles Caracciolo Steel 

& Metal Yard Inc., 777 A.26 1090, 1096 (Pa. Super. 2001).

Because the challenged jury instruction has been approved by the 

Supreme Court, we find that the trial court accurately instructed the jury on 

the law of the Commonwealth. See Jones, 912 A.2d at 279-80. Accordingly, 

we reject Foley's claim and affirm the judgment of sentence.

Judgment of sentence affirmed. Jurisdiction relinquished.
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While even compromised single-source profiles typically lend 
themselves readily to human interpretation, mixture analysis 
poses a greater challenge for the forensic examiner. Forensic 
mixture samples, those biological specimens compromised of 
DNA from more than one individual, constitute a large propor­
tion of casework samples. In fact, the level of sophistication and 
complexity of the analysis methods applied to DNA mixture 
sample interpretation has increased steadily, as has the complex 
nature of the sample types profiled by the forensic examiner 
(1-4). In 2010, the Scientific Working Group on DNA Analysis 
Methods (SWGDAM) recommended along with other guidelines 
that stochastic thresholds be applied to mixture samples (5). A 
stochastic threshold is designed to alert the DNA analyst that all 
of the DNA typing information may not have been detected for 
a given sample, that is, that there is potential for allelic dropout. 
Alternate statistical approaches were suggested to accommodate 
the uncertainty of the data.

Frequently, with the application of stochastic thresholds to 
DNA mixture sample electropherogram data, the combined prob­
ability of inclusion/exclusion (CPI/CPE) is rendered impotent as 
a means of expressing the statistical value of a profile due to 
loss of data below the stochastic threshold. Thus, it comes as no 
surprise that a number of software programs described as expert 
systems have been developed to assist the forensic examiner in 
performing scientifically based and statistically sound interpreta­
tions of the mixed contributor DNA evidence. Such an expert 
system would utilize much of the allele data that fall below the 
stochastic threshold (6-8). The testing and evaluation of one of 
these systems, TrueAIIele® Casework (Cybergenetics, Pittsburgh,

'Virginia Department of Forensic Science, Richmond, VA 23219.
Received 24 Feb. 2014; and in revised form 27 June 2014; accepted 26 

Aug. 2014.

PA), is the subject of the study reported herein. This study was 
designed by and undertaken at the Virginia Department of 
Forensic Science (VDFS) to test the performance and define the 
limits of the TrueAIIele® Casework expert system.

TrueAIIele® Casework is a continuous probabilistic modeling 
system that utilizes Markov chain Monte Carlo (MCMC) sam­
pling of the joint distribution, a probability distribution that com­
bines all of the random variables, to perform an exhaustive 
statistical modeling of the electropherogram data (8,9). Probabi­
listic modeling as a means to deconvolve or solve a complex 
problem is not a new invention and has been successfully uti­
lized by many diverse disciplines since its advent post-WWII 
(10). A wide range of disciplines such as nuclear physics, psy­
chology, computer learning, economics, biological systems, and 
more recently, DNA analysis, utilize probabilistic modeling to 
make sense of the patterns observed in complex data and predict 
likely outcomes for various tests (11-13). Moreover, computer 
modeling can allow for the trialing of thousands or even millions 
of different explanations for the observed data using large num­
bers of variables within a time frame that escapes a purely 
human endeavor (14—17).

The TrueAIIele® Casework system utilizes MCMC analysis in 
order to try many thousands of different combinations of vari­
ables to explain the DNA profile data. The short tandem repeat 
(STR) data are displayed in the form of an electropherogram 
generated as a final product of DNA profiling. Following Bayes’ 
theorem, the observed data are separated into derived contributor 
genotypes which are used to update prior probability into poster­
ior probability (9,18). TrueAIIele® Casework can then answer 
the question of whether there is statistical support for or against 
the person of interest being a contributor to a mixture or single­
source DNA profile. Moreover, this modeling of the data to 
generate derived contributor genotypes occurs prior to and inde­
pendent of any comparison to the person of interest’s reference
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profile and thus provides an objective and unbiased analysis of 
forensic DNA casework.

All testing of the system was performed at VDFS using com­
promised single-source profiles and challenging two-, three-, and 
four-person mixed donor DNA profiles created on site. The 
PowerPlex® 16 (Promega Corp., Madison, Wi) STR profiles of 
all samples utilized had been documented and all genotypes 
were known. Thus, a critical assessment of software performance 
could be performed as all genotyping answers to the questions 
posed to the system were previously established. Moreover, sam­
ples were chosen to stress the system allowing for an evaluation 
of the performance of the modeling program when confronted 
with samples exhibiting allelic and locus dropout, artifacts and 
many alleles below the stochastic and analytical (limit of detec­
tion) thresholds. These are the very artifacts routinely encoun­
tered when performing DNA analysis on forensic casework.

The TrueAIIele® Casework software system, like any other 
instrument, has limits. This body of work was designed to iden­
tify those limits and from that data, formulate policy and proce­
dure for accurate and reproducible forensic DNA mixture 
analysis. The sensitivity (ability to detect trace donors), the spec­
ificity (ability to exclude nondonors), and the ability to exclude 
first-degree relatives to donors of a mixture were deemed most 
crucial to define, but other aspects to sample analysis were also 
evaluated.

Materials and Methods

DNA Sample Preparation

DNA samples were purified from previously collected dried 
blood and buccal samples obtained from volunteers. DNA was 
extracted using the DNA IQ® System (Promega Corp.) or 
organic purification, as described (19). All samples are listed in 
File SI. DNA samples were quantitated using the Plexor® HY 
System (Promega Corp.) and amplified using the PowerPlex® 16 
System as described (19). Amplified samples were separated on 
the 3130x1 Genetic Analyzer (Applied Biosystems, Foster City, 
CA) as described (20). Analysis was completed by the GeneM- 
apper® ID v3.2.1 software (ABI). The stutter cutoffs were 
defined as well as the limit of detection (LOD; blue 73, green 
84, yellow 75, and red 52 RFUs) (20).

Electropherogram data (.fsa files) were utilized from previ­
ously analyzed single-source and mixture DNA samples as 
described in the sample preparation section above. Challenging 
single-source profiles were obtained from amplified DNA used 
for establishing stochastic thresholds and for environmental stud­
ies. Two samples with a high degree of heterozygosity originally 
used to establish the stochastic threshold were analyzed by Tru- 
eAllele® Casework (two 30 pg samples and three 10 pg samples 
from sample S9; three 30 pg samples and two 10 pg samples 
from sample SI). The profiles subjected to stochastic effects 
from the two different donors were compared to both donor S9 
and SI reference profiles to generate a match statistic. Eight 
degraded samples from three different donors (SI, S l l ,  and S3) 
were analyzed using TrueAIIele® Casework and then compared 
to the reference profile for the donor and ten nondonors to gen­
erate the match statistic.

Eighteen two-person mixture samples were obtained from pre­
viously analyzed mixture studies as well as mock casework. The 
mixtures samples were derived from different combinations of 
donors and by differing the ratios of DNA from the donors. A 
total of five different samples were used to create the eighteen

two-person mixture profiles. Fifteen three-person mixture sam­
ples were obtained from previously analyzed mixture studies and 
mock casework samples. A total of seven different donors were 
used to create the three-person mixture profiles. As with the 
two-person mixtures, the profiles were derived from different 
combinations of donors and by differing the ratios of DNA from 
the donors. Seven four-person mixture samples were obtained 
from previously analyzed mixture studies. A total of eight differ­
ent donors were used to create the four-person mixture profiles 
and they also consisted of different combinations of donors and 
differing ratios of the DNA from the donors. For all analyses 
except for the specificity tests, eleven reference profiles 
(S l-S ll)  were used for comparison and generation of the match 
statistics. All donors used to create the mixture samples were 
contained within the set of 11 reference profiles. The reference 
samples were previously typed using the PowerPlex® 16 System 
and uploaded to TrueAIIele® Casework by manually entering 
them as text files.

The TrueAIIele® Casework System

TrueAIIele® Casework (TA) is a genotype modeling system 
that uses probability to define the most likely explanations for 
the data. TA uses MCMC analysis to examine many different 
variables in order to account for the observed data (with STR 
data, a sample’s electropherogram peak height and molecular 
weight data) (8,9,17). Variables such as genotype and mixture 
weight (each contributor’s proportion in the mixture), among 
others, are mathematically combined in probability equations 
modeled to explain the data.

Eacli TA cycle sequentially tests the variables to accept or 
reject values. When TA proposes a new value for a variable, it 
compares the joint probability (of data and model) using that 
new value relative to the old probability. For example, a cycle 
might compare the probability of a 50:50 mixture ratio for a 
two-person mixture relative to that of a 55:45 ratio. When the 
joint probability is higher, the new value is accepted.

The reported cycle numbers (25K, 50K, 100K, or 200K) refer 
to the number of times TA sequentially tests all of the variables 
(25K refers to 25,000 cycles, 50K refers to 50,000 cycles, etc.). 
For this study, the same cycle value was utilized for both “bum- 
in” and “read-out”. The “burn-in” phase moves the system into 
the posterior probability region (e.g., mixture weight values that 
better explain the data). In the MCMC “read-out” phase, the sys­
tem statistically samples from that region (e.g., determining the 
mixture weight probability distribution). TA analyses of a sam­
ple run for different cycle numbers can still be concordant and 
are evaluated using the same metrics. Some complex mixtures 
will be better resolved using a greater number of cycles, but run­
ning mixture samples longer typically impacts minor contributors 
much more than more predominant contributors (pets. obs.).

Production o f the Match Statistic

After the derived contributors are produced by the TA soft­
ware system, a comparison is performed between the derived 
contributors of a sample and reference samples of interest 
selected by the user. The comparison is in the form of a likeli­
hood ratio (LR) and also referred to as the match statistic. This 
value can also expressed as a logarithm of the LR, log(LR) 
(20,21). The match statistic for a comparison with a particular 
reference profile is the Iog(LR) which is the highest, most dis­
criminating value for that analysis of the evidence sample, A
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positive match statistic is where the log(LR) is positive, which 
means the LR is above one. A comparison which provides no 
statistical support for a match is where the log(LR) is negative, 
which means the LR is below one. Concordant analyses should 
produce match statistics that are within two log units (ban) of 
each other. For the study, a positive log(LR) is referred to as an 
inclusion and a negative log(LR) is referred to as an exclusion,

TrueAIIele® Casework analyses were performed at 25, 50, and 
100K cycles for the stochastic samples and at 25K twice and at 
100K once for the degraded samples, except for one sample, 
S l l  (UV treated for 3 months), which was analyzed once at 
25K and twice at 100K cycles. TA analyses for the two-, three-, 
and four-person mixtures ranged from 25K to 200K, although 
25K was determined to provide inadequate sampling for the 
complex three- and four- person mixtures and was discontinued.

Operation o f the System

The operation of the TrueAIIele® Casework system (server v. 
3,25.4441.1, VUIer v. 3.3.5148.1) was performed as described 
in the TrueAIIele® VUIer™ manuals (22). Also utilized was the 
information and training provided by Cybergenetics for both 
Operator I and Operator II level training courses and in the liter­
ature. A theta correction value of 0.01 was employed for all 
analyses using VDFS allele frequencies.

Single-source profiles from degraded (7) and low template 
samples that exhibit stochastic effects (10) were analyzed using 
TrueAIIele® Casework and compared to the donor reference as 
well as nondonor reference profiles. Two-, three-, and four- 
person mixtures were subjected to the TrueAIIele® Casework 
analysis process and compared to a series of eleven reference 
profiles (named SI—SI 1 and including the true donors) for gen­
eration of the log(LR) match statistic. All single-source, mixture, 
and reference profile compositions are listed in File SI.

Evaluation o f Data Output

The data produced by the TrueAIIele® Casework system were 
evaluated for metrics listed in Table 1. The quality of the analy­
sis which included the Markov chain sampling, the Gelman™ 
Rubin convergence statistic value {<1.2, >1,2 and <1.5, >1.5} 
and histogram of derived mixture weights, was the initial quality

TABLE 1—M etrics a ssessed  fo r  TrueAIIele® C asew ork Analysis. The three  
m etrics lis ted  a re  the  f ir s t  aspects to  be  assessed  f o r  a  d e c o n v o lv e d  m ixture

sample.

Metrics Ideal Acceptable Poor

Markov chain Good sampling MCs with MCs stuck with
(MC) of the “space”. minimat/no no sampling.

MCs with sampling for Rope-like
minimal/ more than -20% appearance of the
no sampling 
for no more 
than -20% of 
sampling time

of sampling 
time

chain

MW Histogram SD > 0.03 for SD > 0.03 for SD < 0.03 for
complex
mixtures

complex mixtures complex mixtures

Gelman-Rubin
Convergence

<1.2 <1.5 >1.5*

MW, Mixture weight; SD, standard deviation.
*In some concordant samples, an analysis with poor convergence val­

ues may still be used for reporting.

aspects of the TA analysis evaluated after the software com­
pleted the deconvolution process (23). The MCMC provides a 
visible record and history of the statistical sampling of mixture 
weights for an analysis. Figs 1 and 2 display two independent 
analyses of a complex three-person mixture, Mix3„6. Fig, 1 
depicts an ideal analysis and Fig. 2 depicts a nonideal (poor) 
analysis, given the complexity of the mixture.

After the initial assessment of the run metrics described above, 
other characteristics of the analyses were evaluated. The repro­
ducibility of the results (genotype concordance and similar 
match statistics) was assessed. Reproducible match statistics 
were defined as a minimum of two ideal or acceptable analyses 
with the log(LR)’s within 2 ban (log units). Also assessed was if 
the correct individuals were included (generated a positive match 
statistic) and if nondonors were excluded (generated a negative 
match statistic). The derived mixture weights for concordant 
analyses should be similar, but do not need to be exact. For mix­
tures with very minor contributors (less than 15%), the mixture 
weights for the more minor contributors may show increased 
variability, even for concordant, ideal analyses. The Kullback- 
Leibler (KL) statistic (the information content of a derived con­
tributor genotype) was also evaluated; however, it was not used 
for any determinations of concordance (24).

An example of good genotype concordance versus poor geno­
type concordance is shown in Fig. 3 for independent analyses of 
the same complex three-person mixture, Mix3„6. Excellent 
genotype concordance is depicted in Panel (a) with the predomi­
nant derived contributor for both the ideal and poor (nonideal) 
analyses. The correct genotype of the predominant contributor to 
the mixture is circled. Poor genotype concordance for the most 
minor derived contributor genotype (the correct minor contribu­
tor genotype is circled) is observed between the ideal and poor 
analyses. Genotype concordance that is deemed "fair” will typi­
cally fall between the two extremes of poor and good, showing 
good concordance at many loci and poorer concordance at other 
loci. The probability value assigned for each genotype is also 
considered when assessing the quality of the genotype concor­
dance as more concordant genotypes typically display more sim­
ilar genotype probabilities.

Typically for a poor TA analysis, the predominant derived 
contributor is concordant with the predominant derived contribu­
tor for an ideal analysis; however, a very minor contributor, as 
was the case for Mix3„6, may not be captured by the MCMC 
sampling process (personal obs.). As shown in Fig. 3, a lack of 
concordance was observed between the most minor derived con­
tributor for the ideal and the poor analyses. A 100% probability 
for a nonconcordant genotype was produced for the most minor 
derived contributor for the poor analysis, whereas a distribution 
of genotypes was produced for the ideal analysis. The true geno­
type of the most minor contributor was included in that distribu­
tion for the ideal analysis (6,9.3). Thus, the poor analysis failed 
to capture the most minor contributor to the mixture due to 
insufficient sampling.

Mixture Ratio Assessment

Mixture weights for two-person mixtures were initially esti­
mated based upon quantitation data and the input ratios of the 
quantitated DNA placed into the PowerPlex® 16 System amplifi­
cation reaction. After generation of the electrophoretic data, 
manual estimates were created using loci for which there was no 
allele sharing between contributors (loci with four alleles visible 
or loci with two minor alleles and one major allele). The peak
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FIG, 1— M arkov chain a n d  histogram  o f  an ideal analysis o f  the com plex three-person m ixture, M ix3_6. (P anel A ) H istogram  o f  derived  m ixture w eights fo r  
the three-person m ixture. (P anel B ) The corresponding ideal M arkov chain h istory  o f  the m ixture  w eight sam pling. The three colors indicate each derived  
contributor.

height values for the minor alleles were summed and divided by 
the sum of the peak heights for all of the alleles.

Specificity o f the TrueAIIele® Casework System

Specificity, the ability to exclude noncontributors, of the Tru- 
eAllele® Casework analysis process was evaluated. The derived 
contributor genotypes of two-, three-, and four-person mixture 
samples were utilized for the test. Only ideal or acceptable Tru- 
eAlIele® Casework analyses that were retained and used for 
genotype concordance were utilized for comparison with refer­
ence profiles.

All of the derived contributor genotypes from the two-, three-, 
and four-person mixture profiles were interrogated for the match 
statistic using 100 synthetically generated PowerPlex® 16 pro­
files kindly provided by Cybergenetics. None of the 100 profiles 
were donors to any of the mixtures tested. To form the reference 
profiles, a computer randomly sampled allele pairs at each locus 
from a representative human allele count database. The random 
profiles were saved as text files for subsequent upload to a Tru- 
eAllele® World and eventual match comparison.

The TrueAIIele® Casework system allows the user to manage 
data in virtual worlds. A TA world will contain the STR data, 
interpretation requests and the MCMC joint distributions. The 
Cybergenetics representative population database (named CYB) 
is a multi-ethnic allele count database based on five thousand 
anonymous individuals (M. Legler, Cybergenetics, pers. comm.). 
The synthetically derived PowerPlex® 16 profiles were uploaded

to TrueAIIele® Casework as text files. Match statistics were per­
formed for all three major population groups: Black, Caucasian, 
and Hispanic.

The ability of the TA system to distinguish relatives versus 
true donors to the two-, three-, and four-person mixture samples 
was assessed. Only first-degree relatives were tested, therefore, 
“sons” were manually created from seven of eleven reference 
profiles by selecting one of the reference profile alleles at each 
locus and randomly selecting a sister allele to create a “son”. Of 
the eleven reference samples used for this validation study, ten 
of those were donors used for creation of the two-, three-, and 
four-person mixtures. Of the seven profiles that were used to 
synthesize “sons”, six were donors to the two-, three-, and four- 
person mixtures. Match statistics for the mixture profiles were 
generated for all of the eleven reference profiles as well as the 
seven “sons”.

Additionally, “brothers” were manually created from five pro­
files of donors to the two-, three-, and four-person mixtures, 
This was carried out by estimating the expected ratios given a 
sibling relationship of both alleles being shared, one allele 
shared and no alleles shared. The siblings were created in this 
manner to ensure that they shared many alleles and thus would 
challenge the TrueAIIele® Casework system. Furthermore, the 
profiles of the references and the “brothers” were entered into 
Popstats (a module of the Federal Bureau of Investigation's 
CODIS software) to calculate a sibling index. All sibling indices 
surpassed the minimum of 33 used as an inclusion threshold at 
VDFS (25).
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FIG. 2— M arkov chain a n d  histogram  o f  a p o o r  analysis o f  the com plex  
three-person m ixture, M Lx3jS, (P anel a) A nonidea l histogram  (the standard  
deviation is too sm all g iven  the com plexity o f  the m ixture) o f  the derived  
mixture. (P anel b) The corresponding nonideal M arkov chain h istory  o f  the  
m ixture w eight sampling.

The Use o f Assumed Known Profiles

The use of assumed knowns was explored by analyzing seven 
different three-person mixture samples with TrueAIIele® Case­
work and selecting one of the donor samples as an assumed 
known. Both the correct (assumed known was a donor to the 
mixture) and incorrect (assumed known was not a donor to the 
mixture) selection of an assumed known was tested, The match

statistics produced when compared with eleven different refer­
ence profiles, of which three were the true donors in each mix­
ture, were compared when no assumed known and when an 
assumed known was used.

Results and Discussion

Allelic Dropout, Locus Dropout, and Peak Imbalance: 
Single-source Samples

Eight degraded DNA samples were analyzed using TrueAI­
Iele® Casework (TA) and compared with their respective refer­
ence profiles for generation of the match statistic. Generally, 
there was a good correlation between the number of alleles 
observed both above and below the limit of detection (LOD) 
and the strength of the match statistic (Fig. 4, only S l l  samples 
shown). The LOD values presented pertain solely to GMID as 
described in Materials and Methods. TA does not apply a LOD 
value, but instead samples electropherogram signal down to a 
selected value which was 10 rfu for analyses reported in this 
study. Baseline noise and peak uncertainty, which is proportional 
to peak height, among other variables are considered when the 
data are modeled (9,18,20). However, two samples provided 
negative log(LR) values when compared to their respective refer­
ence profiles (S ll UV and S3 80°C, S3 data not shown). Sam­
ple S l l  subjected to 80°C produced a positive match statistic 
yet it displayed fewer alleles above and below the LOD than the 
sample S l l  subjected to sunlight (referred to as UV exposed), 
which produced a negative match statistic. Thus, further investi­
gation was necessary to determine the cause of such disparate 
match statistics.

Figure 5 displays electropherograms of the S l l  samples incu­
bated at 80°C and UV exposed at room temperature (RT). Six 
loci of S l l  exposed to UV (Panel b) displayed allelic dropout 
(one allele of the heterozygous allele pair was not visible). Of 
these six, two loci showed the single visible sister allele below 
the LOD and unlabeled. The probability values (“p”) generated 
by the TrueAIIele® Casework analysis for the true heterozygous 
genotypes were all extremely low values, thus driving the overall 
match statistic lower than if neither allele of the heterozygote 
were present. However, TrueAIIele® Casework was able to uti­
lize allele data below the LOD, but distinguishable from baseline 
noise. An example of this is shown in Fig. 5, Panel (b) where 
an arrow points to two peaks at D21S11 that are imbalanced and 
below the LOD. The probability value for the 30,32.2 genotype 
at D21S11 was estimated at 0.8057. Another example is at the 
D7S820 locus hi Panel (b) where both the 8 and 9 alleles are 
below the LOD, but TrueAIIele® Casework assessed the proba­
bility of that genotype at 0.8878, thus demonstrating that Tru- 
eAllele® Casework was able to utilize more of the data than is 
currently available using a traditional threshold based approach. 
Conversely, the S l l  sample subjected to 80°C (Panel a) did not 
display allelic dropout; instead, it displayed total locus dropout 
at multiple loci. The log(LR) match statistic (shown in the upper 
right hand comer of each panel) was significantly higher for S l l  
subjected to 80°C than subjected to UV even though fewer 
alleles were visible in file 80°C sample. This difference can b e ' 
explained by the effect that false homozygotes had on the proba­
bility values for the heterozygote genotypes in the UV-treated 
sample.

Ten amplifications of two different samples (S9 and SI) using 
genomic template quantities in the stochastic range (30 pg and 
10 pg) were analyzed using TrueAIIele® Casework and
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FIG. 3— G enotype concordance a t the TH01 locus f o r  the com plex three- 
person m ixture, M ix3 j5 . (P anel A ) E xcellen t a n d  correct genotype concor­
dance is observed  betw een the predom inant contributor fo r  both the ideal 
a n d  nonideal (poor) ana lyses show n in Figs 1 and  2. The dark blue colum n  
is the derived  contributor genotype probability  f o r  the non ideal analysis, and  
the light b lue colum n is the geno type  probability  derived  by the ideal ana ly­
sis, (P anel B ) P oor geno type  concordance is observed  fo r  the m ost m inor  
contributor o f  the  ideal a n d  p o o r  analyses. The dark  b lue colum n represents  
the derived  contributor g eno type  probability  f o r  the non idea l analysis. It d is­
p lays a 100%  probab ility  f o r  a genotype tha t is no t concordant w ith  the  
m inor contributor (true geno type  is 6,9.3). The light b lue colum ns show  the  
derived  contributor geno type distribution (due to uncertainty) fo r  the m ost 
m inor contributor o f  the idea l analysis. The correct geno types fo r  the  m ost 
predom inant a n d  m ost m in o r  contributors are  c ircled  (7 ,9 .3  a n d  6,9.3, 
respectively).

compared both to the donor reference profile and a nondonor 
reference profile for generation of the match statistic. A positive 
log(LR) was obtained when compared with the corresponding 
reference donor profile for all 30 pg samples tested, but negative 
log(LRs) were obtained for three of the five 10 pg samples (data 
not shown). An inspection of the electropherogram data for one 
of those 10 pg samples demonstrated the same phenomenon 
occurred as was described for the degraded samples: false homo­
zygotes, due to allelic dropout, caused a dramatic reduction in 
the probability value down to zero for a heterozygote allele pair 
at those loci (data not shown).

Mock Casework Mixture Samples: Two-person Mixtures

Two-person mixture samples were utilized to evaluate how 
well TA includes the true donors to the mixtures (the sensitivity) 
and excludes nondonors (the specificity). Mixture samples were 
chosen purposefully to define the limits of the TA system. The 
contributor proportions varied from equal to a very tiny (less 
than 10%) contribution of the minor contributor. Ail metrics for 
the TA analyses were considered as described in Materials and 
Methods. Only the TA analyses that were deemed ideal or 
acceptable were utilized to assess genotype concordance between 
independent runs.

Eighteen two-person mixture samples (Mix2„l-Mix2_18) 
were analyzed with TrueAIIele® Casework and interrogated 
using 11 references profiles. The derived contributors from the 
mixture profiles were compared to the true donor references and 
nine nondonor reference profiles. The quality of the TrueAIIele® 
Casework analysis results was evaluated using the metrics as 
described in Table 1 and Materials and Methods. One require­
ment of the TrueAIIele® Casework review process is to assess 
the reproducibility; thus, results were compared between two or 
more independent analyses of the same mixture that were 
deemed acceptable: Deconvolved mixture weights for the 
derived .contributors were compared to ascertain whether or not 
they were similar in value, and genotype concordance for both 
contributors was assessed between analyses. A detailed descrip­
tion of the concordance for all two-person mixtures can be 
viewed in File S2.

The analyses of all of the eighteen two-person mixtures pro­
duced at least two ideal analyses. All analyses provided good or 
good/fair genotype concordance between the major contributors. 
Thirteen of the two-person mixture samples provided good or 
good/fair genotype concordance for the minor contributor. The 
minor contributor proportion of the mixture for the majority of 
those samples was greater than 15%, but less than 30%, so a 
clear distinction between the major and the minor contributors 
was possible. These samples also showed concordance for the 
other metrics, such as mixture weights and the iog(LRs).

Five samples provided a fair or fair/poor genotype concor­
dance for the minor contributor and for these samples, and the 
minor contributor proportion was less than 15%. Three of the 
five samples (Mix2_l, Mix2_3, and Mix2_7) failed to provide 
reproducible log(LR)’s for the minor contributor. However, 
Mix2„3 and Mix2„7 did provide consistent mixture weights for 
both the minor and major contributors. Mix2_l failed to yield a 
positive log(LR) for the minor contributor; however, upon exam­
ination of the electropherogram, only two small alleles at 
D3S1358 and TH01 (144 rfu and 92 rfu, respectively) were 
observed that were solely attributable to the minor contributor 
(Fig. 6), and thus, the negative log(LR) appears to be 
appropriate.
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FIG. 4— R elationship  betw een the num ber o f  a lleles above and  be low  the LO D , the sister  a llele n o t observed  a n d  the log(LR) (m atch statistic). Only sam ple  
S l l  is shown, a n d  a ll ana lyses depicted  w ere p e rfo n n ed  fo r  100K  cycles. The m axim um  log(LR) f o r  S l l  (m atch  probability) is 19.4927. A ll sam p les  were incu­
bated  f o r  3  m onths. K ey: 37C , 56C, a n d  8 0 C  ~  tem perature incubated  in degrees centigrade, U V  = ultra v iolet light exposure a t room  tem perature (RT).

It should be noted that the three samples lacking good log 
(LR) reproducibility for the minor contributor had one analysis 
performed at 25K and the other at 100K. Thus, additional runs 
at 50K or more may be merited to produce more consistent 
match statistics for the minor contributor. The two-person mix­
ture samples with a low-level minor contributor were decon­
volved with great accuracy in that no nondonors were falsely 
included. The minor contributors displayed more genotype 
uncertainty, as would be expected with such low-level propor­
tions.

Mixture Weight Accuracy

The accuracy with which TrueAIIele® Casework deconvolutes 
mixture weights for two-person mixtures was assessed. Figure 7 
displays a comparison between the targeted mixture weights of 
17 mixture samples based upon the quantitation data, the esti­
mated mixture weights assessed by manual calculation and the 
TrueAIIele® Casework deconvolved mixture weight derivations. 
An inspection of the graph reveals that the manual and TrueAI­
Iele Casework derived mixture weights were extremely similar, 
but somewhat different from the targeted mixture weights based 
upon the DNA quantitation data.

No manual calculation was performed for the Mix2_5 sample 
as no clear minor contributor could be identified. The TrueAI­
Iele® Casework mixture weight value for the minor contributor 
was far from the targeted mixture weight for Mix2„5 (49% vs. 
20%, respectively), but a review of the electropherogram data 
demonstrates that the TrueAIIele® Casework derived mixture 
weight was more accurate as it is clear that the mixture was 
very close to a 1:1 combination of the two components 
(Fig. 8). The Mix2„8 and Mix2„9 samples were dehydrated 
and not re-quantitated, so the DNA concentrations were 
unknown.

Three-person Mixture Samples

Fifteen three-person mixture samples (Mix3„l-Mix3_J5) were 
analyzed with TrueAIIele® Casework and interrogated using 11 
reference profiles; however, only ten of these mixtures were 
assessed for genotype concordance and reproducibility. The other 
five mixture samples were not repeatedly analyzed and thus were 
utilized solely for the specificity test. Detailed information about 
the samples can be found in File SI and detailed assessments of 
the TA analysis for each sample can be viewed in File S3. The 
reference profile population contained the three donors for each 
of the mixtures in addition to eight nondonors. The quality of the 
TrueAIIele® Casework analysis results was evaluated using the 
metrics as described in Materials and Methods.

The three-person mixtures present a far more complex analysis 
for either a human or the TrueAIIele® Casework process. The 
three-person mixtures utilized were challenging and purposefully 
chosen for this study to assess the limitation's of the TrueAIIele® 
Casework process. Given the complexity of the mixture samples, 
the 25K cycle number was abandoned and those analyses are 
not included in the File S3. In general, when all of the metrics 
provided values within the desired ranges, for example, Mix3_4 
(50K, 100K, and 100K2X runs), the concordance observed 
between runs was very good. Analyses that showed examples of 
the convergence value exceeding 1.2 were observed for all cycle 
numbers employed (50K, 100K, and 200K). This may indicate 
that longer sampling (more cycles) might be merited or it may 
be that the challenging nature of the mixture makes it recalci­
trant to an ideal resolution, even at a very high cycle number. 
While convergence values below 1.2 are ideal, many examples 
of concordant runs were observed with higher than ideal conver­
gence values.

Mix3„10 proved to be a challenging sample. Seven indepen­
dent analyses were initially performed, consisting of five 100K
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FIG. 5—PowerPlex®  16 System  typing data f o r  sam ple  S l l  incubated  a t 8 0 °C  (P anel A ) and  fo r  sam ple S l l  incubated  a t R T  with U V  exposure (P anel B). 
C ircled  p eaks  indicate loci where the sister  allele is m issing. The correct, he terozygous genotype is indicated  below  a n d  to the right o f  the peaks. P robability  
values ( “p ”)  f o r  the true geno types are  adjacent to the genotypes. A n arrow  p o in ts  to  tw o p ea ks  a t the D 21S11 locus tha t have p o o r  allele balance (89% ) and  
are both below  the LOD. A n arrow  po in ts  to D 7S820  w here both p ea ks  are below  the LOD. The m atch  sta tistic  is d isp layed  in the upper right-hand corner o f  
p a n e ls  (A) a n d  (B).

and two 200K runs. Only one of those seven provided an ideal 
analysis. Upon re-inspection of the electropherogram data, it was 
noted that a large spike at a size of approximately 399 bases 
was evident (data not shown). The allele calls associated with 
that spike were removed using the Request module of TrueAI­
Iele® Casework and the sample re-analyzed at 100K two times 
and once at 200K (“edited” appears in the name of the follow­
up analyses, File S3). One of the 100K analyses and the 200K 
analysis provided concordant results. It was noted that the two 
concordant runs with the spike removed provided larger match 
statistics for the three contiibutors than the single ideal analysis 
that included the spike. This result is consistent with an increase 
in genotype certainty once the spike was removed.

In nine of the ten three-person mixtures, all nondonors for 
every ideal or acceptable and even poor analysis were excluded 
(consistently provided negative log(LR) match statistics). 
Mix3„6 did display a small positive match statistic for a noncon­
tributor (S6; 3.057 times more likely {log(LR) 0,485}) for the 
under-sampled 50K analysis; however, this was rated a poor 
analysis prior to comparison with any reference samples and 
more importantly, this positive match statistic for comparison to

S6 was not reproducible. The two ideal analyses provided log 
(LRs) of -1.0538 and “ 1.0291, reproducibly providing no sta­
tistical support for inclusion of the nondonor, S6 (data not 
shown). An examination of the electropherogram data demon­
strates the selectivity of the TrueAIIele® Casework analysis pro­
cess as nearly every allele of reference S6 is shared with the 
Mix3_6 mixture profile (Fig. 9), yet no statistical support was 
generated for reference S6 as a contributor to the mixture.

Three-person Mixtures with an Assumed Known

The use of an assumed known for three-person mixtures was 
explored with respect to its effect on the TrueAIIele® Casework 
analysis process. Assumed knowns are frequently utilized in 
forensic DNA analysis and mixture de-convolution as some sam­
ples, such as intimate ones, might reasonably be expected to con­
tain DNA from the source of the sample (e.g., a vaginal swab 
would be expected to contain victim DNA). To demonstrate this 
effect, an assumed known was designated for one of the true 
donors for each of the seven-three-person mixtures selected for 
this demonstration. A minor contributing donor was chosen for
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h  Quant o f  input DNA 

B Manual calculation 

b  TrueAIIele derived

FIG. 7— A ccuracy  o f  m ixture w eight assessm ent by TrueAIIele® C asew ork fo r  the m inor contributor o f  tw o-person m ixture  samples. The "n” ranged  fro m  2 
to  9, w ith the  average  being  6 .4  loci f o r  m anua l m ixture  w eight estimates,

designation as an assumed known except for mixtures Mix3„3 
and Mix3_4, where the predominant donor was designated. 
Table 2 provides examples of the use of a correct (individual was

a donor to the mixture) and incorrect (individual was not a donor 
to the mixture) assignment of an assumed known. Mix3„4 and 
Mix3„8 were tested using assumed knowns that were actual
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FIG. 8—PowerPlex®  16 System  p ro file  o f  the M ix2 J}  tw o-person mixture.. L oci d isplaying fo u r  alle les nearly  equal in heigh t representing the 50:50  m ixture  
are circled.

donors and assumed knowns that were not donors to the mixtures. 
The log(LR) for an assumed known is the maximum value for that 
profile and is shown in bold.

In general, the use of a correct assumed known increased the 
match statistic for the remaining contributors and can increase the 
KL value (the information content of the derived contributors); 
however, for the Mix3„4, Mix3„6, and Mix3J7 samples, the log 
(LR) was only slightly changed. The impact of an assumed known 
is greater when teasing apart contributors similar in mixture 
weight or when applied to a minor contributor (pers. obs.). Decon­
volved contributor genotypes with little to no uncertainty typical 
of a major contributor demonstrate only marginal gain in match 
score as a result of assigning an assumed known.

The question of whether or not the software could be con­
fused by an operator error when assigned an assumed known 
was addressed by choosing a nondonor as an assumed known. 
An example of this is shown for samples Mix3„4 and Mix3_8. 
The impact on the log(LR) for the remaining minor contributors 
was a reduction in the value, but value for the predominant con­
tributor was relatively unaffected. The use of an incorrect 
assumed known did not result in the inclusion of noncontributors 
to the mixtures among the eleven reference profiles tested (data 
not shown) nor in the exclusion of true donors.

Four-person Mixture Samples

Seven four-person mixtures (Mix4„_l-Mix4„_7) were analyzed 
using the TrueAIIele® Casework system. Supplementary File 4 
provides a detailed summary of the results. Although the 25K 
cycle number analysis was initially performed for these complex

four contributor mixture profiles, 25K cycles were deemed insuf­
ficient and those analyses are not included in File S4. As with 
the three-person mixtures, the four-person mixtures required 
multiple analyses to produce reproducible and concordant 
results. Mix4_3 was a very challenging sample and eight inde­
pendent analyses were performed generating four ideal or accept­
able analyses. The concordance between the 100K2X, 200K, 
200K3X, and 200K4X analyses was good except for the match 
statistic produced for the nondonor, S4, which fluctuated around 
zero giving small negative (—0.0536 and —0.0104, 200K and 
200K4X, respectively) and small positive (0.686 and 0.0869, 
100K2X and 200K3X, respectively) log(LR)’s. An examination 
of the electropherogram for Mix4_3 demonstrated that as with 
the three-person mixture (Mix3„6), the nondonor shared nearly 
every allele with the mixture profile (data not shown). The 
match statistic for S4 was not reproducible among the four 
analyses utilized for genotype concordance.

Of the seven samples analyzed, six provided at least two ideal 
and concordant analyses. The analysis of one sample, Mix4_l, 
did not produce more than one ideal analysis of the seven per­
formed, so genotype concordance was not assessed. Two sam­
ples, Mix4_4 and Mix4_5, provided small yet reproducible 
negative log(LRs) for tfie most minor of the minor contributors. 
An examination of the electropherogram data provided an expla­
nation for this statistical result as the mixture displayed allele 
drop-out at three or more loci, peaks below the stochastic thresh­
old, masking of alleles, and alleles falling in tire stutter position 
which corresponded to the minor contributor, S8 (data not 
shown). Given the complexity of the four-person mixture sam­
ples, additional analyses would be merited for casework samples
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FIG. 9—M ix 3 j6  PowerPlex®  16  System  pro file . The p in k  dots a re  adjacent to  a llele calls that a re  consistent w ith  sam ple  S6. Tw o do ts  indicate that S 6  was 
hom ozygous f o r  the allele. The b lack circles a t the baseline encircle e ither a s tu tter a llele consistent w ith an allele fo r  S 6  a t that locus, o r  the position  at w hich  
S 6  w ould  have an a llele (i.e., n o  p ea k  was observed  in the M ix3_6  m ixture profile).

of similar intricacy; however, further testing was not conducted 
given that four contributor mixtures are not routinely interpreted 
at VDFS (18,19).

Specificity o f Differentiating Relatives

The ability of the TrueAIIele® Casework system to differenti­
ate between closely related people was tested. First-degree rela­
tives (“sons”) were manually synthesized for seven reference 
profiles. Six of the reference profiles for which “sons” were cre­
ated were donors to the mixture samples. Thus, it would not be 
unexpected to observe small positive match statistics for such 
close relatives. Only ideal or acceptable analyses of the two-, 
three-, and four-person mixtures were utilized for this test. The 
match statistic for all synthetic relatives was negative for the 
two-person mixtures (data not shown). Table 3 displays the log 
(LR) values generated for three- and four-person mixture analy­
ses which produced a positive match statistic when compared 
with the “sons”.

The analysis of three of the three-person and one of the four- 
person mixture samples produced derived contributors that

resulted in positive log(LRs) when compared to a synthetic son of 
a donor to the mixture. Mix3„7 and Mix3_8 displayed reproduc­
ible small positive match statistics for a “son” of SI. While, the 
match statistic for the “son” of SI was significantly lower than the 
match statistic for SI in Mix3„8, it was approximately the same as 
SI in Mix3_7. Reference SI is the most minor contributor in both 
mixtures and exhibited allelic dropout at several loci (data not 
shown). There was also a nonreproducible small log(LR) pro­
duced for a “son” of S8 in Mix3__10-ed, The analysis of one-four- 
person mixture sample, Mlx4_4, provided a positive match statis­
tic for a “son” of a donor to the mixture. The positive log(LR) for 
the “son” was very small (1.002-1.79 times more likely). It is 
interesting to note that the donor (father of the son) was the most 
minor contributor to Mix4„4 and a reproducible negative log(LR) 
was produced by the analysis of the sample.

When synthetic “brothers” of contributors to the same two-, 
three-, and four-person mixture samples were compared, only 
one sample, three-person mixture Mix3„2, displayed a positive 
match statistic for the “brother”. Only one analysis of Mix3„2 
(analyzed at 100K2X) displayed a small positive match score of 
1.0659 when the comparison to the synthetic brother of one of
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TABLE 2—The effect o f  an assum ed  known on the m atch  sta tistic  fo r  three  
con tribu tor m ixtures. A i l  sam ples were ana lyzed  a t  1 00K  cycles. The  

assum ed  knowtts u sed  f o r  Mi.x3_3 a n d  M ix3_4 w ere the m ost p redom inan t 
contributors, w hereas a  m in o r  con tribu tor  hwj utilized  f o r  a ll others. 'Hie 
m atch sta tistic  f o r  the a ssum ed  known (m axim um  value) is shown in bold. 
The corresponding m atch  sta tistic  f o r  the  sam e d onor when not selec ted  as  
an assum ed  known in a d ifferent analysis is italicized. The m atch statistics  

f o r  all three contributors are lis ted  in order  (e.g., S I ,  S5, S7) f o r  both  ana ly­
ses  (no  assum ed  known a n d  w ith an a ssum ed  known).

Mixture Sample
Assumed
Known

AK Donor to 
Mixture? Iog(LR)

Mix3 1 No . — 8.08, 10.41, 19.45
Yes Yes 16.33, 13.21, 19.49

Mix3 2 No - —0.75, 11.01, 12.13
Yes Yes 3.18, 20.96, 15.85

Mix3 3 No - 5.43, 10.73, 14.63
Yes Yes 10.47, 11.23, 19.49

Mix3 4 No - 6.42, 5.50, 19.49
Yes Yes 6.41, 5.96, 19.49
Yes No 4.6, 1.23, 19.49

Mix3 6 No - 2.93, 11.85, 19.47
Yes Yes 2.58, 20.96, 19.49

Mix3 7 No - 0.67, 3 .6 5 , 18.59
Yes Yes 1.44, 21,96, 18.6

Mix3 8 No ~ 4.13, 6.13, 17.57
Yes Yes 8.39, 21,96, 18.25
Yes No 2.03, 5.94, 17.69

AK, assumed known.

the donors was performed (data not shown). This was not repro­
ducible.

Specificity

The specificity of the TrueAIIele® Casework analysis process 
was more thoroughly addressed using 100 synthetic PowerPlex® 
16 reference profiles, kindly provided by Cybergenetics, to com­
pare with the derived contributors genotypes of two-, three-, and

four-person mixtures. Multiple analyses of eighteen two person, 
fourteen three-person and seven-four-person deconvolved mixture 
samples were utilized. Only ideal or acceptable TrueAIIele® Case­
work analyses were utilized. A total of 21,400 comparisons were 
performed for the derived contributors. No positive log(LR)s were 
produced for the comparisons performed for the two- and three- 
person derived contributors (data not shown). Of all of the derived 
contributors (214) for all of the analyses performed of the 39 total 
samples analyzed, only one provided a small (2.9 times more 
likely) and nonreproducible match statistic. Results for the most 
common match scores for the four-person mixtures are displayed 
in Fig. 10. The results of this test indicate that the TrueAIIele® 
Casework analysis process is highly specific, even for complex 
three- and four-person mixtures.

Conclusion
The TrueAIIele® Casework system accurately inferred problem­

atic single-source sample profiles and generated positive match sta­
tistics. Generally, the greater the number of loci with alleles above 
the limit of detection, the more discriminating the match statistic; 
however, exceptions were observed if the single-source profile con­
tained multiple false homozygotes. In those instances, a negative 
match statistic was observed due to a very low or zero probability 
being generated for the true heterozygote genotype at those loci. 
TrueAIIele® Casework analysis was demonstrated to take advantage 
of additional information not utilized in a traditional threshold based 
analysis, such as alleles below the LOD and assigned probability 
values greater than zero to the correct genotypes.

Two-person mixture samples were easily resolved with the 
TrueAIIele® Casework system with great specificity and discrim­
inating match statistics unless the minor contributor was less 
than a 10% contributor to the mixture. When the minor contribu­
tor provided only a very small proportion of the DNA in the 
mixture, the match statistic reflected that weak contribution with

TABLE 3— Three a n d  fo u r-p erso n  m ixture sam ples which p ro v id ed  positive  m atch sco res  f o r  synthetic sons. D ark gray  f i l l  and  b o lded  num ber indicates the  
m atch statistic  f o r  the d o n o r included in the m ixture (highest value genera ted  f o r  the com parison  with the reference sam ple). L ight g ray  f i l l  a n d  ita licized n u m ­

ber indicates a  positive  m atch  statistic  f o r  a  "so n "  o f  a donor to the mixture. S I S  11 refers to sam ple  nam e. N o t show n are the results f o r  com parisons to
"b ro th ers” o f  the donors to the mixtures.

SI Sl„son S4 S4„son S5 S5_son S6 S8 S8„son S10

3 person mixtures 
. Mix3 7 100K2X ! L 0.668 -0.150 -9.323 -9.015 -5.840 -6.054 -9.515 3.387 -3.195 -8.424

Mix3 7 100K2X -24.490 -26.157 -23.057 -25.163 pi539Q -26.413 -26,890 -23.428 -26.870 -26.725
Mix3 7 100K2X 0.468 1.342 -9.659 -8.628 -5.851 -5.950 -10.009 r 3.647 -2,853 -6.734
Mix3 7 200K 1.404 0.791 -9.070 -8.012 -5.728 -5.712 -10.560 3.672 -2.743 -8.496
Mix3 7 200K 0.945 0.140 -9.410 -8.636 -5.775 -5.330 -9.748 3.605 -2.641 -8.203
Mix3 7 200K -24.490 -26.188 -23.717 -25.835 i 18.588 -27.073 -26.565 -23.299 -26.878 -26.380
Mix3 8 100K2X r ::4.i29 0.234 -10.648 -8.149 -3.554 -5,224 -7.045 £16.126 -0.338 -6.790
Mix3 8 100K2X -21.2 i4 -21.625 -21.935 -17.852 I 17.573 -22.281 -25.652 -18.319 -21.712 -24.039
Mix3 8 100K2X 3.090 0.199 -8.567 -5.418 -4.499 -4.756 -6.088 5.033 -0.773 -7.022
Mix3 8 100K3X 3.341 0.182 -10.585 -7.533 -2,875 -5.385 -7.209 5.975 -0.538 -6.687
Mix3 8 I00K2X 3.864 0.818 -11,299 -7.934 -0.678 -4.045 -8.987 1 6.399 -0.840 -7.254
Mix3 8 W0K2X -20.640 -18.904 -21.404 -16.901 ' m m -20.465 -25.347 -15.784 -19.532 -21.679
Mix3 10-ed 100K 0.906 -3.998 -18.764 -8.834 4.753 -5.347 -12.771 9.551 -0.223 -9.649
Mix3 10-ed I00K -6.701 -8.054 -23.744 -13.919 6.636 -11.562 -19.780 | 10;552 -4,562 -11.529
Mix3„10-ed I00K 1 5.904 -1.487 -15.747 -9.026 2.377 -3.790 -10.635 6,174 0.936 -8.448

4 person mixtures 
Mix4 4 100K2X -24.400 -24,337 -30 -30 -27.073 -27.073 -19.002 -27.145 -20.593 ' 17.159
Mix4 4 100K2X -8.983 -7.388 L585 -6.232 -8.339 -5.727 2.539 -1.886 -0.111 -4.441
Mix4 4 100K2X -8.285 -6.954 1.453 -6.981 -6.680 -6.364 2.859 -2.674 0.001 -4.439
Mix4 4 100K2X -10.065 -7.549 1 1.705 -6.665 -7,805 -5.116 j 3.099 1 i: 1.73S -0.101 -4.475
Mix4 4 100K4X -24.297 -24.337 -3 0 -30 -27,073 -27.073 -21.493 • 27.145 -20.490 I 17.262
Mix4 4 100K4X -8.128 -7.071 i , 1.446 -7.189 -7.101 -5.990 2,530 -2,511 0.124 -4.550
Mix4 4 100K4X -8.005 -6.789 1.376 -6,610 -8.198 -5.380 2,535 -1.998 -0.135 -5.003
Mix4 4 LOOK4X -8.390 -7.476 1.314 -6.363 -7.079 -4.944 j 3.170 1 -1.680 0.252 -4.383



GREENSPOON ET AL. .  ESTABLISHING THE LIMITS OF TRUEALLELE® CASEWORK 1 2 7 5

Maximum log(LR) Values for Non-donors

Fig. 10— M axim um  log(L R ) values obta ined  by com parison o f  the  derived  contributors f o r  the fou r-p erso n  m ixture sam ples to  100 syn thetic  p ro files  (non ­
donors). Each ba r  represen ts  a d erived  contributor o f  the four-person  m ixture sam ples. O nly one derived  contributor f o r  m ixture M ix4_3  (arrow ) p rovided  a  
positive  log(LR).

uncertainty resulting in lower match statistics. Of the eighteen 
samples, only Mix2„l provided a negative match statistic for the 
minor contributor. An inspection of the electropherogram dem­
onstrated that only two very small alleles were solely attributable 
to the minor contributor. All nondonors to the mixtures were 
definitively excluded (generated negative log(LR) values).

TrueAIIele® Casework accurately assessed the mixture weights 
for two-person mixtures. When compared with the estimated mix­
ture weights based upon DNA quantitation and template input quan­
tities, TrueAIIele® Casework provided a more accurate estimate 
based on an evaluation of the electropherogram data, comparable to 
the manually measured values calculated using peak heights.

TJiree- and four-person mixtures greatly increased the com­
plexity and the genotype uncertainty of the analysis which was 
reflected in the match statistics for the minor contributors. For 
the 10 three-person mixture samples repeatedly analyzed using 
the TrueAIIele® Casework process, none of the runs used for 
concordance provided a positive match statistic for a nondonor 
to the mixture. One sample (Mix3_6) provided a small (3.057 
times more likely) match statistic for a nondonor, but it was not 
reproducible and only observed in a nonideal analysis (50K); 
thus, it could safely be excluded when drawing conclusions 
based on ideal inns for that sample. An inspection of the electro­
pherogram demonstrated that the aforementioned nondonor 
shared nearly every allele with the mixture profile; therefore, the 
successful exclusion of the nondonor provides evidence support­
ing the specificity of the TrueAIIele® Casework analysis process. 
One sample, Mix3_10, appeared recalcitrant to obtaining repro­
ducible analyses. However, upon re-inspection of the electrophe­
rogram data, a large polymer spike was evident and once the 
allele information associated with that spike was deleted, addi­
tional ideal analyses were obtained with higher match statistics 
for the contributors, reflecting an increase in genotype certainty 
once tire spike was removed.

Of the seven-four-person mixture samples repeatedly analyzed 
by the TrueAIIele® Casework process, only one sample, 
Mix4„3, provided small, but nonreproducible positive match

statistics for a nondonor. Ideal analyses at 100K and 200K 
(100K2X, 200K, 200K3X, and 200K4X) provided both positive 
and negative log(LRs) hovering around an uninformative log 
(LR) of zero for the nondonor. As with the Mix3„6 three-person 
mixture discussed above, the nondonor shared nearly every allele 
at all loci with the mixture profile and thus not unexpectedly, 
provided a difficult challenge for the TrueAIIele® Casework 
analysis process. Analysis of two of the four-person mixture 
samples, Mix4„4 and Mix4_5, produced small, but reproducible 
negative log(LRs) for the most minor contributor. An inspection 
of the electropherogram data provided a reason for these exclu­
sions as the donor displayed allelic dropout at multiple loci, 
masking of alleles, alleles in the stutter position, and alleles 
below the stochastic threshold. This demonstrates that TmeAl­
lele® Casework analysis process requires sufficient evidential 
support for a hue donor to derive a positive match statistic.

The use of an assumed known was explored with respect to 
its effect on the TrueAIIele® Casework analysis process. Gener­
ally, the use of a correct assumed known, especially for a minor 
contributor, increased the match statistic for the remaining con­
tributors by one or more bans and strengthened the KL value for 
the derived contributors; however, for some samples, the match 
statistic remained little altered. The use of an incorrect assumed 
known did reduce the match statistic for the hue donors; how­
ever, it did not result in the inclusion of nondonors to the mix­
tures among the eleven reference profiles tested. Only a small 
study was conducted as it is unlikely that a nondonor would be 
selected as an assumed known.

Two person, three-person and four-person mixture runs were 
used to assess the ability of the TrueAIIele® Casework system to 
differentiate between closely related people. First-degree relatives 
(“sons”) were successfully excluded for all 35 mixture samples 
tested except for three-three-person and one-four-person mix­
tures. The positive match statistic for the “son” of a donor for 
two of the three-person mixtures was reproducible and small. 
The third example of a positive match statistic for a “son” of a 
donor to a three-person mixture was not reproducible. One
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four-person mixture sample (Mix4_4) provided a positive match 
statistic for a “son” of a donor to the mixture; however, the LR 
was not reproducible and was small. When synthetic “brothers” 
were compared with the same two-, three-, and four-person mix­
ture samples analyzed by the TrueAIIele® Casework system, 
only a single analysis of one sample (Mix3_2), a three-person 
mixture, provided a small positive match statistic when com­
pared to a “brother” of one of the donors to the mixture. That 
result was not reproducible. The potential for rendering a rela­
tively small positive match statistic for a first degree relative of 
a contributor to a complex mixture is to be expected.

The specificity of the TrueAIIele® Casework analysis process 
was tested using 100 synthetic PowerPlex® 16 reference profiles 
which were compared to the derived contributors of two-, three-, 
and four-person mixtures. Of the 214 derived contributors from 
the analyses performed, 21,400 comparisons were completed. 
Only one provided a very small and nonreproducible match statis­
tic, indicating that the TrueAIIele® Casework analysis process is 
highly specific, even for complex three- and four-person mixtures.

The TrueAIIele® Casework process has been demonstrated to 
be sensitive and specific in its ability to include true donors and 
exclude or find no statistical support for nondonors. STR data 
displaying a great deal of allelic dropout and false homozygotes 
may produce a negative match statistic when compared to a tme 
donor. This typically reflects the weakness of the profile and the 
conservativeness of the TrueAIIele® Casework process.

Based upon this body of work and extensive training, the 
VDFS has implemented the use of TA in selected cases begin­
ning in 2014. An inconclusive log(LR) range of ±1 log unit 
(ban) has been established for casework analysis based on the 
specificity studies. Interestingly, a small number of cases where 
the human review of a mixture sample resulted in a finding of 
inconclusive with regard to the person of interest were also ana­
lyzed by TA and the match scores supported that finding (L. 
Schiermeier-Wood, pers. obs., 26), While the VDFS does not 
routinely interpret complex mixtures in which there is evidence 
supporting four or more donors, the analysis of four-person mix­
tures is not precluded. The studies reported herein demonstrate 
that even with complex four-person mixtures, TA is capable of 
performing an accurate, sensitive, and specific analysis.

Acknowledgments

The authors greatly appreciate helpful comments and guidance 
provided by Dr. Mark Perlin, Matthew Legler, and William 
Allan of Cybergenetics.

References
1. Clayton TM, Whitaker JP, Sparkes R, Gill P. Analysis and interpretation 

of mixed forensic stains using DNA STR profiling. Forensic Sci Int 
1998;91:55-70.

2. SWGDAM, Interpretation guidelines for autosomal STR typing by foren­
sic DNA testing laboratories, 2010. http://swgdam.org/Interpreta- 
tion_GutdeIines_January_2010.pdf (accessed June 12, 2014).

3. Gill P, Brenner CH, Buckleton JS, Carracedo A, Krawczak M, Mayr 
WR, et al. DNA commission of the International Society of Forensic 
Genetics: recommendations on the interpretation of mixtures. Forensic 
Sci Int Genet 2006;160:90-101.

4. Gill P, Buckleton J. A universal strategy to interpret DNA profiles that 
does not require a definition of low-copy-number. Forensic Sci Int Genet 
2009 ;4(4):221-7.

5. httpyAvivw.fbi.gov/about-iJs/lab/biometric-analysis/codis/swgdain.pdf (accessed 
May 21, 2014).

6. http://www.nichevision.com/index.php/forensics/amiedxpert (accessed 
May 21, 2014).

7. http://stnnix.com (accessed May 21, 2014).
8. Perlin MW, Szabady B, Linear mixture analysis: a mathematical 

approach to resolving mixed DNA samples. J Forensic Sci 
2001;46:1372-7.

9. Perlin MW, Legler MM, Spencer CE, Smith JL, Allan WP, Bellrose JL, 
et ai. Validating TrueAIIele® DNA mixture interpretation. J Forensic Sci 
2011;56:1430-47.

10. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. 
Equation of state calculations by fast computing machines. J Chem Phys 
1953;21(6):1087-92.

11. Richey M, The evolution of Markov chain Monte Carlo methods. Am 
Math Mon 2010;I17:383^U3.

12. Poirer DJ. The growth of Bayesian methods in statistics and economics 
since 1970, Bayesian Anal 20Q6;l(4):969-80.

13. Gelfand AE, Smith AFM. Sampling-based approaches to calculating mar­
ginal densities. J Am Stat Assoc 1990;85:398-409.

14. Gill P, Haned H. A new methodological framework to interpret complex 
DNA profiles using likelihood ratios. Forensic Sci Int Genet 2013;7
(2) :251-63.

15. Perlin MW, Belrose JL, Duceman BW. New York State TrueAIIele® 
Casework validation study. J Forensic Sci 2013;58(6): 1451L-66.

16. Taylor D, Bright J, Buckleton J. The interpretation of single source and 
mixed DNA profiles. Forensic Sci Int Genet 2013;7:516-28.

17. Curran J. A MCMC method for resolving two person mixtures. Sci Jus­
tice 2098;48(4): 168-77.

18. Perlin MW, SinelnikOv A. An information gap in DNA evidence inter­
pretation. PLoS ONE 2009;4:e8327,

19. http://www.dfs.virginia.gov/wp-content/uploads/2013/07/210-D1100-Foiensic- 
BioIogy-Section-Procedures-Manual-Section-III.pdf (accessed May, 21, 
2014).

20. httpy/www.dfs.viigJnia.gov/wp-content/uploads/2013/07/210-Dl 100-Forensic- 
Biology-Section-Procedures-Manual-Section-Vin.pdf (accessed May 21, 
2014).

21. Perlin M. Explaining the likelihood ratio in DNA mixture interpretation. 
Proceedings of the Twenty-First International Symposium on Human 
Identification; 2010 Oct 11-14; San Antonio, TX. Madison, WI: Promega 
Corporation, 2010.

22. TrueAIIele® VUIer™ manuals (analyze, data, request, review and report 
modules). Pittsburgh, PA: Cybergenetics.

23. Gelman A, Rubin DB. Inference from iterative simulation using multiple 
sequences. Stat Sci 1992;7(4):457--51 L

24. Kuliback S, Leibler RA. On information and sufficiency. Ann Math Stat 
195 l;22(l):79-86.

25. http://www.dfs.virginia.gov/wp-content/uplGads/2013/07/210-D1100-Forensic- 
Biology-Section-Procedures-Manual-Familial DNA Testing.pdf (accessed 
May 21, 2014).

26. Perlin MW, Dormer K, Hornyak J, Schiermeier-Wood L, Greenspoon S. 
TrueAIIele casework on Virginia DNA mixture evidence: computer and 
manual interpretation in 72 reported criminal cases. PLoS ONE 2014;9
(3) :e92837.

Additional information and reprint requests:
Susan A. Greenspoon, Ph.D.
Virginia Department of Forensic Sciertce
700 N. 5th St.
Richmond, VA 23219, USA
E-mail: susan.greenspoon@dfs.virginia.gov

Supporting Information

Additional Supporting Information may be found in the online 
version of this article:

File SI. Table listing all of the samples used for testing the 
TrueAIIele® Casework software program except for the syntheti­
cally created profiles obtained from Cybergenetics (100 profiles 
uploaded to the system as text files).

File S2. Two person mixture results.
File S3. Three person mixtures.
File S4. Four person mixtures.

http://swgdam.org/Interpreta-tion_GutdeIines_January_2010.pdf
http://swgdam.org/Interpreta-tion_GutdeIines_January_2010.pdf
http://www.nichevision.com/index.php/forensics/amiedxpert
http://stnnix.com
http://www.dfs.virginia.gov/wp-content/uploads/2013/07/210-D1100-Foiensic-BioIogy-Section-Procedures-Manual-Section-III.pdf
http://www.dfs.virginia.gov/wp-content/uploads/2013/07/210-D1100-Foiensic-BioIogy-Section-Procedures-Manual-Section-III.pdf
http://www.dfs.viigJnia.gov/wp-content/uploads/2013/07/210-Dl
http://www.dfs.virginia.gov/wp-content/uplGads/2013/07/210-D1100-Forensic-Biology-Section-Procedures-Manual-Familial
http://www.dfs.virginia.gov/wp-content/uplGads/2013/07/210-D1100-Forensic-Biology-Section-Procedures-Manual-Familial
mailto:susan.greenspoon@dfs.virginia.gov


EXHIBIT 7



OPEN Q  ACCESS Freely available online ■ .(© 'P L O S  | ° «

TrueAIIele Casework on Virginia DNA Mixture Evidence: 
Computer and Manual Interpretation in 72 Reported 
Criminal Cases
Mark W. Perlin1*/ Kiersten Dormer1, Jennifer Hornyak1, Lisa Schiermeier-Wood2, Susan Greenspoon2
1 Cybergenetics, Pittsburgh, Pennsylvania, United States of America, 2 Department of Forensic Science, Richmond, Virginia, United States of America

Abstract
Mixtures are a commonly encountered form o f biological evidence that contain DNA from two or more contributors. 
Laboratory analysis o f mixtures produces data signals that usually cannot be separated into distinct contributor genotypes. 
Computer modeling can resolve the genotypes up to probability, reflecting the uncertainty inherent in the data. Human 
analysts address the problem by simplifying the quantitative data in a threshold process that discards considerable 
identification information. Elevated stochastic threshold levels potentially discard more information. This study examines 
three different mixture interpretation methods. In 72 criminal cases, 111 genotype comparisons were made between 92 
mixture items and relevant reference samples. TrueAIIele computer modeling was done on ail the evidence samples, and 
documented in DNA match reports that were provided as evidence for each case. Threshold-based Combined Probability of 
Inclusion (CPI) and stochastically modified CPI (mCPi) analyses were performed as well. TrueAllele's identification 
information in 101 positive matches was used to assess the reliability o f its modeling approach. Comparison was made with 
81 CPI and 53 mCPI DNA match statistics that were manually derived from the same data. There were statistically significant 
differences between the DNA interpretation methods. TrueAIIele gave an average match statistic of 113 billion, CPI 
averaged 6.68 million, and mCPi averaged 140. The computer was highly specific, with a false positive rate under 0.005%. 
The modeling approach was precise, having a factor o f two within-group standard deviation. TrueAIIele accuracy was 
indicated by having uniformly distributed match statistics over the data set. The computer could make genotype 
comparisons that were impossible or impractical using manual methods. TrueAIIele computer interpretation of DNA mixture 
evidence is sensitive, specific, precise, accurate and more informative than manual interpretation alternatives. It can 
determine DNA match statistics when threshold-based methods cannot, improved forensic science computation can affect 
criminal cases by providing reliable scientific evidence.
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Introduction

DNA analysis is the forensic gold standard in human 
identification [I]. By deriving a genotype from minute amounts 
of biological material [2], scientists can help identify individuals 
connected to a crime scene.

With increased societal expectations [3], crime laboratories now 
process more challenging DNA evidence. Such samples are 
typically mixtures of two or more individuals, with DNA that 
may be damaged, degraded or present in small amounts [4]. DNA 
from one person expresses only one or two alleles at a genetic 
locus, and so is readily genotyped by visual inspection. Mixture 
data, however, may present multiple genotype alternatives that 
complicate interpretation.

Human analysts may simplify short tandem repeat (STR) [5] 
interpretation by applying a threshold that reduces quantitative 
data into all-or-none events [6]. This approach works well with

single source samples that contain only one genotype. But Mth 
mixtures, thresholds discard the quantitative contributions of each 
genotype, along with the peak height pattern. Threshold-based 
methods can reduce identification information, render probative 
data "inconclusive”, and potentially infer an incorrect genotype
VI

An “analytical” threshold helps human analysts distinguish 
between allelic data peaks and baseline instrument noise. The 
Combined Probability of Inclusion (CPI) mixture interpretation 
method first applies this analytical threshold to decide which peaks 
at a locus are sufficiently tali to be considered alleles. If a reference 
individual’s alleles are included in this set of mixture alleles, then 
CPI uses all the alleles in the mixture set to calculate a match 
statistic (the inclusion probability) as the square of the sum of the 
allele frequencies. (Allele determination can be viewed as a 
separate human interpretation step that precedes the CPI 
statistical calculation step. For clarity in this paper, we consider

PLOS ONE | www.plosone.org 1 March 2014 | Volume 9 [ Issue 3 | e92837

http://www.plosone.org


Computer and Manual DNA Mixture interpretation

the entire data analysis procedure to comprise the CPI interpre­
tation method). The method does not make assumptions about the 
number of contributors.

There is naturally occurring random variation in the polymer­
ase chain reaction (PCR) [8]. Therefore, repeat amplifications of 
the same DNA template quantity will produce varying peak 
heights. A pair of heterozygote sister alleles may express one taller 
peak, along with a considerably shorter peak, thereby creating a 
situation where the heterozygote could be misinterpreted as a 
homozygote. The analytical threshold does not address this 
situation [9].

In 2010, the United States Scientific Working Group on DNA 
Analysis Methods (SWGDAM) published guidelines to help 
resolve such mixture genotyping issues [10]. For manual mixture 
review, these new  SWGDAM guidelines introduced a higher 
“stochastic” threshold for use in a modified CPI (mCPi) mixture 
interpretation method. After determining locus alleles using the 
analytical threshold, and establishing that an individual is 
included, the more stringent mCPi method additionally requires 
that every allele over the analytical threshold must also reach the 
stochastic threshold; otherwise the locus cannot be used in the 
mCPi match statistic. The taller peak height requirement 
addresses genotype errors by statistically removing ambiguous 
locus situations where a peak resides in a third state, between the 
analytical and stochastic thresholds. However, mCPi can discard 
potentially useful identification data, which lowers match statistics 
and reclassifies previously inteipretable mixtures as “inconclu­
sive”.

The Virginia Department of Forensic Science (DFS) imple­
mented the new SWGDAM mixture inteipretation guidelines, and 
reviewed their DNA evidence using stochastic thresholds. In 2011, 
DFS identified 375 criminal cases in which their stochastic 
threshold method had produced an inconclusive result or a less 
informative match statistic [11]. Interested in preserving more 
identification information, DFS employed a provision in the 
SWGDAM guidelines (paragraph 3.2.2) that allowed use of a

validated “probabilistic genotyping” computer inteipretation 
method [10].

Mathematical modeling can account for quantitative STR data 
patterns [12]. Combining different amounts of contributor 
genotypes, along with other variables, produces allele patterns 
that can be compared with STR data peaks [13]. Incorporating 
probability into the equations allows a computer to assess the 
relative likelihood of alternative solutions [14,15]. The result is a 
genotype probability distribution that is objectively derived from 
the data, independent of known comparison genotypes. Subse­
quent comparison of this evidence genotype with a reference 
genotype, relative to a human population, produces a DNA match 
statistic that measures identification information. By using all of 
the quantitative DNA mixture data, and thoroughly considering 
all feasible genotype alternatives, computer modeling can preserve 
more identification information than manual review [7].

DFS pursued a probabilistic genotyping approach for their 
DNA mixture evidence. They arranged for Cybergenetics 
(Pittsburgh, PA) to apply their validated TrueAIIele Casework 
system to DNA mixture evidence in 144 cases. Cybergenetics 
produced DNA match reports on 92 evidence items in 72 cases. 
This is the largest data set on which case reports have been 
generated for probabilistic genotyping of DNA mixture evidence.

This study describes the results of computer-based probabilistic 
genotyping mixture interpretation on 101 reported matches, out of 
111 genotype comparisons. (A DNA match is defined here 
operationally as a comparison between an evidence and reference 
genotype, relative to a population, that gives a reproducible 
positive match statistic). The 10 comparisons that did not produce 
a match are also characterized. The study compares the 
computer’s information yield with two methods of manual 
interpretation on the same evidence items. Previous TrueAIIele 
Casework validation studies have been published on samples of 
known composition [13,16], as well as on actual casework items 
[7,17]. This observational study was performed on casework items.

Table 1. Distinguishing features o f three different DNA mixture interpretation methods.

T ru e A fle le C P I m C P i

Peak data Approach quantitative qualitative qualitative T f

Scale continuous binary ternary

Height

Pattern used

Threshold analytical analytical and stochastic

Genotype Inference probability model data above analytical 
threshold

data above analytical 
threshold

■ Representation ailele pairs -TV: alleles alleles

Operation automated manual manual

Inclusion statistical a l l e l e s : al fetes. / . ' ■ ;  ■;;;

Contributor number assumed

Statistic Comparison with genotype with alleles with alleles

Locus all inclusion stochastic inclusion

Calculation : likelihood ratio ■T inclusion probability : inclusion probability

Application include, exclude or 
inconclusive

include include

V: Identification v-T information : ■ -.7 Inclusion inclusion

Attributes involving STR data usage, genotype inference and match statistic calculation are shown for the TrueAllefe, CPi and mCPi methods. 
doi:l0.1371/journal.pone.0092837.t001
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A companion study has been performed using laboratory 
synthesized mixtures [18].

The present study compares three interpretation methods for 
analyzing DNA mixtures from actual casework, specifically, the 
automated TrueAIIele Casework computer system, with the 
traditional CPI and updated mCPi manual threshold-based 
methods [19]. The manual methods involve determining and 
applying a threshold for binary or ternary peak classification, 
whereas the automated approach uses continuous peak quantities 
without a threshold (Table 1). The study hypothesizes that the 
automated system will be more statistically powerful, precisely 
because it uses more of the data that manual methods discard. If 
this hypothesis is correct, the automated system should generally 
reach the same conclusions but infer more powerful match 
statistics, and resolve cases that the manual methods do not.

The paper begins by describing three methods of DNA mixture 
interpretation, one automated and two done manually. We then 
present the case materials used and the inteipretation procedures 
employed. We examine the TrueAIIele automation method’s 
reliability, using its inferred match statistics to assess how sensitive, 
specific, precise and accurate it is. (In Forensic Science, “sensitive” 
and “specific” describe the reliability of analytical instrumentation. 
With DNA interpretation methods, they can similarly describe the 
respective degree of positive or negative identification). We 
compare how well TrueAIIele, CPI and mCPi preserve identifi­
cation information relative to one another, as measured by their 
match statistics. We conclude by observing that computer-based 
DNA mixture interpretation can provide an improvement over 
current manual forensic processes.

Methods

The DNA samples used in this study were lawfully obtained by 
DFS in accordance with Virginia code Section 9.1-1101. All 
personal identifiers were removed from DNA data prior to 
computer inteipretation. The submitted scientific manuscript

Figure 1. Mixture data. Quantitative DNA mixture data are shown at 
the Renta E STR locus. The x-axis measures allele fragment size (bp), and 
the y-axis measures DNA quantity (RFU); a boxed peak number denotes 
allele length. The two contributor mixture is formed from a 7,14 major 
genotype and a 10,12 minor genotype. The result is a pattern of peak 
heights that reflect the underlying genotypes. 
doi:l0.1371/journa!.pone.0092837.g001

Figure 2. Genotype modeling. Linear combinations of genotype 
alieie pairs can explain the observed quantitative mixture data. Here, a 
major 7,14 contributor (blue bars) having twice the DNA as a minor 
10,12 contributor (green bars) explains the data well, with a high 
likelihood value. Alternative genotype choices or combinations would 
not explain the data as well, and thus have lower likelihood, 
doi:10.1371/journaf.pone.0092837.g002

contains only summary statistics, and discloses no personal or 
case information.

The DNA mixture interpretation process begins with electronic 
data signals. These signals are examined to form genotypes. 
Comparison of an evidence genotype with a reference genotype, 
relative to a population, can then produce a DNA match statistic.

STR M ixture Data
A STR locus is a length polymorphism, where alleles have 

different numbers of short DNA units (typically four or five base 
pairs) that are repeated in tandem [5]. When a polymorphic locus 
has 15 or more alleles, it provides over a hundred possible 
genotype values. This genetic variation is useful for distinguishing 
between people in a population. For example, the Penta E locus 
on chromosome 15 contains the five base pair repeat unit 
(AAAGA)n, with n ~ 5 , 6, ..., 24; these 20 alleles permit 210 
distinct allele pairs. (Given n alleles, there are n(n+l)/2 possible 
unordered allele pairings, with n homozygotes and n(n-l)/2  
heterozygotes. With n “  20, there are 20-21/2, or 210 genotype 
values).

Following DNA extraction and quantification, STR analysis 
proceeds in two steps. First, PCR amplification with a set of 
fluorescendy labeled primers creates millions of allele copies from 
the DNA template. Random variation in a 31 cycle PCR process 
[19] produces natural variation in the quantities of amplified 
alleles [20]. Second, the allele amplicons are size-separated by 
capillary electrophoresis, with laser detection of DNA quantity 
measured in relative fluorescent units (RFU). The amplified allele 
size and quantity signals are recorded as peaks in an electrophe­
rogram (EPG), and saved into a fragment size analysis (.fsa) data 
file.

Penta E is one of 15 STR loci in the Promega PowerPlex 16 
multiplex kit [21]. The example EPG data at this locus show a 
pattern of allelic peaks, where the x-axis (molecular size) 
corresponds to the allele’s number of repeats and the y-axis 
(RFU height) relates to allele quantity (Figure 1). The data have
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F ig u re  3. A n a ly t ic a l th re s h o ld .  The purpose of this threshold is to 
distinguish aiSeiic signal from background noise. Applying the threshold 
(red line) reduces the quantitative peaks to afi-or-none putative allele 
events (blue bars). The analytical threshold operation eliminates 
individual peak heights, as well as their collective pattern. 
doi:10.1371/journai.pone,0092837.g003

two tall peaks for alleles 7 and 14 with heights around 600 RFU, 
and two shorter peaks at alleles 10 and 12 of height 300 RFU.

Three In te rpre ta tion  M ethods
STR mixture data can be interpreted in different ways, giving 

rise to different DNA match statistics. Table 1 lists the features of 
three such methods -  the quantitative computer-based TrueAIIele 
approach, as ’well as the two qualitative human review methods 
CPI and mCPi. TrueAIIele uses all the peak height data on a 
continuous RFU scale, examining the entire peak pattern to make 
inferences. Applying an analytical RFU threshold, CPI reduces the 
peak height quantities to two binary states (allele or not), while 
mCPi additionally applies a higher stochastic threshold to develop 
a third state (uncertain).

600r

500-

400-

Cl 300)- nr

200 -

100-

#■ Mn

Stochastic threshold
5f T

_ i La J i
384 394 404 414

Size (bp)
424 434

F ig u re  4. S to c h a s tic  th re s h o ld .  A higher threshold level (red line) is 
used in manual review to address random peak variation by 
differentiating more certain (blue bars) from less certain peaks. The 
stochastic threshold removes more STR foci from statistical consider­
ation, which makes less use of the available data. 
dot:10.1371/journal.pone.0092837.g004

PLOS ONE | www.plosone.org 4 March 2014 | Volume 9 | issue 3 | e92837

http://www.plosone.org


Computer and Manual DNA Mixture Interpretation

Table 3. The range o f biological sample types that were 
found in the 92 evidence items is shown.

Sample type Count

blood 10 a v : :A /; :a t a a a

epithelial/skin 30

fingernails .oYA.v.- T ::VT.:2 :,VA. i H
hair 1
saliva.

semen 3

Stain a ATt  .i:L;.V:.L.;v:-,v:;:L.:L.A:

touch 41

For each sample type, the table records how frequently that type was seen. 
doi:10.1371/joumal,pone.0092837,t003

TrueAIIele infers genotypes with a probability model that uses a 
computer to automatically propose peak patterns, and assess how 
well they explain the quantitative data (Table 1, Genotype). The 
manual methods infer alleles based on events above a predeter­
mined analytical threshold RFU level, and then assess inclusion. 
Because TrueAIIele separates out the genotypes contributing to a 
mixture, it can compare evidence genotypes (as probability 
distributions) -with reference genotypes. CPI and mCPi reduce 
peak height data to “alleles” instead of separating out genotypes, 
and so compare reference genotypes rvith evidence data features 
instead of with inferred genotypes.

TrueAllele’s inferred (probabilistic) genotypes can be entered 
into standard formulae to calculate a likelihood ratio (LR) (Table 1, 
Statistic). This LR result can give weight to inclusion or exclusion, 
and so all loci are used in the match statistic [22]. CPI and mCPi 
first establish an inclusion based on the analytical threshold; loci 
that do not support an inclusion are not assigned a probability of 
inclusion. The mCPi statistical calculation will not use a locus that 
has an uncertain allele whose peak height lies between the 
analytical and stochastic thresholds.

TrueAIIele Genotype Modeling
Many variables are considered in genotype modeling, such as 

the genotypes of each contributor. at every locus, the mixture 
weights (that sum to 1) of the contributors, the DNA template

Table 4. The first three rows estimate for each number of 
contributors (first column) how many mixture items (second 
column) had that contributor number.

Contributors Items

Estimate CVAAY/?.:.-.: 40

3 65

4 bJ.y a .v

Overlap 2 or 3 16

3 or 4 3 A A ;

2, 3 or 4 1

When an item was consistent with more than one contributor number 
possibility, that item appears in multiple categories. The last three rows 
examine overlap situations where the number of contributors (first column) was 
uncertain, and counts the number of items (second column) in those situations. 
doi:10,1371/journa!.pone.0092837.t004

Table 5. The frequency distribution of mixture weights as 
inferred by the computer is shown for the matched 
genotypes.

M ixture W eight Count

3

0.15 13

0.25 j .A A A  Av-.5 :yA

0.35 12
Q .4 5 .:A A V .A ;';A ^ 18

0.55 12
0.65.;:':A-;A;\Y:AAYAAY:A;Ay.;Y/ A AAYAa A.YA:^
0.75 12
0.85 : .̂ 2 i :;
0.95 4

The binning is done by decile, with each row showing the center of its mixture 
weight range, along with the number of genotypes in that bin. 
doi:10.1371/journal,pone.0092837.t005

mass, PGR stutter, relative amplification, DNA degradation and 
the uncertainties of all these variables. A likelihood function 
assesses how well particular values of these variables explain the 
observed quantitative STR data peaks, determining the probabil­
ity of the (fixed) data conditioned on the (changing) variable 
values.

With DNA mixture data vector d (of peak heights and sizes) 
having IC contributors, the primary explanatory variables are the 
genotypes G, mixture weight W  and mass M  (of combined allelic 
fluorescence intensity). An approximate likelihood function 
containing these variables is

Vi{a\G=%iW = wtM = m i...} = M VN(piZ)

K
where mean pattern vector /t= m  )A u -̂g  ̂ and covariance matrix

fc =  l
2  are parameters of a multivariate normal distribution, as
previously described [7,13], Pattern j.i is constructed as a weighted 
sum of contributor allele pairs g^.

We can visually understand this likelihood function as 
constructing a pattern of allele heights that can be compared 
with the peak height data. Figure 2 shows a major contributor 7,14 
allele pair (blue rectangles of equal height) and a minor 10,12 
genotype value (green rectangles of equal height) in a 2:1 mixture 
ratio. This genotype model is superimposed on the STR peak 
data, where we see a good fit between the model and data 
patterns, which corresponds to a high likelihood value. Alternative 
genotype values and amounts might not explain the data as well 
(e.g., proposing genotypes 7,10 and 12,15), and would have a 
lower likelihood.

The posterior genotype probability is proportional to the 
likelihood value times the prior population probability [23]

P r{G = g jd ,lF —

ocPr{d|6!= g , fF - w )M -m ,...}P r{< ? = g }.

Bayes theorem [24] requires us to consider all feasible genotype 
alternatives, even those having little probability. Other variables, 
such as mixture weight, are similarly framed as posterior
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Figure 5. Computer specificity. A histogram shows empirical log(LR) distributions for 101 evidence genotype comparisons relative to 10,000 
randomly generated references. There are 1,010,000 data points for each of the three ethnic populations. Note that the negative values are located 
far to the left of zero. 
doi;10.1371/journal,pone.0092837.g005

probability distributions [7]. Since the high dimensional parameter 
space is vast, the TrueAIIele computer conducts a statistical search 
using Markov chain Monte Carlo (MCMC) to thoroughly sample 
the joint posterior probability distribution [25,26].

The modeling approach is objective in the sense that only 
evidence data is used to infer genotypes, without any knowledge of 
a reference comparison genotype. Proceeding ab initio from the 
data and model eliminates natural examination bias issues that

Table 6. Specificity results (ban) for TrueAIIele mixture interpretation iog(LR) values, comparing 101 reported evidence genotypes 
with 10,000 random genotypes from each of three ethnic populations.

n =  3 ,030,000 Black Caucasian Hispanic

Minimum -30.000 -30.000 -30.000

Mean -19.467 -19.217 -19.547

T V : - 2.381 h T T C h h V O C :  V i l x V:2 J26 /  : 7  ( i “  C  ■ 'l T ^  -.3,782 T

Standard deviation 6.543 6.723 6.637

Tail d is tr ib u tion Black Caucasian Hispanic

0 39 32 29

1 8 11 9

2 2 1 1

" T .h '0  I : ; - : “ o ; V I / ;  j  f c :

log(LR) > 0 49 44 40

The average exclusionary LR value was around one over a billion billion. Very few false positives were seen in over three million genotype comparisons.
dol;10.137]/joiJrnal.pone.Q092837.t006
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F ig u re  6. C o m p u te r  p re c is io n . The scatterplot shows log(LR) values 
for 101 duplicate computer runs on the same evidence. Each point 
gives the first (x) and second (y) values. The data lie close to the y = x  
diagonal, which represents exactly replicated results. 
doi:10,l371/journal.pone.0092837.g006

may affect other mixture inteipretation approaches [27]. The 
resulting evidence genotype for the minor contributor at this locus 
concentrated 98% of its probability at allele pair' 10,12 (Table 2, 
TrueAIIele).

CPi Allele Inclusion
Inclusion methods of DNA mixture interpretation begin by 

applying an analytical threshold to the quantitative STR peak 
data. The Virginia DFS analytical thresholds are specific to each 
fluorescent dye channel: 73 RFU (blue dye), 84 RFU (green), 
75 RFU (yellow) and 52 RFU (red). Peaks above the threshold are 
designated as "allele” events, while those below are not used 
(Figure 3).

The inclusion likelihood function assigns 1 to all allele pail's 
included in the allele list, and 0 otherwise. This CPI likelihood also 
assumes that all alleles from each contributor are present. With 
four allele events, for example, there are ten possible allele pairs 
(Table 2, CPI). Multiplying the prior probability times the 0/1

likelihood values, and renormalizing, gives the CPI genotype 
probability distribution [28].

The inclusion approach disperses probability over (in this 
example) ten genotype values. Many of these allele pairs (e.g., 7,7) 
are not compatible with a minor contributor genotype, based on 
the peak height data shown. Since the total probability is 1, 
diverting genotype probability away to infeasible solutions reduces 
the probability at more likely solutions, and thereby lowers match 
strength. Starting from highly informative STR data, CPI may 
reduce considerably the reported identification information, or 
even eliminate it entirely by dismissing an evidence item as 
"inconclusive”. Inclusion protocols are susceptible to examination 
bias, since a reference genotype could be considered (e.g., to assess 
potential allelic dropout) when determining whether to use a locus 
in a CPI statistical calculation [29],

mCPi Stochastic Threshold
Replicate STR experiments exhibit natural variation in peak 

height, as described by probability model data variance param­
eters [13,30]. When interpreting DNA evidence using threshold 
approaches, stochastic thresholds help to account for this peak 
pattern variability, which is often more pronounced in low- 
template samples [8], A laboratory determines its stochastic 
threshold tlirough replicate PCR experiments that examine 
heterozygote allele imbalance and drop out. For example, in 
following the SWGDAM 2010 guidelines, Virginia DFS set its 
stochastic thresholds for different capillary injection times as 
210 RFU (2s), 320 RFU (5s) and 460 RFU (10s) [19].

The higher mCPI stochastic threshold can make less use of the 
STR data. In our Penta E mixture example, the 5s injection peak 
heights of alleles 10 and 12 now fall below the stochastic threshold 
of 320 RFU (Figure 4). This peak removal can assign essentially 
zero probability to a 10,12 minor contributor allele pair at this 
locus in a statistical calculation (Table 2, mCPi). Manual mCPI 
mixture interpretation would omit Penta E from the cumulative 
match stadstic because of the uncertain alleles 10 and 12, and thus 
not report the identification information at that locus.

Likelihood Ratio
The likelihood ratio is a standard DNA match statistic [31]. The 

LR summarizes In one number the impact of STR data on our 
belief in the identification hypothesis H  that an individual 
contributed their DNA to biological evidence. The base ten

Table 7. The log(LR) DNA match information (ban) for genotype comparisons is shown for three mixture interpretation methods 
(TrueAIIele, CPI and mCPi).

TrueAIIele CPI mCPi

Minimum 1.255 0.778 0.301

Median 10.550 6.681 1.857

Mean \T : Vj 11,054 6.825 \ v 2̂*1 ? //A:

Maximum 22.962 16.724 6.447

Standard deviation 5.421 2.217 1.675

N = 111 81 70

inclusion (SO) W:.' : : ■ T: T ■ .A \  v.8t

Persuasive {>6) 82 54 2

inconclusive

The TrueAIIele method preserved more identification information (mean) over a broader range (minimum, maximum) than the two inclusion methods, and produced
more inclusions and persuasive match statistics.
doi:10.1371/journal.pone.0092837.t007
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Figure 7, M e th od  sensitivity, Three histograms show the empirical log(LR) distribution for different mixture interpretation methods bn the case 
data. Frequency distribution {a} shows TrueAIIele inferred genotype match statistics for 101 evidence genotype matches (blue). The (b) manual CPi 
review yielded 81 match statistics (green) that were generally less informative (leftward) and less varied (clustered). The (c) 53 mCPi match statistics 
(red) gave less information and had similar values. 
doi:10.1371/journal.pone.0092837.g007

logarithm of the LR expresses identification information in 
additive “ban” units, and is called the “weight of evidence” [32].

There are several ways to calculate a LR match result, all of 
which produce the same number [33]. Since our focus here is on 
genotypes, we note that the LR is the ratio of posterior (after 
having seen evidence) to prior (the population distribution) 
genotype probabilities, evaluated at the allele pair of a known 
reference [34]. For case reporting, we write “a match between the 
evidence and reference is (some number) times more probable

than coincidence”. The LR can also account for co-ancestry, the 
relatedness in populations between all people [35,36].

When a genotype likelihood function accounts for observed 
quantitative evidence data, a reproducibly inferred LR number 
can accurately summarize the extent of match between that 
evidence and a reference. A positive logfLR) provides a weight of 
evidence supporting a match, a negative log(LR) does not favor a 
match, while a log(LR) near zero is inconclusive. The LR value is 
always scientifically meaningful. Scientists sometimes verbally 
describe a LR using an arbitrary subjective scale [37].
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Empirical CDF
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x = iog(LR)

F ig u re  8 . M e th o d  c o m p a r is o n . Cumulative empirical log(LR) 
distributions are shown for uniform probability {black}, and for each 
of the three mixture interpretation methods TrueAIIele (blue), CPI 
{green) and mCPi (red). TrueAIIele tracks a uniform distribution over a 
wide information range, whereas CPi and mCPi do not. 
doi:l0.1371/journal.porte.0092837.g008

Comparing Three Interpretation Methods
Table 2 shows the prior, likelihood and posterior genotype 

probabilities of a minor contributor for three different mixture 
interpretation methods at locus Penta E. The prior probability is 
the population prevalence of an allele pah* (Table 2, prior). The 
differences between these methods reside in their likelihood 
functions (Table 2, likelihood):

•  The TrueAlkle genotype modeling likelihood function is a positive 
real number that describes how well each allele pair hypothesis 
explains the STR data.

•  With CPI allele inclusion, the analytical threshold produces a list 
of included possible allele pairs; these receive a likelihood of 1, 
and all other values are set to 0.

•  Using a tnCPI stochastic threshold at a higher RFU level forms a 
possibly shorter list of allele pairs, corresponding to binary 0 / 1 
likelihoods.

A method’s posterior genotype probability is the product of its 
likelihood and the prior, normalized to sum to unity (Table 2, 
posterior).

The LR is shown (Table 2, LR) as a ratio of posterior to prior 
genotype probabilities. We see that TrueAIIele genotype modeling 
used peak height information to make a dear distinction between

the 7,14 major and 10,12 minor genotype contributors. By 
ascribing 98% of the probability to genotype 10,12, the continuous 
computer method produced a LR of 37 (posterior to prior ratio of 
98/2.7) that preserved virtually all of the identificadon informa­
tion.

The CPI allele inclusion method uses all data peaks above a 
predetermined analytical threshold to form allele pairs [38]. The 
LR of the inclusion genotype at known 10,12 relative to the 
population is 4 (11/2.7), the reciprocal of the inclusion probability. 
The inclusion method’s LR of 4 at this locus is approximately an 
order of magnitude less than TrueAliele’s genotype modeling LR 
of 37. Multiplying together independent locus inclusion LR values 
gives the CPI match stadstic. The inclusion method is named CPI 
by its match statistic, also dubbed Random Man Not Excluded 
(RMNE).

mCPi uses a stochastic threshold to produce a DNA match 
statistic. mCPi only uses those loci at which all of the peaks are 
above the stochastic threshold. In our Penta E locus example, the 
data peaks corresponding to the known 10,12 individual are both 
under the threshold, setting the mCPi likelihood to zero. 
Therefore the mCPi posterior probability and LR (from the 
calculation 0/2.7) of the locus would both be zero, as well. This 
locus was not used in the mCPi calculation.

Considering all loci in this mixture, TrueAUele’s 3og(LR) was 
16.32; the weight of evidence was 7.04 ban for CPI, and 6.00 ban 
for mCPI. This example illustrates how genotype modeling makes 
more use of the data to preserve DNA match information, while 
an already diminished CPI match statistic can be further reduced 
by the mCPi stochastic threshold. Our study examines this 
phenomenon on a larger set of Virginia DFS case matches, 
comparing the three mixture interpretation methods TrueAIIele, 
CPI and mCPI.

Materials

Mixture Data
The Virginia DFS identified DNA mixture cases where 

computer inteipretation could potentially make more use of the 
STR data than manual review. The selection criteria included 
having a probative DNA item, possible use of that item as evidence 
in a criminal trial, an included person of interest, and a need for 
accurate DNA match information. Items that were easy to 
interpret manually -were not chosen.

The 72 cases spanned a full range of biological evidence, 
including touch, epithelial cells, blood, saliva and semen (Table 3). 
These samples are representative of DNA laboratory casework 
items. The DNA evidence items were all mixtures, most having 3 
contributors and some 4 (Table 4), as estimated visually from locus 
peak counts and patterns.

Table 8. Paired comparisons for positive iog(LR) values between TrueAIIele (TA) and CPI.

N  =  81 T A C P I T A  -  C P I te s t p -va tu e

M e a n 11.623 6.825 ^47798. .UV; t =  8.396 1.350 x1 0 ‘ u

M e d ia n 10.816 6.681 4.135 W  =  3047 6 .664x10~5'

r*=0.2999 

r2 = 0.0900

Significance tests were done for means (Student t) and medians (Wiicoxon signed rank W), Correiation coefficients (r) and coefficient of determinations (r2) are shown. 
TrueAIIele was significantly more informative than CPI. 
doi:10.1371/journal.pone.0092837.t00B
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Table 9. Paired comparisons for positive log(LR) values between TrueAIIele (TA) and mCPi.

N = 53 TA mCPi TA -  mCPi test p-value

M ean 12.883 2.145 10.738 t - 15.147 1.040x1 O'20

M edian 12.537 

r = 0.2945 T r i  

f * = 0.0867

1.857 10.679 W = 1431 2.386X10"10

Significance tests were done for means {Student t) and medians (Wilcoxon signed rank W). Correlation coefficients (r) and coefficient of determinations (r2) are shown.
TrueAIIele was significantly more informative than mCPi,
dol:l0.1371/jaurnal.pone.0092837.t009

The mixture weights as calculated by TrueAIIele were evenly 
distributed between 10% and 90% (Table 5). Statistically 
comparing this empirical mixture weight distribution with a 
uniform probability distribution gave a Kolmogorov-Smirnov test 
[39] statistic of 0.1079, whose p-value (0.2220>0.05) showed no 
significant difference between the distributions,

Virginia DFS generated STR data using the Promega Power­
Plex 16 kit (Madison, WI), analyzed on an Applied Biosystems 
3130x1 Genetic Analyzer (Foster City, CA), The DFS case 
materials included electronic,fsa data files from the sequencer, 
their own case reports and case context descriptions, DFS sent 
these electronic materials via secure file transfer protocol (sFTP) to 
Cybergenetics during the latter half of 2011. The data files were 
organized in batches for computer processing,

TrueAIIele System
Cybergenetics TrueAIIele Casework is a computer system for 

resolving DNA mixtures into their component genotypes [40], 
Written in the MATLAB programming language, the computer 
uses MCMC sampling [25] to solve a hierarchical probability 
model [23], (In this paper, a “computer” always refers to 
TrueAIIele Casework software running on either a client or server 
computer). A human operator uses VUIer (Visual User Interface) 
client software that interfaces over a network with a server that 
hosts a database and parallel processors running inteipretation 
software.

TrueAIIele divides DNA identification into two phases [41], The 
computer first infers genotypes from the evidence data. The 
inference is objective in that it has no knowledge of downstream 
comparison reference genotypes. Afterwards, a comparison can be 
made between an inferred evidence genotype and a reference, to 
calculate a LR [31] relative to a population. Separating mixture 
data into single source-like genotypes can make results easier to 
explain [33] and simpler to report [42].

Procedure

TrueAIIele Processing
For each received batch of cases, Cybergenetics processed 

the.fsa files in the TrueAIIele Analyze module to assess data 
quality. For computing efficiency, EPG peaks below the baseline 
noise level of 10 RFU were not used (since they do not affect the 
results). The quality-checked quantitative peak data were then 
uploaded to a TrueAIIele database.

A trained first TrueAIIele operator processed a case by 
downloading from the database the electronic data for ail evidence 
items. The operator examined the EPG signals, and estimated the 
number of contributors for each evidence item based on the 
number of peaks observed at each locus. If relevant and available, 
an assumed reference could be used. (For example, with an 
intimate sample from a sexual assault, assuming the victim’s 
genotype as a knosvn contributor to the mixture is forensically 
meaningful). Appropriate DNA interpretation case questions were 
uploaded as “requests” from the VUIer to the TrueAIIele database 
for processing.

Following this initial processing, an experienced second 
TrueAIIele operator then reviewed the computer results, and 
determined whether further analysis would be required. Such 
additional TrueAIIele analyses could entail assuming a different 
number of contributors, considering DNA degradation, or 
repeating the question using more computer processing time. 
When the number of contributors was ambiguous, multiple 
contributor assumptions were tested; the assumed number of 
contributors (when there are enough) does not have a major effect 
on the inferred genotypes or match statistics. Reportable DNA 
results were replicated in two or more independent computer runs.

Case Reporting
A repordng scientist examined all the computer results in a case. 

After careful review of the replicated genotypes, together with the 
data and mixture weights, a concordant genotype subset was 
identified. Concordant genotypes had similar probability distribu-

Table 10. Paired comparisons for positive fog(LR) values between CPI and mCPi.

N = 52 CPI mCPi CPI -  mCPi test pw afue

M ean 7.069 2.180 4.889 t=  17.417 r 4.082x1 O'23

M edian 6.720

r= of51 as ri V .-k' c: -T; t  ; lx ■. w  v-.v 

r2= 0.2692

2.024 4.696 W = 1378 3.497 x10“10

Significance tests were done for means (Student t) and medians (Wilcoxon signed rank W). Correlation coefficients (r) and coefficient of determinations (ri) are shown, 
CP! was significantly more informative than mCPi, 
doi;10.1371/journal.pone.0092837.t010
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Table 11. Results are shown for ten genotype comparisons where TrueAIIele did not report a match, and five others having a small LR value under a thousand.

In te rpre ta tion  M ethod Data Observations

TrueAIIele CPI mCPi alle le d ro p o u t a lle le overlap low  peaks peak imbalance infeasib le m ix tu re infeasib le pattern

-10.64 3 4 1 1

-6.52 4 ::.y.3 1

-5.05 4 3 1 1 1

—4.87 1 1 1

-4.86 3.48 4 1 1

■::y;.6.64 V;v; 634 1 1

-2.99 4.23 2 1 1 1

-2.18 2 1 1

-1.41 4,08 1 1 1

-0.67 2.95 0.60 1 2 1

1.26 3.96 1 4 1

1.76 1 1 1

2.01 2 8 1 1

2.71 2 1

2.94 8 1

Allele dropout and allele overlap record the number of locus occurrences.
Allele dropout occurs when a reference allele does not appear at all in the evidence data.
Allele overlap occurs when known contributors and the reference share alleles.
Low peaks: All had reference-related allele peaks <100 RFU. A 1 indicates peaks <50 RFU.
Peak imbalance: a 1 indicates heterozygote imbalance under 60% at reference alleles.
An infeasible mixture [1) has an inconsistent mixture weight across loci.
An infeasible pattern (1) cannot be constructed quantitatively from contributor genotypes.
Each comparison row gives log(LR) match statistics [ban) for three mixture interpretation methods, and lists observations about how the evidence data interacted with the reference genotype, 
doi: 10.1371/joumal.pone.0092837.t011
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tions, mixture weights and Kullback-Leibler (KL) statistics [43]. 
These properties all measure the inferred genotype, and are 
independent of any reference comparison or match result. The 
scientist chose a representative genotype from this concordant set.

In the VUIer program, the TrueAIIele scientist indicated the 
three genotypes (evidence, reference and population) needed to 
calculate a LR, Virginia’s databases of Black, Caucasian and 
Hispanic populations were used, and the co-ancestiy coefficient 
was set at 1%. All three LRs were reported; for comparison 
purposes in this study, we conservatively took the smallest of the 
three match statistics.

Match Statistic Collation
Cybergenetics processed the data, and prepared DNA match 

reports for 72 cases requested by DFS. These cases encompassed 
92 items of evidence and 111 comparisons to reference individuals. 
TrueAIIele LR values were collated from these reports. DFS had 
independently conducted manual mixture calculations on most of 
the reported TrueAIIele matches. These CPI and mCPi match 
statistics were collected and recorded in a LR format,

A DFS forensic examiner assessed DNA evidence to determine 
whether a person of interest could be eliminated from the data. 
This assessment considered the number of contributor's, sample 
type, DNA quantity, potential drop out, and other factors. When 
the data were inconclusive or the person had been eliminated, no 
match statistic was calculated.

Results

We assessed the reliability of DNA mixture interpretation 
methods through information metrics based on log(LR). The data 
set comprised 111 computer-inferred evidence genotypes and 
match statistics; our focus is on the 101 reported matches. We 
consider in turn how specifically, precisely and sensitively the 
TrueAIIele system performs. Information comparisons with CPI 
and mCPi methods are possible because formally these manual 
methods are LRs [28],

Recall that the identification hypothesis H is that a particular 
individual contributed their DNA to biological evidence. The 
alternative hypothesis ~ H  is that they did not, i.e., that the DNA 
was left by someone else. Forensic science standardly approxi­
mates ~FI with a random man hypothesis that the DNA 
contributor is an unrelated person selected at random from a 
genotype population [31].

TrueAIIele Specificity
Specificity measures the extent to which a mixture inteipreta­

tion method does not misidentify the wrong person. Since 
identification information is expressed through the log(LR), let X  
be a real-valued random variable of log(LR) values. We want to 
understand the TrueAIIele distribution of Pr{X — x | ~H }, the 
information X  conditioned on randomly selected genotypes (that 
are not contributors to the mixture). The specificity statistic 
Pr{X>0 | ~H } then tells us how frequently a positive log(LR) 
occurs by chance.

Toward this end, we generated ten thousand random genotypes 
from each of the three Virginia ethnic populations. This 
generation was done by randomly selecting alleles in proportion 
to their prevalence in the population database. We compared the 
101 matching TrueAllele-inferred evidence genotypes to these 
random reference genotypes, relative to the appropriate popula­
tion, to calculate log(LR) values; the co-ancestry coefficient was set 
to 1 %. These values provided a representative log(LR) sampling of 
over a million nonmatching comparisons for each population.

The resulting empirical P r{X ~x  | ~H } distribution is shown 
in Figure 5, where the k* bin aggregates the log{LR) values for the 
interval k ^  x<k+l. A negative log(LR) value means that a 
coincidental match is more probable than the evidence matching 
the reference genotype. TrueAllele’s log(LR) distribution is highly 
negative, with an average value around -19.5 (Table 6). Thus, for 
noncontributors, the computer-inferred probability of an evidence 
genotype is generally much less than the population frequency.

The specificity value Pr{X >0 | ~H } was estimated by 
counting the fraction of positive log(LR) outcomes. For all three 
ethnic populations, TrueAllele’s false positive rate was less than 
one in twenty thousand (Table 6, tail distribution). The rate for 
X > 3  was under one in a million, and no false positives were seen 
beyond that level. The results were essentially the same when 
reference genotypes were randomly generated using co-ancestiy 
coefficients ranging from 1% to 5% (data not shown).

TrueAIIele Precision
TrueAllele’s genotype model has hundreds of variables. 

Therefore the (largely continuous) probability model cannot be 
solved direedy by brute force integration or enumeration. Instead, 
MCMC computing is used to statistically sample from the joint 
posterior probability distribution, a standard numerical solution 
for high-dimensional hierarchical models. Such methods exhibit 
sampling variation between independent computer runs.

Precision describes a method’s reproducibility on the same data. 
To measure precision, we examined the identification information 
obtained in duplicate computer runs of the 101 matching 
genotypes. The observed log(LR) pairs are shown in Figure 6, 
where the scatterplot shows the points clustering near the y = x 
diagonal line. Precision can be quantified by calculating within- 
group standard deviation [7], which is the mean square variation 
over replicate computations. For the set of genotype matches, we 
found a precision of 0.305 ban. So, on average, repeated 
TrueAIIele LR values vary by a factor of 2 (10°‘ 05) standard 
deviations.

The log(LR) variation between computer runs was generally 
greater at medium LR values having logarithms between 5 and 10 
(Figure 6). When the LR was small, so were the inter-run 
deviations. With large LRs, the highly informative genotypes were 
very reproducible. Statistical tests for heteroscedasticity (Breush- 
Pagan, White) were not significant (p>0.05),

TrueAIIele Sensitivity
Sensitivity measures the extent to which a mixture interpreta­

tion method identifies the correct person. We therefore examine 
Pr{X “ x | H}, the log(LR) distribution conditioned on the 
identification hypothesis H. In this observational case study, we 
want reassurance that H is true, so that the reference genotype 
actually contributed to the mixture evidence.

The preceding specificity results demonstrated that the false 
positive rate Pr{X>0 | ~H } of TrueAUele’s mixture interpreta­
tion under the noncontributor hypothesis was less than 0.005%. 
(This is ten times smaller than the highly reliable 0.05% error rate 
for dual manual review of easily interpreted single-source 
reference samples [44]). Moreover, beyond small log(LR) levels 
around 3 ban, no false positives were seen in millions of 
comparisons. Indeed, in experimental studies based on samples 
of “known” composition [13,16,45,46], TrueAIIele is used to 
rectify laboratory errors in genotype composition and mixture 
weight. Since the method’s high specificity assures identification 
hypothesis H with considerable certainty, we can safely examine 
the P rfX ^ x  [ H} sensitivity distribution of positive Iog(LR) 
values.
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The TrueAIIele log(LR) distribution of the 101 reported 
matches is shown in Figure 7a, For each genotype comparison, 
we took the smallest of the three ethnic population LR values and 
used a co-ancestry correction of 1%. The log(LR) values ranged 
from 1.255 to 22.962, with a mean value of 11.054 ban (Table 7, 
TrueAIIele). As expected, the matching DNA evidence evenly 
spanned the entire range of positive identification information, 
from zero to full single-source levels beyond 20 ban. This breadth 
of scores was also seen in the large standard deviation of 5.421 
ban. O f the 101 reported matches, 82 had a DNA statistic 
exceeding a million, which is a level that people may find 
persuasive [47].

More accurate genotype modeling employs a likelihood 
function that better explains the data, and so tends to produce a 
higher LR (relative to less accurate modeling) when there is a true 
match. However, the actual LR value depends on the genotype 
model, thus some other measure of accuracy is needed. Over a 
large ensemble of DNA mixtures having randomly distributed 
mixture weights (Table 5) and DNA amounts, one would expect to 
observe uniformly distributed identification information. So one 
measure of accuracy is the degree to which a method’s empirical 
log(LR) distribution resembles a uniform distribution.

A uniform probability density function (PDF) is a constant 
horizontal line. TrueAllele’s empirical PDF appears relatively 
constant across its range of observed log(LR) values (Figure 7 a). A 
better comparison is made using a cumulative distribution function 
(CDF); for a constant PDF value, the CDF is a straight line moving 
from 0 up to 1 (Figure 8, black). The computer’s empirical CDF 
forms a reasonably straight line (Figure 8, blue), similar to the 
uniform CDF (Figure 8, black). The Kolmogorov-Smirnov (K-S) 
test can statistically assess whether two probability distributions are 
the same. With a KS value of 0.1059, the p-value (0.2149>0.05) 
showed no significant difference between TrueAlIele’s empirical 
log(LR) distribution and a uniform distribution, providing 
statistical support for the system’s accuracy.

Threshold Methods
The two threshold-based manual methods produced less 

informative DNA statistics that were distributed differently than 
the computer’s 101 genotype modeling positive log(LR) results. On 
81 comparisons, the CPI manual method yielded matches with a 
mean log(CPI) value of 6.825 ban (Table 7, CPI). The mCPi 
stochastic threshold method gave 53 matches with a 2.145 ban 
average, and 17 inconclusive results where a match statistic could 
not be calculated (Table 7, mCPi). Frequency plots of the log(CPl) 
and log(mCPI) distributions show a pronounced leftward shift for 
these two match statistics (Figures 7b and 7c, relative to 7a). The 
match information range narrowed, with standard deviations of 
2.217 and 1.675 ban, respectively.

We can again use the Kolmogorov-Smirnov statistic to test the 
accuracy of these two manual methods. The empirical CDFs of 
inferred log(LR) values for both CPI (Figure 8, green) and mCPi 
(Figure 8, red) are seen to deviate from a uniform distribution 
(Figure 8, black). For CPI, KS = 0.5609 (p= 1.8856 xlO"22), 
demonstrating a significant difference between CPI’s log(LR) 
CDF and the uniform distribution. Similarly with mCPi, 
K S - 0.7352 (p= I.1316xl0“25), showing a significant difference 
between mCPI’s log(LR) CDF and the uniform distribution. The 
nonuniform clustering of CPI and mCPi log(LR) values (Figures 7b 
and 7c; Figure 8, green and red), statistically confirmed by the KS 
tests, does not support the accuracy of threshold methods.

Comparison of Methods
The numerical differences in average log(LR) between the three 

interpretation methods were statistically significant ('Fables 8-10). 
TrueAIIele preserved the most information, CPI kept less, and 
mCPi retained the least. These results are not surprising [7]: 
threshold methods make less use of the data [48], higher 
thresholds further reduce information, and the study’s case criteria 
selected for items having low mCPi values. The correlations are 
also of interest.

The TrueAIIele genotype modeling method showed a significant 
improvement over the older CPI allele inclusion method (Table 8). 
The mean log(LR) difference was 4.798 (Student t = 8,396, 
p — 1.350xl0“12), and the median difference was 4.135 (Wilcoxon 
sign rank W =3047, p = 6.664x 10~l ’); both differences exceed 
four orders of magnitude. There is only a weak correlation 
(r = 0.2999) between the methods, and the small coefficient of 
determination (r2 = 0.0900) leaves over 90% of the variance 
unexplained. To the extent that TrueAIIele quantitative modeling 
measures identification information, the CPI binary allele inclu­
sion method is measuring something else.

TrueAIIele also showed a significant improvement over the 
newer mCPI allele inclusion approach (Table 9). Here the mean 
log(LR) difference was 10.738 ban (t=  15.147, p = 1.040xl0~20}, 
and the median difference was 10,679 ban (W = 1431, 
p —2.386 xlO“10). The 10 ban difference is a factor of ten billion 
in DNA match statistic. The weak correlation (r= 0.2945) and 
small coefficient of determination (r2 = 0.0867) again leaves over 
90% of the variance unexplained. Since TrueAIIele quantitatively 
measures identification information, the mCPI stochastic thresh­
old method apparently measures some other data attribute.

Switching from allele inclusion to stochastic thresholds signif­
icantly reduced the match statistic (Table 10). The mean log(LR) 
difference between CPI and mCPi was 4.889 ban (t=  17,417, 
p —4.082 xl0~23), and the median difference was 4.696 ban 
(W"  1378, p = 3.497 xlO”10}, which is a match statistic ratio of 
over ten thousand. There is some correlation (r"0.5188) between 
CPI and mCPi, but the small coefficient of determination 
(r2 "  0.2692) does not explain over 70% of the variance. Stochastic 
thresholds seem to measure inclusion in a different way than does 
CPI.

These concordant multi-method match results increase confi­
dence in the sensitivity experimental design, where reference 
genotypes were considered to be present in their respective DNA 
mixture items. Each of the three inteipretation methods works 
differently, is accepted by courts as reliable criminal evidence, and 
was calculated independently in the study. In each pairwise 
comparison, the methods independently agreed on all matches 
(N>50) and gave positive identification information. These 
pairwise consensus results were obtained on highly reliable data 
subsets of the more readily interpretable mixtures,

TrueAIIele Conservatism
Out of 111 TrueAIIele genotype comparisons, 10 gave a 

negative log(LR) value, and so did not produce a positive match 
result (Table 11, first 10 rows). This often occurred when a 
reference sample allele was not seen as an STR peak in the 
evidence data, which could be explained by either exclusion or 
allele dropout. Dropout at a locus usually yields a negative log(LR) 
value for that locus, which the computer must tally in its joint 
match statistic. Other STR features that can confound a match 
between the evidence data and a reference sample are allele 
overlap, low peaks, peak imbalance, infeasible mixture combina­
tions and an infeasible mixture pattern.
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There were 5 genotype comparisons where CPI indicated a 
match, but the computer found no statistical support {Table 11, 
TrueAIIele <0, CPI >0). Laboratory reexamination of these 
items agreed with the computer’s conclusions. Since the 
threshold methods did not use peak height information, they 
supported inclusions whose genotype mixture combinations were 
incompatible with the quantitative data. Manual mixture 
interpretation statistics may omit loci that do not demonstrate 
inclusion, and reported loci can only add positive log(LR) 
values. The TrueAIIele computer, on the other hand, must use 
all the loci, with negative results at a locus decreasing the total 
weight of evidence.

Five genotype comparisons gave a small positive TrueAIIele 
iog(LR) value of under 3 ban (Table 11, last 5 rows). CPI produced 
a match statistic in one of these cases, while mCPi provided no 
statistics. Three of the five items showed considerable allele 
overlap, which the computer could mathematically resolve better 
than inclusion methods. There were fewer low peaks and greater 
peak imbalance in these data, relative to the negative match 
results. The last column shows that TrueAIIele can distinguish 
between quantitatively feasible and infeasible mixture patterns, 
while CPI and mCPi may not.

Discussion

Modern criminal justice requires rapid and reliable processing 
of DNA evidence. Reliability is the basis of admissible evidence, 
and entails sensitivity, specificity and precision. However, when 
confronted Mth complex mixtures or touch DNA, manual 
review can become a challenging task. Since such mixtures may 
constitute the bulk of biological evidence found in serious crimes 
such as sexual assault or homicide, effective interpretation of 
these data is needed.

In this casework study, the newly adopted mCPi stochastic 
threshold method produced results in 53 of 70 DNA match 
comparisons, finding an average match statistic of 140 (Table 7, 
mCPi, as 102‘145). The previously used CPI threshold method had 
greater sensitivity in 81 inclusions on this data set, for an average 
match statistic of 6.68 million. TrueAIIele computer interpretation 
provided 101 match statistics, with an average LR of 113 billion. 
The genotype modeling reported on more of the evidence than did 
threshold methods, and preserved more DNA identification 
information.

TrueAIIele mixture inteipretation does not always increase a 
DNA match statistic. In this study, the computer’s statistics were 
lower than the corresponding human CPI values in 15 reported 
matches [49], Moreover, the computer found no statistical support 
for a match in 10 cases, including 5 where CPI gave an 
inclusionary match statistic. While the system does find more 
matches and computes stronger statistics on average, it examines
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DNA evidence objectively without introducing bias that may favor 
the prosecution or defense.

In addition to increased average sensitivity, TrueAIIele also 
maintains excellent specificity. The computer’s LR can quantify 
negative match information, unlike manual interpretation meth­
ods that are restricted to positive (logarithmic) values. We 
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random sampling inherent in casework should produce a 
uniform log(LR) distribution. TrueAliele’s match distribution 
was statistically uniform, which lends support to the overall 
accuracy of its LR values. However, the manual methods each 
clustered around their average match value, and so did not 
exhibit a uniform distribution that would support their 
accuracy.

DNA, whether single source or complex mixture, can provide 
evidence that implicates criminals and exonerates the innocent. 
Current manual review of DNA mixture data applies thresholds 
that can discard valuable data and understate the evidential 
import of the identification information. As demonstrated in this 
casework comparison study, TrueAIIele computer interpretation 
more effectively preserves DNA evidence and match informa­
tion, relative to CPI and mCPi methods that use thresholds. 
Both prosecutors and defense attorneys may benefit from use of 
this validated computer technology to review complex DNA 
mixture evidence.
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Forensic samples comprised of cell populations from multiple contributors often yield DNA profiles that can be 
extremely challenging to interpret. This frequently results in decreased statistical strength of an individual’s 
association to the mixture and the loss of probative data. The purpose of this study was to test a  front-end cell 
separation workflow on complex mixtures containing as many as five contributors. Our approach involved se­
lectively labelling certain cell populations in dried whole blood mixture samples with fluorescently labeled 
antibody probe targeting the HLA-A*02 allele, separating the mixture using Fluorescence Activated Cell Sorting 
(FACS) into two fractions that are enriched in A*02 positive and A*02 negative cells, and then generating DNA 
profiles for each fraction. We then tested whether antibody labelling and cell sorting effectively reduced the 
complexity of the original cell mixture by analyzing STR profiles quantitatively using the probabilistic modeling 
software, TrueAIIele* Casework. Results showed that antibody labelling and FACS separation of target popula­
tions yielded simplified STR profiles that could be more easily interpreted using conventional procedures. 
Additionally, TrueAIIele* analysis of STR profiles from sorted cell fractions increased statistical strength for the 
association of most of the original contributors interpreted from the original mixtures.

I. In troduction

One of the biggest challenges with DNA evidence is the presence of 
cell populations from multiple contributors which can result in de­
creased statistical strength of STR profile interpretation and, poten­
tially, loss of evidence. Many methods have been developed to separate 
contributor cell populations prior to DNA profiling including micro­
fluidic manipulations [1], laser capture microdissection [2], and flow 
cytometry based techniques such as fluorescence activated cell sorting 
(F A C S) [3,4]. However, one limitation of these approaches is that they 
have largely been demonstrated on mixtures containing only two con­
tributors and/or have been applied to fresh or uncompromised mixture 
samples. Although probabilistic genotyping s y s te m s  can p e r fo r m  ana­
lyses on mixtures that contain three or more contributors which are 
superior to human analysis [5,6], limits remain as to the number of 
contributors that can be successfully disentangled [7]. This is particu­
larly in true for mock casework samples that display stochastic im­
balances that impact low level contributors, and create allelic and locus 
drop-out [8], Therefore, there is still considerable need for front-end 
techniques that can reduce the complexity of mixtures with three or

more individuals prior to DNA analysis and facilitate the generation of 
single or near single source STR profiles.

The purpose of this study was to test a workflow for resolving 
complex biological mixtures that combines front-end cell separation 
with probabilistic genotyping of the simplified sorted cell fractions. A 
similar approach has been previously demonstrated with laser capture 
microdissection as the fr o n t  end separation approach for enhanced in­
terpretation of buccal cell mixtures containing two contributors in 
equal ratios [9]. We have built upon this work by processing two-, 
three-, four- and five-contributor mixtures where only one cell type, 
blood, is present. Front-end separation was accomplished using anti­
body probe labelling and Fluorescence Activated Cell Sorting (FACS), a 
high-throughput, non-destructive cell separation technique previously 
described for forensic applications [3,4,10,11], The abundance of an­
tigen targets on white blood cells and average DNA yield make this a 
useful sample system for investigating this workflow. Additionally, 
complex blood mixtures may be encountered in forensic casework fol­
lowing homicides with multiple victims, mass disasters, or terrorism 
incidents.

We employed fluorescently labeled antibody probes targeting the
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A* 02 allele of the Human Leukocyte Antigen (HLA) Complex to selec­
tively label individual contributor cell populations in a mixture that 
were recovered from dried whole blood stains. Ceil populations were 
then physically sorted into two fractions, A* 02 positive and A*02 ne­
gative (referred to as ‘P2’ and ‘P3’, respectively), each of which con­
tained a simplified subset of contributors from the original mixture. The 
unsorted and sorted fractions were subjected to STR profile analysis and 
both human and software interpretations using the TrueAIIele* 
Casework System (‘TA’) for probabilistic modeling. Probabilistic inter­
pretations were compared to traditional analyst assessments using 
standard caseworking protocols.

2. M aterials and m ethods

2 .1 . B lo o d  sa m p le  p repara tion

Human whole blood samples (n = 9) were obtained from the Tissue 
and Data and Acquisition and Analysis Core Facility at Virginia 
Commonwealth University pursuant to Institutional Review Board 
protocol #870. Blood samples were screened for the HLA-A*02 allele as 
previously described [3]; four were HLA-A*02 positive (sample IDs 93, 
96, 103, 106) and five were HLA-A*02 negative (sample IDs 94, 95, 
104, 105, 107). Multiple contributor blood mixture samples of two to 
five donors were prepared in the ratios (volume:volume) shown in 
Table 1. Next, 500 pi of each whole blood mixture was dried in a petri 
dish and incubated at room temperature for approximately 16 h. After 
the incubation, cells were eluted from the surface by pipetting 1 ml of 
lx  Phosphate Buffered Saline solution into the petri dish and transfer­
ring the cell solution into a 1,5 ml microcentrifuge tube. Samples were 
then subjected to red blood cell lysis using the Ammonium-Chloride- 
Potassium (ACK) ly s is  buffer (Thermofisher Scientific, Waltham, MA). A 
50 pi aliquot of each lysed mixture was retained for the unsorted 
samples and the remainder of each mixture was labeled with FITC- 
conjugated anti-human HLA-A*02 antibody (BioLegend, San Diego, 
CA). As part of our initial optimization experiments, we tested three 
different concentrations of antibody probe: 5 pg, 2pg, and 0,5 pg (per 
30,000 cells). No appreciable differences in the proportion of hy­
bridized cells were observed between 5 pg and 2 pg samples (Figure SI). 
Five micrograms was used for all hybridization experiments. Mixtures 
were then processed using FACS to produce the sorted samples as de­
scribed in [3]. Untreated blood for each of the nine contributors was 
used for donor reference samples.

2 .2 . F luorescence a c tiva ted  cell so rting  (F A C S)

Fluorescence activated cell sorting (FACS) was performed using a 
BD FACS Aria II (Becton Dickenson, Franklin Lakes, NJ) in the Flow 
Cytometry Core Laboratory on the Medical College of Virginia campus 
of VCU. FACS separation of antibody-labeled white blood cells was 
accomplished using a 488 nm laser and gating criteria for discrimina­
tion of HLA-A*02-labeled and HLA-A*02-unlabeled cells into the P2

Table X
Contributors and ratios for each mixture.

N um ber o f 
Contributors

M ixture Ratios 
(vofvol)

Contributors in M ixture 1

2 1:1 93{+}:94(->
2 1:1 9 5 ( - ) :9 6 (  +  )
3 1:1:1 105{-” ):106( + }:107C“ )
3 1:1:2 105{—}:106 (+ ):107 (--)
4 1:2:2:3 103{+ );1 0 4 (-):1 0 6 (-i-) :1 0 7 (—)
5 1:1:1:1:1 103(+ ):104C "):105C "):106(4-):107C -}

1 Contributors are listed in the same order as the mixture ratios. " + ” or 
indicates whether donor cell populations exhibited interactions with the HLA- 
A*G2 antibody.

and P3 fractions, respectively.

2 .3 . D N A  ex tra c tio n

DNA extraction was performed using the DNA IQ™ system which 
was previously validated for low level samples [12], All DNA pur­
ification reagents were provided in the DNA IQ”1 kit (Promega, Ma­
dison, WI). Briefly, samples were placed in 1.5 ml microcentrifuge tubes 
and cell lysis was performed in 160 pi of a Proteinase K buffer (TNE, 
2.5% Sarkosyl), 20 pi of 0.39 M Dithiothreitol (DTT), and 20 pi of 
20 m g/m l Proteinase K). Samples were incubated at 56 °C for 2 h, then 
substrate material was removed to a spin basket in the sample tube and 
centrifuged at 10,000 x g for 5 min to remove excess liquid. DNA pre­
parations of the blood mixture and reference samples were also per­
formed using the Biomek*NXp Automation Workstation (Beckman 
Coulter, Inc., Indianapolis, IN) following the same process but auto­
mated. The purified DNA was stored at 4 °C.

2 .4 . D N A  q u a n tifica tio n

DNA was quantified by real-time PCR (qPCR) using the Plexor* HY 
System (Promega) In a MX3005P™ Quantitative PCR instrument 
(Stratagene, Santa Clara, CA) equipped with Plexor* HY Analysis soft­
ware, as detailed in [13]. The Plexor* HY System (Promega, Madison 
WI) simultaneously quantifies human and male DNA and amplifies an 
internal positive control that may indicate sample inhibition.

2 .5 . S T R  a m plifica tion  a n d  analysis

STR amplification of extracted DNA was performed using the 
PowerPlex* Fusion System (Promega, Madison, WI) in a GeneAmp 9700 
thermal cycler (Applied Biosystems, Carlsbad, CA), as per manu­
facturer's protocol. The 25 pi reactions allowed for the addition of 15 pi 
template; the maximum amount used was 0.5 ng DNA in a STR am­
plification, though most samples had much less than this in the PCR. 
Separation of PCR products was accomplished by capillary electro­
phoresis (CE) in a 3500xi Genetic Analyzer followed by STR data 
analysis using the GeneMapper*ID-X v l,4  software program (Applied 
Biosystems, Carlsbad, CA) or data analysis using TrueAIIele* Casework 
probabilistic modeling system (Cybergenetics, Pittsburgh, PA).

As part of our initial method development we also tested whether 
direct amplification and STR profiling of the sorted cell populations 
with the Powerplex Fusion system compared with results obtained from 
DNA IQ™ extraction. Direct amplification was performed according to 
the manufacturer’s protocol with the following modification: 15 pi 
PunchSolution™ Reagent was added to a PCR tube containing the pel­
leted cell sample or reagent blank, mixed by pipetting, capped, and 
incubated at 70 °C for 30 min. The entire sample was then subjected to 
PCR amplification. Results indicated no clear differences in the number 
of alleles detected across either method (comparison tables shown in 
Table SI). Ail results reported in this study were obtained using DNA 
IQ™ method for extraction of DNA from unsorted mixture samples, 
contributor reference samples, and sorted cell fraction P2 and P3.

Qualitative (analyst) assessment of STR profiles followed Virginia 
Department of Forensic Science (VDFS) procedures for calling alleles, 
examination of controls and identification of artifacts in samples. For 
mixture samples, allele assignment to contributors was based on com- 

, parison to known donor reference profiles. Alleles were noted as either 
unique to a donor, shared with at least one other donor, or non-donor 
(not attributable to any of the contributors of the sample). In a case­
work setting, qualitative approaches alone would not utilize all of the 
data present within an STR profile, underscoring the need for quanti­
tative interpretation protocols such as TA. Thus, we used both quali­
tative and quantitative analyses of mixtures for this study. Quantitative 
assessment of selected STR profiles was performed using TrueAIIele* 
Casework software [5,8]. This probabilistic modeling system uses all of
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the peak height and position data from an electropherogram to develop 
most likely explanations for the profile by use of Markov chain Monte 
Carlo (MCMC) sampling of the data. The TrueAIIele* Casework (TA) 
mixture deconvolution process is performed in the absence of any re­
ference profiles unless a reference is “assumed”. No references were 
assumed for this study. There is no drop-in or drop-out factor calculated 
or needed for the TA analysis process. Instead, the allele data, in the 
form of peaks, is modeled d e  novo  for each electropherogram. Every 
possible allele pair combination is tested and the probability assessed to 
explain that mixture profile. After the mixture deconvolution process is 
complete, then comparisons, in the form of likelihood ratios, are per­
formed for all reference profiles of interest. Moreover, the TA process 
requires a minimum of two reproducible independent TA analyses of 
the STR data, thus if a value brackets zero, small positive log(LR) for 
one run and small negative log(LR) for the other, it will also be inter­
preted as inconclusive.

The hypothesis utilized in this study for all mixtures was as follows: 
the LR hypothesis (Hp) is that a person contributed their DNA to the 
mixture, along with N-l unknown contributors. The alternative (Hd) is 
that the mixture contains N unknown contributors. Qualitative and 
quantitative assessments of blood samples were compared for con­
currence of results.

3. Results and  discussion

3 Contributor Mixture 1:1:1 3 Contributor Mixture 1:1:2

■ k

5 Contributor Mixture

P3 F2

Liii
Fig. 2. Fluorescence histograms and sorting gates for the three, four, and five 
contributor mixtures. HLA-A*02-labeled cells were sorted into the P2 fraction, 
and HLA-A*02-unlabeled cells were sorted into the P3 fraction.

3.1 . B lood  m ix tu re  sam ples

Blood from five different contributors was used to prepare mixture 
samples derived from two, three, four or five of those donors in speci­
fied ratios (Table 1). White blood cells from each of these mixture 
samples were labeled with HLA-A*02 antibody and sorted by FACS to 
the P2 or P3 fractions corresponding to cell populations that bound to 
the antibody probe and cell populations that did not bind to the probe, 
i.e., A* 02 positive and A*02 negative phenotypes, respectively. The 
fluorescence histograms and sorting gates for the two contributor 
mixtures are shown in Fig. 1, while the three, four, and five contributor 
fluorescence histograms and sorting gates are shown in Fig. 2.

STR profiles were generated from each sorted cell population and 
compared to the reference profiles of the contributors for that mixture 
sample. For three, four, and five contributor mixtures, alleles unique to 
each contributor are color-coded in the genotype table for ease of vi­
sualization. Each donor was assigned a color: donor 103 = gold, 104 = 
purple, 105 = red, 106 == green, 107 = blue. Within each subsample 
profile an allele unique to a donor was marked with that donor’s color 
(Tables 4,6,8,10), otherwise uncolored boxes indicate that allele was 
shared by more than one donor in the mixture. All mixture samples and 
sorted cell populations were qualitatively analyzed in this manner.

3 .2 . B lo o d  m ix tu re  sam p les  -  tw o  con tribu tor m ix tu res

Two separate, two contributor mixtures containing an A * 0 2  p o s it iv e

Fig. 1. Fluorescence histograms and sorting gates for 93 +  94 and 95:96 two 
contributor mixtures. HIA-A*02-labeled cells were sorted into the P2 fraction, 
and HLA-A*02-unIabeled ceils w e r e  s o r te d  into the P3 fraction.

and an A*02 negative contributor were created in 1:1 ratios. The 
fluorescence histogram of the first cell mixture (contributors 93 and 94) 
after antibody hybridization shows two distinct peaks consistent with 
the presence of an A*02 positive and an A*02 negative contributor 
(Fig. 1 left panel). DNA profiling of the unsorted mixture (Table 2) 
showed full STR profiles for both donors. After sorting, the P2 sorted 
fraction (A*02 p o s i t iv e ) showed a c o m p le te , single source profile for 
donor 94. There were no alleles from 93 .detected in this fraction 
(Table 2). The P3 sorted fraction (A*02 negative) showed a full profile 
for the negative donor, 94, with only five minor alleles consistent with 
93 detected. The peak height ratio of major to minor contributor ranged 
between 8:1 to 10:1.

A second mixture composed of donors 95 and 96 showed similar 
results (Table 3). Although the fluorescence histogram showed two 
distinct peaks consistent with an A*02 positive and an A*02 negative 
contributor, cell populations exhibited more apparent overlap withTess 
distinct differences in peak fluorescent intensity compared to the pre­
vious mixture histogram (Fig, 1, right). Complete STR profiles for both

Table 2
STR profiles from two-person mixture (Donors 93, 94).

94
Reference
( - )

93
Reference
(+ 1

93 +  94 
UnSorted 1

P2 Sorted 1 P3 Sorted 1

D8S1179 13,15 10,13 10,13,15 10,13 13,15
D21S11 28,32.2 28,31 28,31,32.2 28,31 28,32.2
D7S820 12 10,11 10,11,12 10,11 12
CSF1PO 10,11 10,12 10,11,12 10,12 10,11
D3S1358 16,17 16,17 16,17 16,17 16,17
TH01 6,7 7,8 6,7,8 7,8 6,7
D13S317 11,12 8,12 8,11,12 8,12 11,12
D16S539 11,12 9,13 9,11,12,13 9,13 (9), 11,12
D2S1338 2 0 ,2 5 19,24 19,20,24,25 19,24 (19),20,25
D19S433 13,15 12.2,15.2 12.2,13,15,15.2 12.2,15.2 13,15
VWA 17 15,16 15,16,17 15,16 17
TPOX 8,10 8,9 8,9,10 8,9 8, (9), 10
D18S5: 15,17 12,17 12,15,17 12,17 15,17
AMEL XY XY XY XY XY
D5S818 11,13 8,12 8,11,12,13 8,12 11, (12},13
EGA 23 21 21,23 21 (21],23

1 Minor peaks are shown in parentheses.
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Table 3
STR profiles from two-person mixture (Donors 95, 96).

95
Reference 
(A* 02 — )

96
Reference
(A *02+ )

95 + 96 
UnSorted 1

P2 Sorted
i

P3 Sorted 1

D8S1179 14,16 14,15 14,15,16 14,15 14,16
D21S11 28 28,29 28,29 28,29 28
D7S820 11 8,10 8,10,11 8,10 11
CSF1PO 8,10 10,12 8,10,12 10,12 8,10
D3S1358 15,16 15,16 15,16 15,16 15,16
TH01 8,9 6,7 6,7,8,9 6,7,(8) 8,9
D13S317 10,13 11,12 10,11,12,13 11,12,(13) 10,13
D16S539 11 8 ,10 8,10,11 8,10,(11) 11
D2S1338 16,20 22,25 16,20,22,25 (16),

(20),22,25
16,20

D19S433 12,14 13.2,18.2 12,13.2,14,18.2 13.2, 
(14),18.2

12,14

VWA 15,18 15,17 15,17,18 15,17 15,18
TPOX 8,11 8,11 8,11 8,11 8,11
D18S51 15,17 16,23 15,16,17,23 16,23 15,17
AMEL XX XY XY XY XX
D5S818 11,12 11,12 11,12 11,12 11,12
FGA 22,24 22,23 22,23,24 22,23,(24) 22,24

1 Minor peaks are shmvn in parentheses,

donors were detected in the unsorted mixture. The P2 sorted fraction 
contained a full profile for the positive donor, 96, with seven minor 
alleles detected from the negative donor, 95. The peak height ratio of 
major to minor contributor ranged in this mixture between 8:1 to 10:1. 
The P3 sorted fraction gave a complete, single source profile for the 
negative donor. No alleles from the positive donor were detected in this 
fraction (Table 3).

Results from the two-person mixtures indicate that antibody hy­
bridization can be used to selectively label and sort contributor cell

populations in a dried blood sample. Easily interpretable STR profiles 
consistent with each contributor were obtained from the two sorted cell 
fractions with only minor contributions from the non-target con­
tributor. The decreased separation between A*02 positive and A*02 
negative populations compared to earlier studies (i.e., (3)) may be due 
to increases in autofluorescence after drying as suggested previously [4] 
or due to increases in non-specific probe interactions due to degrada­
tion of cell targets after drying. Alternatively, differences in the effi­
ciency of antibody hybridization may be donor-specific depending the 
presence of cross-reactive HLA alleles, i.e., non-A*02 antigens binding 
to A*02 antibody probe [14].

3 .3 . B lo o d  m ix tu re  sam ples  -  three con tribu tor m ix tu res

Next, three donor samples (105, 106, and 107) were used to create 
two separate, three contributor blood mixtures in ratios of 1:1:2 and 
1:1:1, Donor 106 was BLA-A*02 positive whereas donors 105 and 107 
were HLA-A*02 negative (Table 1). Therefore, in both mixtures the P2 
fraction should have been enriched in donor 106 whereas the P3 frac­
tion should have been enriched in cells from donors 105 and 107. For 
the 1:1:2 mixture, STR profiles from the unsorted mixture yielded full 
profiles for all three contributors and profiles from the P2 fraction 
primarily contained alleles consistent with donor 106 and with only 
two alleles from donor 107 and two alleles from donor 105 detected 
(Table 4). The STR profile from the P3 fraction was enriched for donors 
105 and 107, with six alleles from donor 106 detected (Table 4).

Quantitative assessment by TA confirmed the qualitative results for 
tiie three contributor mixture sample (1:1:2). TA log(LR) values for the 
unsorted subsample were within 100-fold of each other, ranging from 
9.4714 to 11.4591 (Table 5), which is equivalent to likelihood ratios of 
2.9 billion and 287 billion, respectively. This indicates that it is 2.9 
billion to 287 billion times more probable to observe the obtained DNA 
results if the person of interest contributed their DNA to the mixture,

Table 4
Genotype table for the three contributor (1:1:2) blood mixture.(For interpretation of the references to colour 
in this table legend, the reader is referred to the web version of this article.)

Unsorfed Mixture 1:1:2
Marker
AMEL X Y
D3S1358 [ M b ;  
D1S1656 [ i t  .13 
D2S441 10
D10S1248 13 14
D13S317 
Penta E 
D16S539 
D18S51 
D2S1338 
CSF1PO 
Penta D 
TH01 
vWA 
D21S11 
D7S820 
D5S818 
TPOX 
DYS391

17

Sorted P2 (A*02+) Sorted F3 (A*02-)

D8S1179 j S n E i - J 4 'L  iS w m m M
D12S391 w T S M f c  20 J W M  23-. I^T23 |
D19S433 ....... ...... _ 12] 13
FGA E a W B S M t.- . '' 23 . 24 25 21 23 j
D22S1045 i i  is  r  i6 i i l l ____

Red = 105, Green = 106, Blue = 107.
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Table 5
TrueAIIele* Casework analysis for the three contributor (1:1:2) blood mixture sample. (For interpretation
of the references to colour in this table legend, the reader is referred to the web version of this article.)

Contributor1 Unsorted

log Likelihood Ratio 

Sorted P2 (A*02+) Sorted P3 <A*02-)

9.7462 -16.5399 11.5894

11.4591 13.0249 -15.7665

107(HLA-A02-) 9.4714 -11.9631 20.5656

1 Donor colors correspond to genotype charts in Table 4.

Table 6
Genotype table for the three contributor (1:1:1) blood mixture,(For interpretation of the 
references to colour in this table legend, die reader is referred to the web version of this
article.)

Marker
AMEL
D3S1358
D1S1656
D2S441
D10S1248
D13S317
Penta E
D16S539
D18S51
D2S1338
CSF1PO
Penta D
TH01
vWA
D21S11
D7S820
D5S818
TPOX
DYS391
D8S1179
D12S391
D19S433
FGA
D22S1045

Red = 105, Green -  106, Blue = 107.

Table 7
TrueAIIele* Casework analysis for the three contributor (1:1:1) blood mixture 
sample,(For interpretation of the references to colour in this table legend, the 
reader is referred to the web version of this article.)

log Likelihood Ratio
Contributor1 Unsorted Sorted P2 (A*02+)2

13.1799 -15.3381
145489 5.1996

| i07(lILA*A02-) j 17.8216 -1.7661

1Donor colors correspond to genotype charts in Table 6. 
2DNA was not detected in the P3 fraction for this mixture.

along with N-l unknown contributors, than if the mixture contains N 
unknown contributors. TA analysis of the sorted cell populations pro­
vided quantitative support that donor 106 was enriched in the sorted P2 
fraction and donors 105 and 107 were enriched in the sorted P3 frac­
tion. Specifically, the sorted P2 fraction subsample yielded a log(LR) of 
13.0249 for contributor 106, an enrichment of almost 100-fold greater

from the unsorted subsample. Concurrently the log(LR) values for 
contributors 105 and 107 in the sorted P2 subsample were -16.5399 
and -11.9631, suggesting that they were excluded from the P2 cell 
population (Table 5). TA analysis of tire sorted P3 subsample yielded a 
negative log(LR) value for donor 106, which indicated that this con­
tributor was excluded from the P3 subsample. Donor 105 had a log(LR) 
value of 11.5894, an almost 100-fold increase from the unsorted log 
(LR) of 9.7462. Donor 107 displayed a log(LR) value of 20.5656 in the 
sorted P3 subsample, an increase of more than 11 orders of magnitude 
from the unsorted subsample (Table 5).

Although DNA was not recovered from the P3 fraction of the 1:1:1 
mixture, STR profiling results from the unsorted mixture and the P2 
fraction suggested efficient separation of the A*02 positive contributor 
from the mixture, Specifically, full STR profiles for each of the three 
contributors were detected in the unsorted fraction whereas a full 
profile for only donor 106 was detected in the P2 fraction (Table 6). 
Only one allele from a non-target contributor (107) was detected in this 
fraction. TA analysis indicated that there was only statistical support for
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Table 8
Genotype table for the four contributor (1:2:2:3) blood mixture, (For interpretation of the references to colour in this table
legend, the reader is referred to the web version of this article.)

Marker 
AMEL 
D3S1358 
D1S1656 
D2S441 
D10S1248 13
D13S317 11
Penta E 
D16S539 
D18S51 
D2S1338 
CSF1PO 
Penta D
TH01 6 7 V a j  9 3  .
vWA 15 16 8 H »  18
D21S11 IPH 29 ! 30 p i t
D7S820 H i  10 n  | i2
D5S818 31 12 13
TPOX 8 9 11
DYS391 E M
D8S1179 13 14 15
D12S391 riri is  —
D19S433 j 12 1 13 14 15
FGA 21 , 222 H  24
D22S1045 16 i 17 ;

Yellow = 103; Purple = 104; Green = 106; Blue = 107.

Table 9
TrueAIIele* Casework analysis for four contributor (1:2:2:33 blood mixture sample,(For interpretation of the 
references to colour in this table legend, the reader is referred to the web version of this article.)______

Contributor1 Unsorted

log Likelihood Ratio 

Sorted P2 (A*02+) Sorted P3 (A*02-)

1103 (HLA-A02+) 5.6952 25.8097 -0.4071

9.3661 1.9489 13.8653

'  !.■.*! : j, < sm. -s'-v ':- :
102259 3.902 4.5862

107 (HLA»A02*) 6.3227 4.6193 10.6459

1 Donor colors correspond to genotype charts in Table 8,

donor 106 in the P2 fraction (5.1996 106 compared to -1.7661 for 107 
and -15.338 for 105, Table 7).

3 .4 . B lood  m ix tu re  sa m p les  -  fo u r  con tribu tor  m ix tu re

The 1:2:2:3 four contributor blood mixture sample was prepared 
with donors 103, 104, 106, and 107. STR profiles from the unsorted 
subsample yielded hill profiles for all four contributors (Table 8). Based 
on respective HLA phenotypes, P2 should have been enriched in donors 
103 and 106 and P3 should have been enriched in donors 104 and 107. 
The actual STR profile from the P2 fraction was enriched for donor 103, 
as seen by the frequency of gold colored alleles in the genotype chart 
(Table 8, center). The P2 fraction shows few alleles from donor 106, 
compared to what we would expect given the dominance of their alleles 
in the P2 fraction of the three contributor mixtures. The STR profile 
resulting from the P3 fraction shows alleles consistent with donors 104 
and 107, representing all alleles for both of those contributors. AH al­
leles consistent with 106, except for one allele at D2S1338 are also 
present, however a qualitative analysis does not utilize much if any 
allele peak height information and mixture weight assessments and thus

does not always provide a complete picture of the data.
Probabilistic modeling showed evidence of all four contributors in 

the unsorted mixture with LR values of ~  5.7, 6.3, 9.3, and 10.2 for 
donors 103,107,104, and 106 respectively (Table 9), After sorting, the 
P2 fraction showed significant enrichment for donor 103 (25.8097) and 
the P3 fraction showed significant enrichment for donors 104 and 107 
(13.8653, 10.6459 respectively). There was only limited statistical as­
sociation of donor 106 in either sorted cell fractions (3.902 in P2 and 
4.5862 in P3). Overall, TA analysis provided quantitative support for 
one of the A*02 positive contributors and both A*02 negative con­
tributors in die corresponding sorted cell fractions. Although a few 
unique alleles for donor 106 were detected in the unsorted mixture 
profile as well as the sorted P2 and P3 fractions (Table 8), die lower 
statisdcal support for 106 from TA analysis suggests propordonally 
fewer cells were sorted into either P2 or P3 fractions. This may be due 
to incorrect partitioning of donor 106 cells into the P3 fraction from 
inefficient antibody hybridization. We note that poor detecdon of al­
leles from donor 106 was observed in multiple cell mixtures for diis 
study (1:2:2:3 and 1:1:1:1:1 shown below). Direct comparison of hy­
bridized cell populations from die donors 103 and 106 (both A*02
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Table 10
Genotype table for the five contributor (1:1:1:1:1) blood mix hire. (For interpretation of the references to colour in this table
legend, the reader is referred to the web version of this article.)

Marker
Unsorted Mixture Sorted P2 (A*02+) Sorted P3 (A*02-)

AMEL
D3S1358
D1S1656
D2S441
DIOS1248
D13S317
Penta E
D16S539
D18S51
D2S1338
CSF1P0
Penta D
THOl
vWA
D21SU
D7S820
D5S818
TPOX
DYS391
D8SU79
D12S391
D19S433
FGA
D22S1045

Yellow = 103; Purple = 104; Red = 105; Green = 106; Blue = 107.

Table 11 /
TrueAIIele* Casework analysis for five contributor (1:1:1:1:1) blood mixture sample,(For interpretation of 
the references to colour in this table legend, the reader is referred to the web version of this article.)

Contributor1 Unsorted

log Likelihood Ratio 

Sorted P2 (A*02+) Sorted P3 (A*02-)

103 (HLA-A02+) 7.7709 28.0754 -3.7186

7.7705 -10.3345 19.1138

8.4417 -7.6818 9.1347

7.9141 -7.8931 -12.6020

107 CHLA-A02-) ; 3.4128 -16.3560 9.4315

*Donor colors correspond to genotype charts in Table 10.

positive) after drying indicates that donor 103 cells have stronger in­
teraction with the probe as evidenced by higher proportion of cells 
above 10 [3] RFU (Figure S2), Additionally, mixtures in which donor 
106 is die only A*02 positive contributor exhibit lower fluorescence 
intensities in the P2 subpopulation compared to mixtures where donor 
103 is present (e.g., P2 populations in top two histograms versus 
bottom two histograms in Fig. 2), further suggesting that this is a 
contributor-specific trend.

3 .5 . B lood  m ix tu re  sam p les  -  f iv e  co n trib u to r  m ix tu re

The five contributor 1:1:1:1:1 blood mixture sample was composed 
of donors 103, 104, 105, 106, and 107. All alleles consistent with the 
five donors were observed in the unsorted subsample (Table 10). In a 
forensics laboratory this would be a very challenging mixture, not only 
due to the number of contributors but also because all were present in 
equal measure. In many, if not most forensic laboratories, the mixture 
would be deemed uninterpretable due to its complexity and potential

information would be lost.
Donors 103 and 106 were HLA-A*02 positive and are expected to 

sort into the P2 fraction whereas donors 104, 105 and 107 were HLA- 
A*02 negative and are expected to sort into the P3 fraction. 
Qualitatively, the STR profile generated from the sorted P2 fraction was 
enriched for donor 103, with 10 unique alleles detected from this 
contributor compared to three unique alleles detected from con­
tributors 105 and 106 (Table 10). The STR profile generated from the 
sorted P3 fraction showed the highest number of unique alleles for 
donors 104 ( = 8), 105 ( = 10), and 107 ( = 9), with only three alleles 
detected that were uniquely attributable to donors 103 or 106 
(Table 10). Qualitative assessment determined that the sorted P2 sub­
sample yielded all alleles for donor 103, and the sorted P3 subsample 
generated all alleles for donors 104 and 107 and nearly all for 105. The 
limited number of unique alleles from donor 106 detected in the P2 
fraction are consistent with results from the 1:1:2 mixture and could 
indicate less efficient antibody hybridization to this contributor cell 
population and subsequent sorting into the A*02 negative fraction
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(discussed further below). Additionally, physical adhesion or clumping 
of target cells to non-target cells has been observed in previous flow 
cytometry studies [3] and could have contributed to non-specific 
sorting, and allelic drop-out in this experiment.

Quantitative assessment of the five contributor sample was per­
formed using TA (Table 11). The unsorted subsample included all five 
donors, with log(LR) values ranging between 3.4128-8.4417. TA ana­
lysis of the sorted P2 subsample yielded log(LR) of 28.0754 for donor 
103, a value that is comparable to a single source sample [15], and 
negative values for the other four contributors. The sorted P3 sub­
sample yielded log(LR) of 19.1138 for donor 104, an increase of nearly 
12 orders of magnitude. While donor 105 produced equivalent values 
for unsorted and sorted fractions, the log(LR) for donor 107 increased 
by 6 (a million times more likely increase). Donors 103 and 106 showed 
LR values of -3.7186 and -12,6020 respectively suggesting that they 
were excluded from the sorted P3 subsampie. The TA results provided 
quantitative confirmation that donor 103 was enriched in the sorted P2 
fraction, donors 104 and 107 were enriched in the sorted P3 fraction 
while donor 105 stayed the same, and that donor 106 was not detected 
after the cell sorting process,

4. Conclusions

The data presented here suggests that antibody probes combined 
with FACS can be used for the front-end separation of contributor cell 
populations in two-person dried blood mixture samples to generate 
single source STR profiles. Further, for mixtures containing three, four, 
or five individuals, binary sorts based on the presence or absence of an 
HLA allele can be combined with probabilistic modeling procedures to 
enhance the interpretation of complex mixture samples. Results from 
mixtures containing three or more individuals may potentially be fur­
ther improved by combining different antibody probes in the initial 
hybridization steps to enhance discrimination of cell populations during 
FACS and/or sorting cell populations into more than two fractions (i.e., 
non-binary sort) depending on the nature of the fluorescence histogram 
and the initial resolution of contributor cell populations with the mix­
ture sample. Alternative antibody probes may be particularly useful for 
labelling contributor cell populations that exhibit decreased separation 
efficiency with a given probe (e.g., donor 106 with A*02 probe). With 
this, it may be necessary to systematically investigate binding effi­
ciencies of specific antibody probes against dried cell populations 
containing a range of subtypes of the target allele (e.g., subtypes of 
A*02 described in ([16])) as well as cell populations with non-target 
antigens within the same cross-reactive group as the target allele 
[14,17].

Future studies can also make effort to collect and profile cells from 
the discarded fraction of the FACS instrument that result from sorting 
errors or events falling outside the initial gating parameters for target 
cells. For some complex mixtures retaining this fraction may help detect 
certain contributor cell populations that are incorrectly sorted and also 
would be a generally advantageous practice for degraded and/or low 
template samples. Although these results suggest that antibody based 
cell labelling and FACS separation may be used on dried/compromised 
samples, we acknowledge that as the extent of sample degradation in­
creases (i.e., dried for > 24 h), decomposition of antigen targets and/or 
autofluorescence may present more significant obstacles. Applying this 
workflow to the full range of sample types and conditions encountered 
in forensic casework may require more robust probe targets or alter­
native autofluorescence-based signatures that can be detected in aged 
samples [18].
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SCIENTIFIC ADVISORY COMMITTEE
October 15,2013 9:00 am 

Department of Forensic Science 
Central Laboratory Training Room 1 

Proposed Agenda

Call to Order -  Committee Chair Jami S t Clair

•  Welcome New SAC Members 

Approval of Agenda

Approval of Minutes of May 14,2013 meeting 

Chair's Report, if any ^

DFS Director’s Report -  Director Linda C. Jackson

Old Business

« True Allele: DFS Validation Studies and Case Experience -  Brad Jenkins, DFS 
Biology Program Manage);

•  Report of DNA/Biology Subcommittee on True Allele -  Consideration of 
Recommendation by SAC -■ Brad Jenkins

® Latent Prints Manual / Mideo implementation -  Sabrina Ciltesson, DFS Physical 
Evidence Program Manager

® Trace Evidence Update -  Scott Maye, DFS Chemistry Program Manager

New Business
® Outlook for 2014 Legislation -  Ga/7 Jaspen, DFS Chief Deputy Director

e DFS Update
® Facilities
•  Workload/Backlogs
•  Grants
® Resources and Budget O 
® Laboratory News/Updates

® Staffing and Instrumentation^
® . Redesigned DFS Website
■®: Rost-Con vietipn DNA Testing;Program
® Other updates, if any \

Pubiic Comment, if any 

Confirm future meeting dates 

Adjourn
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FORENSIC SCIENCE BOARD
Wednesday, October 16,2013 9:00 am

Central Laboratory, Classroom 1 
Draft Agenda

Call to Order and Welcome -  Board Chair Jo Ann Given

Adoption of Agenda

Approval of Draft Minutes of August 7, 2013 meeting .,/ 1 j

Board Chair’s Report, if any ^ ! i

DFS Director’s Report -  Director Linda Jackson 
® State of the Agency (

1 l

M H M M I 
Ml! HI

::=;P

o Facilities 'u.\ ^
o Resources » instrumentation / Buagpt; Overview^
o Workloads / Backlogs
o Customer Communication
o New DFS Website ;ii|h
o Grants ’ Hjl.j,
o Implications of Federal Government Shutdown (TENTATIVE)

Scientific Advisofy Committee Report and Recommendations -  SAC Chair Jami S t Clair

Old Business; .
e Status of Proposed Regulatory Amendments -  Department Counsel Stephanie Merritt 
® Status of the %st-p:O!n;victi6n -0NA Testing Program and Notification Project Agency

o Notification'Subcommittee Report -  Subcommittee Chair Kristen Howard 
o Testing Program .Update -  DFS Chief Deputy Director Gail Jaspen 

® Western Region SAVVY; E*po -  Gail Jaspen

New Business
® Reaccreditation -  DFS Director of Technical Services Alka Lohmann 
® Review and Adoption of Proposed Annual Report of the Board Pursuant to 

VA Code § 9.1-1110 -  Gail Jaspen 
® Outlook for 2014 Legislation -  Gail Jaspen

Public Comment, if any 

Confirm future meeting dates

Adjourn
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Welcome to the world of TrueAllele® Cloud

TrueAIIele Casework objectively interprets complex DNA evidence. Starting from 

laboratory data, TrueAIIele quickly separates mixtures to produce accurate match 

statistics. The technology resolves degraded and touch DNA, and mixtures with many 

contributors or relatives. TrueAIIele routinely makes DNA identifications for police, 

prosecutors, defense lawyers, crime labs, and actual innocence.

The TrueAIIele Cloud lets anyone test DNA evidence, without having to purchase a 

system. Forensic scientists and students can learn about TrueAIIele on the 

Cloud. Crime laboratories use the TrueAIIele Cloud for validation, training, and extra 

computer capacity. Defense lawyers and experts can confirm TrueAIIele case reports.

If you are interested in testing DNA mixtures your own data using TrueAIIele on the 

Cloud, please contact Cybergenetics at data@cybgen.com or call 412-683-3004 for 

more information.

Cybergenetics © 2020 Page 1 of 1

mailto:data@cybgen.com
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TrueAIIele® Methods: Statistical Model

System 3, Version 25 

Septem ber 2008 model

Mark Perlin, PhD, MD, PhD 

Cybergenetics, Pittsburgh, PA 

8 March 2016

Overview

This docum ent provides scientific background and m athem atical formulas for statistical 

modeling in the TrueAIIele system. The docum ent com plem ents previously published 

descriptions of the hierarchical Bayesian model for genotype separation.

Data

Short tandem  repeat (STR) data originate as charge-coupled device (CCD) camera counts 

th a t are collected on a genetic analyzer from fluorescently end-labeled DNA fragments as 

they are separated  by size via gel electrophoresis. These m ulti-spectral CCD signals are 

isolated by their fluorescent dyes using a color separation m atrix to  form dye-specific 

signals via m atrix inversion.

Signal analysis identifies a DNA data peak corresponding to a particular DNA 

fragment. Using allelic and internal size ladders, the analysis determ ines a DNA peak's size 

(bp) and allele length (repeats), as well as the DNA quantity m easured in relative 

fluorescent units (rfu). A data vector records the DNA quantity (including zero) for every 

fragm ent size.
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We model the quantitative data a t STR locus / (of L  loci) using several variables, 

Data vector d, forms a pattern  th a t maps DNA product lengths into their observed 

quantitative peak heights.

We linearly model the data vector d, using a truncated (> 0) m ultivariate normal 

distribution N+ of the m ean vector jU, and covariance matrix as

A .- N . fa .Z , )

We w rite  the peak data covariance m atrix £, as

w here a 2 is amplification dispersion, t2 is detection variation, and V} is a diagonal m atrix 

diag (d ,) of peak heights.

Data Usage

TrueAIIele determ ines statistical param eters directly from the data, mining DNA evidence 

for statistical information, The fully Bayesian system does not require calibration (i.e., 

setting param eters from historical laboratory  data unrelated to evidence data).

TrueAIIele inputs and uses all the data. There are no thresholds, since uncertainty is 

determ ined statistically from the data. There is an optional rfu cutoff, usually set at ten  rfu 

(within the background noise), well below allelic peak events. Should alleles be observed 

below this level, the cutoff can be low ered or turned off.

Allele dropout occurs w hen alleles tha t are p resen t in the genotypes do not appear 

in the data signal, Bayesian modeling accounts for all genotype possibilities, w hether or 

not com ponent alleles m anifest them selves in the genotyping data. TrueAIIele assesses 

allele dropout through a likelihood function, assigning lower probabilities to genotype 

proposals th a t have less support in the data. TrueAIIele addresses allele drop-in events in a 

similar way. There are no explicit drop param eters -  Bayes theorem  w ith an informative 

likelihood function addresses data drop phenomena.

Using all the data is thorough and preserves identification information. Eliminating 

hum an data decisions (choosing loci, peaks, artifacts) removes hum an bias from the
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in terpreta tion  process, Users cannot "control their data," The user supplies the data, 

makes few assum ptions (num ber of contributors, sampling time, degradation option), and 

the res t is done automatically by the com puter system.

TrueAIIele can answ er questions about different data combinations. Data from 

multiple item s or amplifications can be used in a join t genotype analysis. Known genotypes 

(e.g., a victim present in a mixture, ascertained by case context or match statistics) can help 

reduce problem  complexity.

A comparison genotype (e.g., a suspect) cannot be p a rt of interpreting evidence.

The com puter does not know the "answer" when it separates genotype from evidence. A 

m atch com parison is only made afterw ards. Guaranteeing th a t genotype inference is 

entirely separate from match statistic calculation helps ensure process objectivity.

Mass

DNA is packaged in the cell nucleus. This cell packaging is opened w hen DNA is extracted 

from a biological sample and made available for laboratory analysis. The mass, or num ber 

of in tact DNA molecules examined in a test tube, is modeled as a normal random  variable.

The total DNA quantity a t locus l is given by mass param eter m}. The locus mass 

ml prior is a (nonnegative) truncated norm al distribution on feasible total peak rfu values.

m, ~ JV+(5000, 50002)

Genotype

Individuals inherit DNA from two parents. Therefore, a t a given genetic locus on an 

autosom al chromosome, a cell has two alleles (STR length variants), one from each parent. 

This pair of alleles is called a genotype. A genotype is represented  as a vector of all possible 

allele sizes, w ith each vector entry containing a num ber of alleles at tha t particular size.

With K contributors to the data, we rep resen t the kth contributor genotype 

param eter a t locus l as a vector gk l , w here the DNA length entries contain allele counts
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tha t sum to 1. A heterozygote genotype vector g*, contains two 1 /2  entries, while a 

homozygote has a single 1 entry; all o ther vector entries are 0,

The genotype prior probability Pr{gi(( = x} at allele pair x = [i j] is a product of

population allele frequencies { /,} .

r

V i f j >  i * j

TrueAllele's likelihood function assesses a genotype candidate value to determ ine 

how well it explains the observed data. The likelihood is larger w hen the quantitative data 

is better accounted for by a predicted peak height pa ttern  based on the allele pair value. 

For the iih data observation dtJ at locus l, the likelihood function for a genotype gk l is the

probability Pr [du I g4( = x,...} of the data conditioned on genotype value x, w here

denotes the o ther model variable values, given by the data distribution d, .

Combining the prior genotype probability together with I  independent genetic data 

observations, we can com pute the posterior genotype probability using Bayes theorem  as 

the product of prior probability and join t likelihood functions. The probability mass 

function (pmf) q(x) of genotype gkl is the joint probability distribution

/
Pr{8w = x\d,i ,d,z,~Ai>"-}“Pr{gw =;c}TIPrRi

1=1

over all the relevant random  variables.

M ixture W eigh t

A mixture contains DNA from two or m ore people. The relative am ount of DNA from a 

person contained in the mixture is a mixture w eightyalue betw een zero and one. The sum 

of the mixture weights over all the people contributing the m ixture is one.

The mixture w eight param eter a t locus / is a vector wi whose K  contributor

K

com ponents sum to 1, so tha t ^ w kJ = 1. A hierarchical model of m ixture w eight at every
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locus provides a be tte r fit to the  data, We therefore draw  each individual locus weight w ; 

as a hierarchical prior from a common DNA tem plate m ixture w eight w using a truncated 

(simplex] m ultivariate norm al distribution as

w' ~ ' % ~ ( w >V'2 -7)

The m ixture w eight covariance is an identity matrix scaled by a m ixture variance y f .

The tem plate mixture w eight w is assigned a uniform prio r probability over the K  

contributor simplex.

w ~  Dir (l)

The m ixture variance y f  has an inverse gamma prior probability distribution.

y/~2 ~ G am {lj2 ,1/200)

Genotype Combination

Genotypes are combined in a m ixture by adding together contributor vectors, with each 

contributor weighted by its m ixture w eigh t The sum is a genotype vector th a t describes 

the total num ber of alleles in the sam ple a t each fragm ent size.

A quantitative linear model of data pa ttern  d, a t locus / has an expected vector 

value jxl given by the weighted genotype sum

K

t t  =  ' » r X 'vH 'gw
k=\

Amplification Variance

The polym erase chain reaction (PCR] is an imperfect copying mechanism. A PCR cycle does 

not autom atically double the num ber of copies of a particular DNA fragm ent Rather, the 

num ber of fragm ent copies random ly increases each round by a factor betw een one and 

two. This random  branching process follows the m athem atics of a Poisson counting 

process, which can be modeled as a positive-valued distribution having a variance tha t 

scales w ith fragm ent quantity y  as <J2- y .
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The data variation param eter cr2 has an inverse gamma prior probability 

distribution.

a~2 ~ Gam (10, 20)

Background Variance

Instrum ent noise arises from a genetic analyzer's laser signal, optical path, CCD camera, 

and o ther sources. This background noise is independent of the PCR process, and can be 

modeled as a norm al distribution having a fixed variance param eter.

The data variation param eter r 1 has an inverse gamma prior probability 

distribution,

T"2 -  Gam(\0, 500)

PCR Stutter

The DNA polym erase enzyme can drop or add a repeated STR unit when replicating an STR 

fragment. The Markov chain process forms a random  pattern  of fragm ent lengths centered 

about the prim ary allele length. This PCR stutter pa tte rn  is far m ore pronounced with the 

mono- or di-nucleotide repeat loci used in genetics, and attenuated  som ew hat with the 

tetra- o r penta-nucleotide repeats used in forensics.

The s tu tte r am ount increases with the num ber of repeats, and can be modeled as a 

regression line. Let x  be the num ber of repeat units, and y  the s tu tte r proportion. Then 

the linear model relating increasing stu tte r am ount to repeat length a t a locus is:

y hx,<r2j

Prior probabilities for the PCR stu tte r model param eters are:

b~ N {o ,W *)

o ~ 2 ~  6am(o.5,O..S • 1(T2 j

The s tu tte r proportion is constrained to lie betw een 0% and 15%.
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Relative Amplification

PCR amplifies shorter DNA fragments m ore efficiently than longer ones. This relative 

amplification displaces allele mass away from longer alleles tow ard short ones.

The allele mass rebalancing increases w ith the size difference betw een alleles, and 

can be modeled as norm ally distributed variation in allele height. Let Ax be the difference 

in repeat units, and Ay the difference in allele peak heights. Then the linear model relating 

allele height difference to size difference a t a locus is:

Ay ~ n {c-Ax,g2r^

Prior probabilities for the relative amplification model param eters are:

c~w(o,icr4)

ffRz~Gam(o.5,0.5-10“6)

Differential Degradation

Polym erase requires a connected DNA fragm ent in order to make a copy. One or more 

breaks in a DNA sequence will prevent PCR copying. The chance of having no breaks in a 

fragm ent (unim peded copying] follows an exponential decay curve in the fragm ent length 

variable, w ith a decay rate  proportional to the density of DNA breaks.

Since TrueAIIele models the DNA m ass and variation of each experim ent separately, 

no additional modeling is needed w hen DNA degradation or inhibition is the sam e for all 

contributors. However, when there is differential degradation betw een the different 

contributors, the decay rate  of each contributor's DNA can be determ ined by logarithmic 

modeling of the exponential process.

Let x be allele size, y  contributor allele am ount, and y eff the effective contributor

am ount following DNA degradation. Then the linear model relating effective allele am ount 

to allele size for a contributor at a locus is:

7



log £sE.
i y\  J j

Prior probabilities for the differential degradation model param eters are:

A-W +(o,10“6)

CTfl2~Gom(0,5,0.5'10‘2)

Hierarchical Modeling

TrueAIIele models variables hierarchically, subdividing them  by experim ent. Thus one 

param eter can expand into m any param eters, one for each STR locus experiment, and 

ano ther one for the group. This expansion of variables perm its modeling th a t is more 

customized to  the data, yielding m ore accurate answers.

For example, contributor m ixture weights are determ ined for each locus experim ent 

as the set of variables {w ,}, and also for the DNA tem plate as group variable w .

Statistical Computing

The joint probability distribution is fully specified as the product of the likelihood and prio r 

distributions. Using a Metropolis-Hastings sampler, w e iteratively draw  from the posterior 

probability distributions of {g*,}, {w,}, { m j ,  \v, a 1, t2, \jf and other variables using

Markov chain Monte Carlo (MCMC) com puter methods.

Once beyond the initial burn  in phase, the Markov chain samples from the joint 

posterior probability distribution. Marginalizing these posterior samples to each genotype

d ,~ N + gw,2,
*

V *=I /

w ~ Dir(l)
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random  variable gu  for contributor k a t locus l, we obtain the desired posterior 

probability functions q(x) for the genotypes.

Match Statistic

The likelihood ratio (LR) is the inform ation gained in the hypothesis H odds by having 

observed data

Here, hypothesis H is th a t the suspect contributed to the DNA evidence, and the DNA data 

comprises the questioned evidence dQt the reference population allele frequencies dR and

suspect profile ds .

Standard Bayesian rearrangem ents tell us tha t the LR can also be w ritten  as the 

ratio of conditional probabilities

LR-
vv\da\H ,dR,as}
Pv{dB\H,dR,ds)

w here H  is the alternative hypothesis th a t someone else contributed to the evidence.

Suppose tha t there  is uncertainty in the evidence genotype having pm f q(x) or in the

suspect genotype w ith pm f s (x ) . Then this genotype uncertainty is expressed in the LR as

j  p _ xeG_______________

w here XQ (x) is the likelihood function of the evidence genotype Q and r(x ) is the pmf of

reference population genotype.

Bayes theorem  lets us rew rite  this ratio of likelihood sum s as a num erically 

equivalent sum of posterior genotype probability product ratios. Probability can be more 

intuitive and easier to explain than likelihood.

Ul ^ q{xys{x)
x b G  ?’ (a )
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This genotype probability formulation expresses the LR as a sum of ratios th a t compare 

match probability to coincidence.

Co-ancestry Correction

The LR for the hypothesis tha t a person contributed their DNA to evidence item s 1 and 2 is 

calculated from genotype probability distributions via:

j  „  x e G ___________________________________

x e G  y e G

The joint prior probability ne{x,y) function is just the product of independent 

population priors n{x) and 7 r(y )  when not accounting for co-ancestry (i.e., 0 - 0 ) ,  

However, it is more accurate and conservative to recognize th a t people in a hum an 

population share common ancestors (i.e., 0 > 0).

The conditional m atch formulae for the homozygote and heterozygote cases 

developed by Balding and Nichols w ere given in the National Research Council (NRC) II 

rep o rt equations 4.10a and 4.10b, derivable from the probability ratio 7t$(x,y)/ Kd(x). The

corresponding joint prior probabilities n e(x,y) at a particular value of 0 are:

%Q (aa,aa)
pa{(i-e)Pa+eJ{i-e)p,+2eJ(i-e)pa+3e'}

(l + 0)(l + 20 j

n(ah ^  ^PJ{y-e)pa+e']pb[{i-e)pb+e]{\-e)
’ ’ ( l+8)(l  + 28)

In situations w here the genotype allele pair values are not the same, the joint probabilities 

7C0(x,y) can be similarly calculated from their Dirichlet distributions, as described in

Chapter 4 of Evett and W eir's DNA interpretation textbook.
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COMMONWEALTH of VIRGINIA
DEPARTMENT OF FORENSIC SCIENCE

OFFICE OF THE DIHECTOR 
DEPARTMENT OF FORENSIC SCIENCE 
A Nationally Acctedited Laboratory

700 NORTH 6TH STREET 
RICHMOND, VIRGINIA 23210 

(804)780-2281 Fax (804) 786-0857
April 4,2016

Daniel T. Satterberg, Prosecuting Attorney 
W554 King County Courthouse 
516 Third Avenue 
Seattle, Washington 98104

Re: Tin Virginia Department o f Forensic Science Validation o f TrueAIIele® Casework

Dear Mr. Satterberg,

I am employed at the Virginia Department of Forensic Science (DFS) as a Forensic 
Molecular Biologist. TrueAIIele® Casework was validated by our laboratory prior to its use 
on forensic casework. As part of my job responsibilities with DFS, I was the principal 
scientist on the validation study for TrueAIIele®.

The validation of any new technology by a forensic laboratory is necessary and 
required prior to its implementation and use for analysis of evidence. The primary aims of 
validation work are to determine if the product performs as advertised, to develop an expertise 
in the use of the product, to assess the accuracy, precision and reproducibility (where 
applicable) of the technology, and to understand its limitations.

We have achieved these goals without the source code to TrueAIIele® Casework, as is 
true for the many different technologies and products that we use daily in the laboratory. 
Testing TrueAIIele® Casework using complex DNA profiles where we knew the answer (i.e,, 
the genetic makeup of the contributors to the DNA profiles) provided invaluable information, 
Moreover, simple statistical calculations performed by TrueAIIele® Casework were compared 
to values produced by another previously validated software program and the comparison 
aided our laboratory in the validation process. This internal validation work informed us as to 
die accuracy and reproducibility of the process, the limitations of the system, the ability of the 
teclinology to detect minor contributors to tire DNA profiles (sensitivity) and perhaps most 
importantly, the ability to eliminate non-contributors to the DNA profiles (specificity).

Our ability to use a given technology for forensic DNA profiling is verified by 
thorough validation work, not studying the source code. We have never requested the source
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code for the TrueAIIele® Casework software because it was not necessary in order to 
determine the reliability of TrueAIIele® Casework,

I have attached a copy of our published validation study for your reference.

Sincerely,

Susan A, Greenspoon, Phi/. 
Forensic Molecular Biologist
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A commentary on

A “Source” of Error: Computer Code, Criminal Defendants, and the Constitution
hy Chessman, C. (2017). Calif. Law Rev. 105,101-193.

Chessman (2017) warns of the current trend to admit into court unchallenged the results of 
complex computerized calculations. He provides a number of examples and arguments claimed 
to demonstrate the need for open source software to remove the "black box” element. We agree 
with parts of this sentiment, and the topic of this special issue, that there is a danger with those 
using and receiving information from black box systems.

Some care however is needed with simple diagnoses and prescriptions such as these.
Modern probabilistic genotyping software are replacing methods previously applied manually. 

We have great confidence in the forensic community with regard to both integrity and dedication. 
The previously applied processes are usually a composite of standard operating procedure and 
human judgment. The difference between these and probabilistic software is largely that the 
processes in the software are encoded.

Many disciplines are sufficiently broad that practitioners need to rely, in part, on the work of 
others. This is not new (for a discussion on tills point see Taylor, 2016). The risk to which Chessman 
refers arises when the individual using the system has so little understanding that they do not know 
how to use the system, or when it has not worked1. Chessman provides some helpful suggestions 
for how breaking down black box barriers can be addressed on an individual and systemic scale. 
As developers of expert system STRmix™2 (Taylor et al., 2013), we wish to address some of the 
alarmist points in Chessman (and echoed by others3) that gives the impression that producers of 
expert systems are all either incompetent or corrupt.

We first wish to correct a couple of points in (Chessman, 2017). Regarding the “erroneous 
assumption” referenced by footnotes 49-51: This miscode, and indeed any miscode found that has 
been identified in STRmix™ development or use, was identified by examination of the program’s 
output and not the source code. It would be nearly impossible to identify subtle errors in code 
by viewing the code. The identification has always been a result of comparison of the results 
produced by a program to some known control4. The results of these comparisons then trigger 
the examination of a specific section of the code in order to discover the source of the discrepancy.

*Note that this is not an issue with just computer programs, recent history has numerous examples within forensic biology 
showing that a misunderstanding of the way a system works at a fundamental level can cause issues even when the calculations 
themselves are relatively simple and able to he done by hand (Budowie and Bieber, 2015).
2 An expert system that analyses STR DNA profile data.
3For example see EPIC (https://epic.org/state-poIicy/foia/dna-software/).
4Commonly a “by-hand” recreation of the expected value(s).
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Even as developers, during the developmental validation of new 
versions of STRmix™, we utilize the extended outputs of the 
software to validate, and do not validate by examination of 
code. A further reference (footnote 98) makes the same incorrect 
assumption that it was code review that lead to the discovery of 
a programming error. Our experience has been that even more 
crucial than a review of source code, is the ability to have access 
to outputs that demonstrate each step of a calculation. We should 
also note that our ongoing evaluation and testing of the software 
is a marker of continuous validation and refinement, rather than 
just fixing “errors” and “blunders.”

The second point we wish to make is that the type and 
magnitude of miscodes are important to consider. The majority 
of programming errors will lead to instances of a program 
“crashing” or failing to produce an answer. These types of 
errors are arguably inconsequential as they will not lead to any 
erroneous results being produced. More serious are miscodes 
where no errors are identified or displayed by the software. 
These can be split into those that will be clearly identifiable5 
and those that are more subtle and may go initially unnoticed. 
Even in this latter category, the question should be asked “What 
effect does this error have?” If the magnitude of the difference 
in the result caused by the miscode is small compared with the 
natural variability in the results being produced6 then arguably 
the consequences are minimal. We are by no means suggesting 
that that these types of errors are acceptable, they should be 
rectified as soon as found. We simply suggest that they tend 
to be used for scaremongering in a manner disproportionate 
to their impact. Case in point is the oft quoted article (David 
Murray, 2015), which contains the never quoted sentence “The 
DNA likelihood ratios hi both the new and original statements 
appear to be the same.”

We agree with the suggestion of Chessman that source code 
should be available for scrutiny. STRmix™ abides by one of the 
mechanisms that Chessman suggests, namely the ability for code 
to be disclosed under confidentiality agreements7. We note that 
running of STRmix™ is just the final step in a long journey 
of computerized activities that ultimately lead to an answer.

5 Such as value of a probability greater than one, or a negative amount of some 
substance,
6This may either be in the raw results due to inherent variability in the laboratory 
process or it may be variability in the statistical result due to an evaluation method 
that utilizes random number generation (Bright et al., 2015).
7The code of STRmix™ has been viewed under such conditions in the past,

A true challenge of all steps in the process would require the 
examination of the source code underlying the Java programming 
language in which STRmix™ is written, the Windows™ 
operating system on which it is run, the software used to process 
the raw electrophoretic data, the software used to collect the 
raw electrophoretic data from the electrophoresis instrument, 
the code used to run the electrophoresis instrument, the PCR 
thermocycler, the quantification instrument and a myriad of 
no doubt thousands of blocks of code that sit within the 
numerous Peripheral Interface Controllers that control hardware 
components.

With the advent of complex computerized evaluation of 
evidence, there is a shift from a time where an expert can 
testify to all aspects of the evaluation, to one where, at some 
level, the workings of an expert system are accepted without 
absolute understanding. This may initially seem frightening, 
but an examination of the bigger picture suggests otherwise. 
It would be difficult to argue that the use of computerized 
breathalyzers is a backwards step from the reliability of the 
Field Sobriety Test. Similarly, virtually all senior advisory 
bodies relating to DNA profile evaluation recognize the 
clear benefits of the probabilistic interpretation systems 
(which by nature of their complexity require computerized 
implementation) over the preceding manual or binary 
interpretation methods (Coble et al., 2015; SWGDAM, 2015). 
In our efforts to ensure that software is not the “source” 
of errors, it is important to recognize that even -with the 
noted occurrences of these errors, the current computerized 
solutions, when used by trained experts, represent a vast 
improvement to the qualify and reliability of evidence presented 
in court.
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granted,
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Angelyn Gates for Real Party in Interest.



Real party in interest Martell Chubbs was charged in a November 28, 2012 

information with the murder of Shelley H. in 1977 (Pen. Code, § 187, subd. (a)).1 

The charge was filed after a DNA sample from the victim was found to be a match 

for Chubbs. The People petition for a writ of mandate to overturn the order of the 

superior court compelling the disclosure of a computer source code for software, 

TrueAIIele® Casework (TrueAIIele), which was used in the DNA analysis. The 

People contend that the source code is a protected trade secret of the creator and 

owner of the software, Mark W. Perlin, and his company, Cybergenetics. We 

grant the petition.

FACTUAL AND PROCEDURAL BACKGROUND
2

Preliminary Hearing Evidence

In December 1977, Long Beach Police Department officers found the 17- 

year-old victim in her Long Beach apartment. She was lying on the end of the bed 

with her feet touching the ground and with an electrical wire tied around her neck. 

During an autopsy, swabs were taken from the victim’s vagina and smeared onto 

slides.

In June 2011, as part o f a cold case investigation, Sorenson Forensics 

(Sorenson) conducted a DNA test on the vaginal swabs from the victim. Sorenson 

generated a DNA report that indicated three contributors to the DNA: a major 

sperm DNA profile attributable to an unidentified male, a minor sperm DNA

All unspecified statutoiy references are to the Penal Code.

2 The People have not included the transcript o f the prelim inary hearing, instead 
relying on a declaration from the deputy district attorney who appeared at the prelim inary 
hearing, sum m arizing the evidence.
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profile, and a partial DNA profile attributable to the victim. Sorenson excluded the 

victim’s husband, Nolan Hankins, as the source of the major sperm DNA profile.

Although the record before us does not include the basis for the arrest, Long 

Beach Police Department detectives arrested Chubbs in August 2012. Chubbs 

confirmed that he lived in Long Beach in the 1970s.

In September 2012, Sorenson compared the DNA profile of Chubbs, an 

African-American, to the major sperm DNA profile and found a match. The 

frequency of the profile occurrence in the general population was determined to be 

one in approximately 10,000 for African Americans.

At the preliminary hearing in November 2012, Chubbs was held to answer 

for one count of murder. The information charged Chubbs with one count of 

murder and alleged six prior convictions of serious felonies (§ 667, subd. (a)(1)) 

that also qualified as strikes under the Three Strikes law (§§ 667, subds. (b)-(i),

1170.12, subds. (a)-(d)). In January 2013, Chubbs pleaded not guilty to the murder 

charge.

As part of trial preparation, in September 2013, the People sent the victim’s 

vaginal slide to Cybergenetics’ lab in Pittsburgh, Pennsylvania for further testing. 

Cybergenetics prepared a supplemental report, explaining that it had used its 

TrueAIIele software to “infer possible DNA contributor genotypes from the 

samples,” then compared the evidence genotypes to the reference genotypes 

(which included Chubbs’ and Hankins’ genotypes) to compute likelihood ratio 

DNA match statistics. “TrueAIIele assumed that the evidence sample data . . . 

contained two or three contributors, and objectively inferred evidence genotypes 

solely from these data.” Perlin concluded in the supplemental report that the DNA

3 Hankins is som etim es referred to in the record as the v ictim ’s boyfriend, rather 
than her husband.
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match between the vaginal sperm sample and Chubbs is “1.62 quintillion times 

more probable than a coincidental match to an unrelated Black person.” Perlin 

also concluded that the DNA match with Hankins was “2.82 million times more 

probable than a coincidental match to an unrelated Black person.”

Defense Discovery Efforts

In November 2013, Chubbs made his third informal discovery request, 

which included the request at issue here, for Cybergenetics' source codes for 

TrueAIIele. In January 2014, Chubbs filed a motion to compel discoveiy that 

included the request for Cybergenetics' source codes. Defense counsel cited 

statements in Cybergenetics' supplemental report indicating that TrueAIIele made 

assumptions and inferences in computing its DNA match statistics. According to 

defense counsel, the TrueAIIele program was “brand new” and had not been the 

subject of a Kelly hearing, and without the source codes there would be no way to 

cross examine Perlin about the efficacy and accuracy of the program.4

The defense received several discovery items related to Cybergenetics and 

TrueAIIele, including the following: the September 2013 supplemental report, a 

November 2013 case packet by Cybergenetics, published articles by Perlin

4 The three-pronged test established in People v. Kelly (1976) 17 C al.3d 24 
“provides a fram ework w ithin w hich courts can analyze the reliability o f  expert testim ony 
based on new  or novel scientific m ethods or techniques.” (People v. Lucas (2014) 60 
Cal.4th 153, 223.) ‘“ The first prong requires p roo f that the technique is generally 
accepted as reliable in the relevant scientific community. [Citation.] The second prong 
requires p ro o f that the witness testifying about the technique and its application is a 
properly qualified expert on the subject. [Citation.] The third prong requires p roof that 
the person perform ing the test in the particular case used correct scientific procedures.' 
[Citation,]” (Id. at p. 223, fn. 31.) The test is also known as the Kelly/Frye test. (In re 
Jordan R. (2012) 205 Cal.App.4th 111, 115, fn. 3; see Frye v. U.S. (D.C. Cir. 1923) 293 
F. 1013.)
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regarding DNA analysis and the TrueAIIele software, a data disc from Sorenson, 

TrueAIIele manuals from March 2014, a data disc from Cybergenetics, and a 

PowerPoint presentation to be used by Perlin. However, the dispute here focuses 

on the source codes for TrueAIIele, which were not produced.

On January 15, 2014, the People filed an opposition to the motion to compel 

discovery, arguing that the defense was not entitled to a discovery order because 

the People had voluntarily complied with their discoveiy obligations, citing section 

1054.5, subdivision (a). As pertinent here, the People explained that they 

requested the source code from Cybergenetics, but Cybergenetics did not turn it 

over because it is a trade secret. The People argued that disclosure of the source 

code would be “financially devastating” to Cybergenetics.

The People stated in their opposition that, although Cybergenetics is 

unwilling to disclose its source code, it “is willing to conduct additional TrueAIIele 

testing on a limited set of defense-provided data to further defense understanding 

of the system, its operation and its reliability. Cybergenetics is also willing to meet 

with defense experts (in person or via an Internet meeting) to show them the results 

in this case, and explain to them on a TrueAIIele computer how the system 

operates, though Cybergenetics cannot provide [the] defense with a[n] executable 

version of the TrueAIIele casework system which costs $60,000.”

5 The statute provides: “No order requiring discovery shall be m ade in criminal 
cases except as provided in this chapter. This chapter shall be the only means by w hich 
the defendant m ay com pel the disclosure or production o f  inform ation from prosecuting 
attorneys, law enforcem ent agencies w hich investigated or prepared the case against the 
defendant, or any other persons or agencies which the prosecuting attorney or 
investigating agency m ay have em ployed to assist them  in perform ing their duties.”
(§ 1054.5, subd. (a).)

5



Chubbs then filed an application for an out-of-state subpoena duces tecum, 

seeking the source codes for the TrueAIIele software. He argued that the source 

codes were essential to his defense because the DNA evidence from the vaginal 

slide was the only evidence against him. He pointed out the discrepancy between 

the random match probability calculated by Sorenson (1 in approximately 10,000) 

and the likelihood ratio calculated by Cybergenetics (1.62 quintillion times more 

probable than a coincidental match) to argue that the source codes were necessary 

to cross-examine Perlin about the accuracy of TrueAIIele.

In a declaration submitted with the application, defense counsel stated that 

forensic experts and other attorneys who work with DNA evidence advised her to 

obtain the source codes for TrueAIIele. She stated that “other experts in the field 

have developed a similar software program as TrueAIIele for which their source 

codes are open for public review.” Defense counsel further stated that Allan 

Jamieson, an expert in DNA analysis who had experience with TrueAIIele, told her 

that she could not properly defend against the TrueAIIele results without the source 

codes.

Jamieson stated in his declaration that “access to this code is the only 

satisfactory and professionally recommended way to fully consider the validity of 

the TrueAIIele analysis” in this case. He stated that “[o]ther analysts who have 

developed computer-assisted DNA comparison software . . .  do not hide their 

source codes” and instead make them freely available, which allows others to folly 

review and verify the reliability of the method and results in any given case.

M otion  to Q uash

On May 16, 2014, the People filed a motion to quash the subpoena duces 

tecum. Contrary to its earlier argument in its opposition to the motion to compel
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discovery, the People now argued that Cybergenetics was not a third party to the 

investigation but instead was an investigatory agency within the meaning of 

section 1054.5, subdivision (a).

The trial court denied the People's motion to quash and issued a certificate 

for an out-of-state subpoena, ordering Perlin to produce the source codes. On 

June 16, 2014, a Pennsylvania court issued an order directing compliance with the 

subpoena duces tecum. The Pennsylvania court reasoned that Perlin was a material 

witness, and the means by which he arrived at his opinions likewise was material. 

The court thus ordered Perlin to appear with the source codes and stated that any 

issue regarding the disclosure of trade secrets should be determined by the 

California court.

The People moved to quash the subpoena duces tecum. The People argued 

that the materials are a trade secret, that Chubbs has not established the source 

codes are material or necessary, and that the discovery is not permitted by section 

1054, subdivision (e).6

On June 24, 2014, the trial court issued and held a body attachment for 

Perlin based on his failure to appear pursuant to the subpoena duces tecum. The 

People subsequently withdrew the contention that Perlin was an expert employed 

by the prosecution pursuant to subdivision (a) of section 1054.5, noting that Perlin 

had retained private counsel regarding the trade secret privilege.

Perlin, represented by California counsel, submitted a brief in support of his 

assertion of the trade secret privilege. The People filed a motion to reconsider the

6 Section 1054 states that the chapter on discovery “shall be interpreted to give 
effect to all o f the following purposes,” including “ [t]o provide that no discovery shall 
occur in crim inal cases except as provided by this chapter, other express statutory 
provisions, or as m andated by the Constitution o f  the United States.” (§ 1054, subd, (e).)
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court’s May 16 order denying the People’s motion to quash the subpoena duces 

tecum, and for an order granting the motion and quashing the body attachment held 

for Perlin.

At a July 29, 2014 hearing, the court ruled the source codes are not 

necessary pursuant to Kelly/Frye, but that Chubbs’ right to confront and cross- 

examine witnesses required the production of the source codes. The prosecutor 

again invoked the trade secret privilege on Perlin’s behalf. The court found that 

nondisclosure of the source codes does “work injustice” in the sense that it denies 

Chubbs a right to confront and cross-examine witnesses (Evid. Code, § 1060), and 

that a protective order can protect Perlin’s interest. The court indicated that it 

would follow the procedure set forth in Evidence Code sections 1061 and 1062, by 

issuing a protective order and, if needed, excluding the public from the 

proceedings. The court held the body attachment for Perlin until August 26 and 

ordered the prosecution to provide the source codes on that date.

On August 26, 2014, the court deemed the TrueAIIele source code a trade 

secret for purposes of the trial. Perlin brought an encrypted form of the source 

code. However, before turning over the source code, the prosecution raised the 

issue of a protective order. The court explained that although it would grant a 

protective order to minimize disclosure of the source code, the source code would 

be revealed to a certain extent at trial. The People subsequently did not proffer a 

protective order, but instead refused to turn over the source code. Defense counsel 

requested the exclusion of the TrueAIIele results at trial. The court granted the 

request based on Chubbs’ rights under the confrontation clause and the fact Perlin 

was to be a main prosecution witness against Chubb.

The People petitioned for a writ of mandate to this court. We issued an 

alternative writ of mandate ordering the superior court to vacate the July 29 and
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August 26, 2014 orders compelling the disclosure of the computer source codes, or 

to show cause why a peremptory writ of mandate should not issue. The superior 

court did not vacate its ruling, and the matter is now before us.

DISCUSSION
The People contend that the trial court improperly applied the trade secret 

privilege and that Chubbs failed to make a prima facie showing sufficient to 

overcome the privilege.8 “The court’s ruling on a discovery motion is subject to 

review for abuse of discretion. [Citation.]” (.People v. JenJdns (2000) 22 Cal.4th 

900, 953.) “A trial court has abused its discretion in determining the applicability 

of a privilege when it utilizes the wrong legal standards to resolve the particular 

issue presented. [Citation.]” {Seahaus La Jolla Owners Assn. v. Superior Court 

(2014) 224 Cal.App.4th 754, 766.)

We begin by setting forth the statutes and law regarding the trade secret 

privilege.

We further issued a temporary stay of the trial.

8 We disagree with Chubbs’ contention that the trial court’s ruling was an 
evidentiary ruling not subject to writ review. Although the trial court’s ultimate ruling 
was to exclude the TrueAIIele evidence, this was based on the People’s refusal to disclose 
the source codes. “‘Extraordinary review of a discovery order will be granted when a 
ruling threatens immediate harm, such as loss of a privilege against disclosure, for which 
there is no other adequate remedy. [Citation,] . . .  ‘“ [W]here the petitioner seeks relief 
from a discovery order that may undermine a privilege, we review the trial court’s order 
by way of extraordinary writ. [Citation.]”’ [Citation.]’ [Citation.]” {Doe v. Superior 
Court (2011) 194 Cal.App.4th 750, 754; see also § 1512, subd. (a) [authorizing the 
people to seek review of an order granting a defendant’s motion for discovery by a 
petition for a writ of mandate]; People v. Superior Court (Mouchaourab) (2000) 78 
Cal.App.4th 403, 413 [“writ review is appropriate when the petitioner ‘seeks relief from a 
discovery order which may undermine a privilege, because appellate remedies are not 
adequate once the privileged information has been disclosed’”].)
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L Trade Secret Privilege

Evidence Code section 1060 provides: “If he or his agent or employee 

claims the privilege, the owner of a trade secret has a privilege to refuse to disclose 

the secret, and to prevent another from disclosing it, if  the allowance of the 

privilege will not tend to conceal fraud or otherwise work injustice.” In the instant 

case, it is undisputed that the source codes in issue constitute a trade secret. (See 

Evid. Code, § 1062, subd. (a) [for purposes of Evidence Code sections 1061, 1062, 

and 1063, which apply to criminal cases, “[t]rade secret” is defined in Civil Code 

section 3426.1 or Penal Code section 499c, subdivision (a)(9)].)

In civil cases, a burden-shifting procedure is used to evaluate assertion of the 

trade secret privilege. Based on the language and legislative history of Evidence 

Code section 1060, the court in Bridges to ne/Fires tone, Inc. v. Superior Court 

(1992) 7 Cal.App.4th 1384 (Bridgestone) held that “the party claiming the [trade 

secret] privilege has the burden of establishing its existence. [Citations.] 

Thereafter, the party seeking discovery must make a prima facie, particularized 

showing that the information sought is relevant and necessary to the proof of, or 

defense against, a material element of one or more causes of action presented in the 

case, and that it is reasonable to conclude that the information sought is essential to 

a fair resolution of the lawsuit. It is then up to the holder of the privilege to 

demonstrate any claimed disadvantages of a protective order.” {Id. at p. 1393; see 

also Raymond Handling Concepts Corp. v. Superior Court (1995) 39 Cal.App.4th 

584, 590-591 [relying on the procedure enunciated in Bridgestone and concluding 

that the information was discoverable and that the trial court did not abuse its 

discretion in entering a protective order].)
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Chubbs contends that when a defendant in a criminal case seeks disclosure 

of an item meeting the definition of a trade secret, Evidence Code section 1060 

does not permit the owner of the trade secret to refuse to disclose. Rather, 

according to Chubbs, Evidence Code sections 1061 and 1062 supersede section 

1060, and authorize only (on a proper showing) the remedy of a protective order 

(§ 1062) and exclusion of the public from portions of the trial at which a trade 

secret might be revealed (§ 1062). Evidence Code section 1061 provides: “In 

addition to Section 1062, the following procedure shall apply whenever the owner 

of a trade secret wishes to assert his or her trade secret privilege, as provided in 

Section 1060, during a criminal proceeding.” (Evid. Code, § 1061, subd. (b).) The 

statute then sets forth a procedure under which the holder of the trade secret 

privilege or an authorized representative may move for a protective order (Evid. 

Code, § 1061, subd. (b)(1)), any party to the proceeding may oppose the motion 

{id., subd. (b)(2)), and the court, on a finding “that a trade secret may be disclosed 

. . . unless a protective order is issued and that the issuance of a protective order 

would not conceal a fraud or work an injustice,. . . issue[s] a protective order 

limiting the use and dissemination of the trade secret” {id., subd. (b)(4)).9

y Evidence Code section 1061 provides in relevant part: “(b) In addition to Section 
1062, the following procedure shall apply w henever the owner o f  a trade secret w ishes to 
assert his or her trade secret privilege, as provided in Section 1060, during a criminal 
proceeding:

“(1) The owner o f the trade secret shall file a m otion for a protective order, or the 
people m ay file the m otion on the ow ner’s behalf and with the ow ner’s perm ission. The 
m otion shall include an affidavit based upon personal know ledge listing the affiant’s 
qualifications to give an opinion concerning the trade secret at issue, identifying, w ithout 
revealing, the alleged trade secret and articles w hich disclose the secret, and presenting 
evidence tha t the secret qualifies as a trade secret under either subdivision (d) o f Section 
3426.1 o f  the Civil Code or paragraph (9) o f  subdivision (a) o f Section 499c o f  the Penal 
Code. The m otion and affidavit shall be served on all parties in the proceeding.
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“(2) Any party in the proceeding may oppose the request for the protective order 
by submitting affidavits based upon the affiant's personal knowledge. The affidavits 
shall be filed under seal, but shall be provided to the owner of the trade secret and to all 
parties in the proceeding. Neither the owner of the trade secret nor any party in the 
proceeding may disclose the affidavit to persons other than to counsel of record without 
prior court approval.

“(3) The movant shall, by a preponderance of the evidence, show that the issuance 
of a protective order is proper. The court may rule on the request without holding an 
evidentiary hearing. However, in its discretion, the court may choose to hold an in 
camera evidentiary hearing concerning disputed articles with only the owner of the trade 
secret, the people’s representative, the defendant, and defendant’s counsel present. If the 
court holds such a hearing, the parties’ right to examine witnesses shall not be used to 
obtain discovery, but shall be directed solely toward the question of whether the alleged 
trade secret qualifies for protection.

“(4) I f  the court finds that a trade secret may be disclosed during any criminal 
proceeding unless a protective order is issued and that the issuance o f a protective order 
w ould not conceal a fraud or w ork an injustice, the court shall issue a protective order 
lim iting the use and dissem ination o f  the trade secret, including, but not lim ited to, 
articles disclosing that secret. The protective order m ay, in the court’s discretion, include 
the follow ing provisions:

“(A) That the trade secret may be disseminated only to counsel for the parties, 
including their associate attorneys, paralegals, and investigators, and to law enforcement 
officials or clerical officials.

“(B) That the defendant may view the secret only in the presence of his or her 
counsel, or if not in the presence of his or her counsel, at counsel’s offices.

“(C) That any party seeking to show the trade secret, or articles containing the 
trade secret, to any person not designated by the protective order shall first obtain court 
approval to do so:

“(i) The court may require that the person receiving the trade secret do so only in 
the presence of counsel for the party requesting approval.

“(ii) The court may require the person receiving the trade secret to sign a copy of 
the protective order and to agree to be bound by its terms. The order may include a
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Evidence Code section 1062 similarly provides a procedure under which “the 

court, upon motion of the owner of a trade secret, or upon motion by the People 

with the consent of the owner, may exclude the public from any portion of a 

criminal proceeding where the proponent of closure has demonstrated a substantial 

probability that the trade secret would otherwise be disclosed to the public during 

that proceeding and a substantial probability that the disclosure would cause 

serious harm to the owner of the secret, and where the court finds that there is no

provision recognizing the owner of the trade secret to be a third-party beneficiary of that 
agreement.

“(iii) The court may require a party seeking disclosure to an expert to provide that 
expert’s name, employment history, and any other relevant information to the court for 
examination. The court shall accept that information under seal, and the information 
shall not be disclosed by any court except upon termination of the action and upon a 
showing of good cause to believe the secret has been disseminated by a court-approved 
expert. The court shall evaluate the expert and determine whether the expert poses a 
discernible risk of disclosure. The court shall withhold approval if the expert’s economic 
interests place the expert in a competitive position with the victim, unless no other 
experts are available. The court may interview the expert in camera in aid of its ruling.
If the court rejects the expert, it shall state its reasons for doing so on the record and a 
transcript of those reasons shall be prepared and sealed.

“(D) That no articles disclosing the trade secret shall be fled or otherwise made a 
part of the court record available to the public without approval of the court and prior 
notice to the owner of the secret. The owner of the secret may give either party 
permission to accept the notice on the owner’s behalf.

“(E) Other orders as the court deems necessaiy to protect the integrity of the trade
secret.

“(c) A ruling granting or denying a motion for a protective order filed pursuant to 
subdivision (b) shall not be construed as a determination that the alleged trade secret is or 
is not a trade secret as defined by subdivision (d) of Section 3426.1 of the Civil Code or 
paragraph (9) of subdivision (a) of Section 499c of the Penal Code, Such a ruling shall 
not have any effect on any civil litigation.”
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overriding public interest in an open proceeding. No evidence, however, shall be 

excluded during a criminal proceeding pursuant to this section if it would conceal a 

fraud, work an injustice, or deprive the People or the defendant of a fair trial.” 

(Evid. Code, § 1062, subd. (a).)10

10 Section 1062 provides in full: “(a) Notwithstanding any other provision of law, in 
a criminal case, the court, upon motion of the owner of a trade secret, or upon motion by 
the People with the consent of the owner, may exclude the public from any portion of a 
criminal proceeding where the proponent of closure has demonstrated a substantial 
probability that the trade secret would otherwise be disclosed to the public during that 
proceeding and a substantial probability that the disclosure would cause serious harm to 
the owner of the secret, and where the court finds that there is no overriding public 
interest in an open proceeding. No evidence, however, shall be excluded during a 
criminal proceeding pursuant to this section if it would conceal a fraud, work an injustice, 
or deprive the People or the defendant of a fair trial,

“(b) The motion made pursuant to subdivision (a) shall identify, without 
revealing, the trade secrets which would otherwise be disclosed to the public. A showing 
made pursuant to subdivision (a) shall be made during an in camera hearing with only the 
owner of the trade secret, the People’s representative, the defendant, and defendant’s 
counsel present. A court reporter shall be present during the hearing. Any transcription 
of the proceedings at the in camera hearing, as well as any articles presented at that 
hearing, shall be ordered sealed by the court and only a court may allow access to its 
contents upon a showing of good cause. The court, in ruling upon the motion made 
pursuant to subdivision (a), may consider testimony presented or affidavits filed in any 
proceeding held in that action.

“(c) If, after the in camera hearing described in subdivision (b), the court 
determines that exclusion of trade secret information from the public is appropriate, the 
court shall close only that portion of the criminal proceeding necessaiy to prevent 
disclosure of the trade secret. Before granting the motion, however, the court shall find 
and state for the record that the moving party has met its burden pursuant to subdivision 
(b), and that the closure of that portion of the proceeding will not deprive the People or 
the defendant of a fair trial.

“(d) The owner of the trade secret, the People, or the defendant may seek relief 
from a ruling denying or granting closure by petitioning a higher court for extraordinary 
relief.
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Although Chubbs does not expressly acknowledge it, an implicit premise of 

his contention seeking disclosure of the source codes is that a criminal defendant 

need not make a prima facie showing of the relevance and necessity of the trade 

secret before disclosure occurs. Rather, upon a defense request for material that 

qualifies as a trade secret, the holder of the trade secret privilege cannot object on 

the ground that no showing of relevance and necessity has been made. To the 

contrary, the privilege holder’s only remedies, even for material as to which there 

is no relevance and necessity, are to seek a protective order limiting the terms of 

disclosure (but not precluding disclosure) under Evidence Code section 1061, and 

closing the proceedings at which the trade secret might be disclosed under 

Evidence Code section 1062.

We decline to read Evidence Code sections 1061 and 1062 in such a manner. 

In short, it makes no sense to require the holder of a trade secret privilege to submit 

to disclosure of the trade secret, even subject to a protective order and the closing 

of certain proceedings, without a showing that the trade secret is relevant and 

necessary to the defense. (See People v. Superior Court (Barrett) (2000) 80 

Cal.App.4th 1305, 1318 [“A criminal defendant has a right to discovery by a 

subpoena duces tecum of third party records on a showing of good cause — that is, 

specific facts justifying discovery.”].) We thus conclude that the test for trade

“(e) W henever the court closes a portion o f  a crim inal proceeding pursuant to this 
section, a transcript o f  that closed proceeding shall be m ade available to the public as 
soon as practicable. The court shall redact any inform ation qualifying as a trade secret 
before m aking that transcript available.

“(f) The court, subject to  Section 867 o f  the Penal Code, m ay allow witnesses 
who are bound by a protective order entered in the crim inal proceeding protecting trade 
secrets, pursuant to Section 1061, to rem ain w ithin the courtroom  during the closed 
portion o f the proceeding.”
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secret disclosure adopted in Bridgestone — a prima facie, particularized showing 

that the source code is relevant and necessary to the defense — is required for 

Chubbs to require disclosure of the source codes.

The trial court here correctly began with a determination under Evidence 

Code section 1060 that the source code is a trade secret and then moved to the 

issue of a protective order pursuant to Evidence Code section 1061. However, 

because we find that Chubbs did not meet his prima facie burden for disclosure, we 

conclude that the People should not have been compelled to produce the source 

code, whether or not subject to a protective order.

II. Chubbs ’ Evidence Regarding Necessity o f  Source Code

Chubbs submitted declarations from defense counsel and Jamieson to 

support his contention that the source code is essential to his defense.11 Defense 

counsel relied on the fact that the DNA evidence was the only evidence connecting 

Chubbs to the victim.

Defense counsel further declared that without the source code, “there is no 

way for my expert to determine what assumptions, among other things, have been 

made and if  they are appropriate in this particular case.” In her application for the 

subpoena duces tecum, she declared that her DNA experts, another forensic DNA 

consultant (who has helped develop a program similar to TrueAIIele with source 

codes open for public review), and unidentified attorneys “who focus on DNA

11 Chubbs attached to his return a declaration from  Dr. Travis Doom  regarding the 
necessity o f  the source codes. W e decline to  consider the declaration because it was not 
subm itted to the trial court. (See Pomona Valley Hospital Medical Center v. Superior 
Court (2013) 213 Cal.App.4th 828, 835, fn. 5 [“W rit review  does not provide for 
consideration o f evidence not before respondent court at the tim e o f its ruling.”].)
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evidence regarding TrueAIIele” advised her to request the source codes and pseudo 

source codes.

In Jamieson’s declaration, he claimed ten years of forensic experience, as 

well as familiarity with TrueAllele’s “claimed methodology and use” and 

“experience” in court with TrueAIIele. He opined that “access to this code is the 

only satisfactory and professionally recommended way to fully consider the 

validity of the TrueAIIele analysis” in this case. He claimed that others who have 

developed computer-assisted DNA comparison software “do not hide their source 

codes” and instead make them freely available, which allows others to fully review 

and verify the reliability of the method and results in any given case.

In considering whether Chubbs has made a prima facie showing of the 

necessity of the source code to his defense, we consider not only Chubbs’ evidence 

but also Perlin’s declaration, which was submitted in support of the People’s 

motion to quash the subpoena duces tecum. (See Bridgestone, supra, 7 

Cal.App.4th at p. 1395 [“while the burden of making a prima facie showing of the 

particularized need for a trade secret is on the party seeking discovery, the trial 

court need not ignore evidence presented by the opposing party on the question 

whether the information sought is a trade secret”].)

Perlin explained that TrueAIIele is useful when uncertainty in DNA analysis 

arises, such as when two or more people contribute to the evidence, and it 

decreases uncertainty by comparing information to a suspect. TrueAIIele is 

“Cybergenetics’ computer implementation of [a] two-step DNA identification 

inference approach.” This process involves, first, “objectively inferring genotypes 

from evidence data, accounting for allele pair uncertainty using probability,” and 

“subsequently matching genotypes, comparing evidence with a suspect relative to a 

population, to express the strength of association using probability.”
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Perlin declared that TrueAIIele is widely accepted, having been used in 

approximately 200 criminal cases in courts in California, Pennsylvania, and 

Virginia, and it has been subjected to numerous validation studies, five of which 

were published in peer-reviewed scientific journals.

Perlin explained that software source code is the programming language 

used to write a computer program. The source code “details step-by-step human- 

readable instructions that describe to the computer and programmers how the 

program operates,” and is “translated into computer-readable ‘executable’ 

software.” He stated that TrueAIIele has about 170,000 lines of computer source 

code and opined that reading through the source code would not yield meaningful 

information.

As to the proprietary nature of the source code, Perlin explained that others 

“can easily copy a computer program if they have its source code,” which 

“contains the software design, engineering know-how, and the algorithmic 

implementation of the entire computer program.” Cybergenetics has invested 

millions of dollars over 20 years to develop TrueAIIele, which it offers to crime 

labs for a base license fee of $60,000.

Perlin differentiated TrueAIIele from the open source DNA analysis 

software programs referenced in the declarations of defense counsel and Jamieson, 

stating that open source programs “typically are not validated prior to release, 

because the process of perfecting software is costly.” In addition, open source 

forensic programs “tend to be relatively short programs consisting of several 

hundreds of lines of code,” in contrast to the 170,000 lines of code in TrueAIIele.

Cybergenetics accordingly has never disclosed the source code to anyone 

outside the company and does not distribute it to businesses or government 

agencies that license the software. Cybergenetics does, however, disclose
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TrueAllele’s methodology and its “underlying mathematical model” to enable 

others to understand its genotype modeling mechanism. The company “provides 

opposing experts the opportunity to review the TrueAIIele process, examine 

results, and ask questions.”

Cybergenetics keeps the source code secret because of the “highly 

competitive commercial environment” in which it operates. Perlin declared that 

Cybergenetics’ competitors are interested in replicating TrueAIIele and that 

disclosure of the source code would enable its competitors to copy the product, 

causing the company irreparable harm. Perlin believed that source code is not 

revealed for other commercial forensic DNA software because the source code is 

not needed to assess the software programs’ reliability.

Jamieson’s general statement that a.criminal defendant cannot “receive a 

diligent and fair verification of a DNA testing or analysis method” without the 

source codes does not address Perlin’s explanations of what the source code 

actually is and why it is not needed to test the methodology or reliability of 

TrueAllele’s analysis. Jamieson also generally states that access to the source code 

is the only way to consider the validity of the TrueAIIele analysis in Chubbs’ case, 

but he does not explain how access to the source code would allow him to test the 

reliability of TrueAllele’s analysis. (See Bridgestone, supra, 7 Cal.App.4th at p. 

1396 [“nowhere did [the real parties’ expert] describe with any precision how or 

why the [trade secret] formulas were a predicate to his ability to reach conclusions 

in the case”],)

Similarly, defense counsel generally states in her declaration that others have 

told her she needs to request the source codes and that there is “no way [she] can 

properly prepare to defend against the TrueAIIele results without the source codes 

and pseudo source codes.” However, these general declarations do not address
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why the source code is needed to review the reliability of the TrueAIIele analysis, 

how the source code would be used to review the TrueAIIele results, or what could 

be revealed by the source codes that would be useful to Chubbs5 defense. Indeed, 

her declarations regarding TrueAllele’s methodology, inferences, and reliance on 

the likelihood ratio rather than the random match probability illustrate her 

understanding of TrueAIIele and thus undercut her argument that the source codes 

are necessary to understanding TrueAIIele. This is particularly true in light of the 

fact that defense counsel received the patent documents regarding TrueAIIele, 

numerous published articles regarding TrueAIIele, and TrueAIIele operating 

manuals. Further supporting the position that the source code is not necessary to 

an understanding of TrueAIIele is Perlin’s statement in his declaration that 

Cybergenetics discloses to opposing experts TrueAllele’s methodology, how it 

applies its method to the data, and how the software works. The supplemental 

report prepared by Cybergenetics also explained the assumptions made by 

TrueAIIele in its analysis. The vague statements by defense counsel and Jamieson 

do not describe in any way how the source code would have any bearing on the 

reliability of the analysis.

In his declaration, Perlin cited Commonwealth v. Foley (Pa. Super. 2012) 38 

A.3d 882, in which the Superior Court of Pennsylvania held that the trial court did 

not abuse its discretion in admitting Perlin’s DNA-related testimony. {Id. at p. 

890.) Although this out-of-state case does not cany precedential weight, we agree 

with its conclusion that access to TrueAllele’s source code is not necessary to 

judge the software’s reliability. Similar to Chubbs’ case, Perlin’s estimate of the 

probability of a DNA match to the defendant in Foley was much higher (1 in 189 

billion) than the estimates of the other scientific experts (1 in 13,000 and 1 in 23 

million). (See id. at p. 887.) As pertinent here, the Pennsylvania court rejected the
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defendant’s argument that Perlin’s testimony should have been excluded, 

reasoning that “scientists can validate the reliability of a computerized process 

even if the ‘source code’ underlying that process is not available to the public. 

TrueAIIele is proprietary software; it would not be possible to market TrueAIIele if 

it were available for free. [Citation.]” (Id. at p.889.) The court further reasoned 

that TrueAIIele “has been tested and validated in peer-reviewed studies,” citing 

several papers that “were published in peer-reviewed journals” and thus “reviewed 

by other scholars in the field.” (Id. at pp. 889-890.)

“[I]t is not enough that a trade secret might be useful to real parties.” 

(Bridgestone, supra, 7 Cal.App.4th at p. 1395.) Instead, “the party seeking 

discovery must make a prima facie, particularized showing that the information 

sought is relevant and necessary to the proof of, or defense against, a material 

element of one or more causes of action presented in the case, and that it is 

reasonable to conclude that the information sought is essential to a fair resolution 

of the lawsuit.” (Id. atp. 1393.) Chubbs has received extensive information 

regarding TrueAllele’s methodology and underlying assumptions, but he has not 

demonstrated how TrueAllele’s source code is necessary to his ability to test the 

reliability of its results. We therefore conclude that Chubbs has not made a prima 

facie showing of the particularized need for TrueAllele’s source code.

III. Right to Confront Witnesses

The trial court relied on Chubbs’ constitutional right to confrontation to 

conclude that the People were required to produce the source code. However, our 

state supreme court has stated, “invocation of the confrontation or compulsory 

process clauses in a claim involving pretrial discovery ‘is on weak footing’ 

because it is unclear whether or to what extent those constitutional guarantees
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grant pretrial discoveiy rights to a defendant. [Citations.]” {People v. Clark 

(2011) 52 Cal.4th 856, 982-983; see also People v. Hammon (1997) 15 Cal.4th 

1117, 1126 [examining United States Supreme Court precedent and concluding, “it 

is not at all clear ‘whether or to what extent the confrontation or compulsory 

process clauses of the Sixth Amendment grant pretrial discovery rights to the 

accused’”] {Hammon).)

“In [Hammon], the Supreme Court held the trial court properly quashed a 

subpoena duces tecum the defendant served on psychotherapists treating the 

alleged victim without first conducting an in camera review of the material.

‘[R]ejecting the] defendant’s claim that pretrial access to such information was 

necessary to vindicate his federal constitutional rights to confront and cross- 

examine the complaining witness at trial or to receive a fair trial’ [citation], 

Hammon held ‘the trial court was not required, at the pretrial stage of the 

proceedings, to review or grant discovery of privileged information in the hands of 

third party psychotherapy providers’ [citation].” {People v. Petronella (2013) 218 

Cal.App.4th 945, 958 {Petronella).)

Hammon reasoned that United States Supreme Court precedent addressing a 

criminal defendant’s right under the confrontation clause to information protected 

by state-created evidentiary privileges applied to a defendant’s trial rights, not 

pretrial rights. (Hammon, supra, 15 Cal.4th at pp. 1123-1127.) The court further 

reasoned that, “[w]hen a defendant proposes to impeach a critical prosecution 

witness with questions that call for privileged information, the trial court may be 

called upon . . .  to balance the defendant’s need for cross-examination and the state 

policies the privilege is intended to serve. [Citation.] Before trial, the court 

typically will not have sufficient information to conduct this inquiiy; hence, if 

pretrial disclosure is permitted, a serious risk arises that privileged material will be
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disclosed unnecessarily.” {Id. at p. 1127.) The court thus “declinefd] to extend the 

defendant’s Sixth Amendment rights of confrontation and cross-examination to 

authorize pretrial disclosure of privileged information.” {Id. at p. 1128.)

Similarly, Petronella concluded that the trial court’s pretrial ruling 

upholding a privilege claim against the defendant’s subpoena did not violate the 

defendant’s constitutional rights to confrontation and due process. (.Petronella, 

supra, 218 Cal.App.4th at pp. 958-959.) Pursuant to Hammon and Petronella, we 

conclude that Chubbs’ right to confrontation does not apply to pretrial discovery of 

the source code, which is privileged information.

Chubbs relies on the concurring and dissenting opinions in Pennsylvania v. 

Ritchie (1987) 480 U.S. 39 {Ritchie) to argue that the confrontation clause applies 

to pretrial discovery. However, Hammon specifically addressed Ritchie in 

concluding that the Sixth Amendment right to confrontation did not confer a right 

to discover privileged information before trial. {Hammon, supra, 15 Cal.4th at pp. 

1125-1127.) We therefore conclude that the trial court abused its discretion in 

relying on the confrontation clause to order disclosure of the TrueAIIele source 

codes.

/ /

/ /

/ / .

/ /

/ /

//
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DISPOSITION
Let a peremptory writ of mandate issue directing respondent court to 

vacate its order compelling disclosure of the source code, and to issue a new order 

denying the motion to compel discovery.

NOT TO BE PUBLISHED IN THE OFFICIAL REPORTS

WILLHITE, J.

We concur:

EPSTEIN, P. J.

MANELLA, J.
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EXHIBIT 16



At a Term of the Supreme Court of 
the State of New York held for the 
County of Schenectady, New York at 
Chambers in the Village of 
Cooperstown, New York on the 

(3  day of March, 2015

PRESENT: HON, MICHAEL V. COCCOMA 
SUPREME COURT JUSTICE

STATE OF NEW YORK 
SUPREME COURT: COUNTY OF SCHENECTADY

THE PEOPLE OF THE STATE OF NEW YORK 

-against-

JOHN WAKEFIELD

DECISION AND ORDER

Indictment No, A-S12-29'

Defendant

Notwithstanding the fact that the Court has already ruled on the Defendant’s right 

to the Cybergenetics TrueAIIele Casework’s source code (see Decision and Order dated Februaiy 

9,2015 at pages 6 - 7), and ignoring the timeliness issue, the Court will address this Motion on 

the merits.

The Defendant argues that the TrueAIIele Casework System is an expert system 

which interpreted DNA data in this case, drew inferences from it, and reached the conclusions 

directly connecting Mr. Wakefield to the crime with which he has been charged. To begin with, 

such an argument ignores the human element, to wit: the analyst. Secondly, the DNA results 

from Cybergenetics TrueAIIele Casework is not a hearsay statement by an individual against the
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Defendant - it is a scientific report generated from the source code, Thirdly, and more 

importantly, the Defendant has not forfeited his right to confrontation since he will have an 

opportunity to cross-examine not only the analyst, but the scientist who developed the software.

Simply put, the Defendant’s Crawford argument is misplaced, The source code is 

not a witnesses, it is not testimonial in nature, and it is not “a surrogate for accusatory in-court 

testimony.” It is only the software that drives a computer program that analyzes DNA with the 

input and assistance o f an analyst. And the Cybergenetics TrueAIIele Casework report does not 

accuse anyone, it simply computes a match likelihood ratio using a probabilistic model.

Accordingly, the Motion to allow the Defendant’s expert access to the 

Cybergenetics TrueAIIele Casework source code is DENIED once again.

THIS SHALL CONSTITUTE THE DECISION AND ORDER OF THE COURT.

Dated: March / 3 ,  2015
at Cooperstown, New York

ENTER

Supreme Court Justice

To: John Wakefield
Frederick Rench, Esq.
Catherine Bonventre, Esq,
Peter H, Willis, ADA, Schenectady County District Attorney’s Office 
Clerk of the Court

The documents upon which this Decision and Order is based have been filed in the Office 
o f the Schenectady County Clerk:

1. Memorandum of Law dated March 10,2015
2, Letter from Peter H. Willis, Assistant District Attorney, dated March 13,2015 

showing copy to Defendant.

2



EXHIBIT 17



IN THE COURT OF COMMON PLEAS OF ALLEGHENY COUNTY, PENNSYLVANIA
CRIMINAL DIVISION

COMMONWEALTH OF PENNSYLVANIA )
)

v. ) CC 201307777
)

MICHAEL ROBINSON, )
)

Defendant )
O'*

MEMORANDUM ORDER Gl "H
*i*“" i

AND NOW, to-wit, this 4th day of February, 2016, this Court hereby DEIFIES 

Defendant’s “Application Pursuant to Title 42 Pa.C.S.A. Section 702(B), Interlocutory Qfders, 

for Amendment to Include Certification of the Interlocutory Discovery Order Issued on 

December 7, 2015.” This Court denied Defendant’s discovery request for the “source code” for 

Cybergenetics TrueAIIele Casework System, which was used to test a bandana recovered from 

the crime scene which the Commonwealth alleges belongs to Defendant. This source code is the 

intellectual property o f Cybergenetics.

Pa. R. Crim. P. 573 states that a trial court may permit discovery of items which are 

material, reasonable and in the interests of justice, and Defendant asserts that his request for the 

source code has met this criteria. However, “[ejvidence is material only if there is a reasonable 

probability that, had the evidence been disclosed to the defense, the result of the proceeding 

would have been different. A "reasonable probability’ is a probability sufficient to undermine 

confidence in the outcome.” Pennsylvania v. Ritchie, 480 U.S. 39, 57 (1987). Since materiality 

requires that the material sought must be outcome-determinative (See also Commonwealth v, 

Tharp, 101 A.3d 736, 748 (Pa. 2014)), Defendant must establish that production of the source



code is a linchpin to undermining the Commonwealth’s case as it pertains to the DNA evidence 

on the bandana.

In support of its assertion, Defendant alleges that TrueAllele’s reliability cannot be 

evaluated without the source code. The Pennsylvania Superior Court, in Commonwealth v. 

Foley, 38 A.3d 882 (Pa. Super. 2012) (en banc), disagreed. The Foley court discussed whether 

TrueAIIele testing was admissible pursuant to Frye v. United States, 293 F. 1013 (D.C. Cir. 

1923) and in so doing found that TrueAIIele was not “novel” science. Foley addressed the issue 

of assessing the reliability of TrueAIIele without the production of the source codes and 

determined that scientists could validate the reliability of TrueAIIele without the source code. Id. 

at 889-90. In addition, the Foley court noted that the trial court had “[found] Dr. Perlin’s 

methodology [to be] a refined application of the “product rule,” a method for calculating 

probabilities that is used in forensic DNA analysis.” Foley, 38 A.3d at 888. The Superior Court 

noted that evidence based on the product rule previously has been deemed admissible under 

Frye, Id,, citing Commonwealth v. Blasioli, 713 A.2d 117, 1118 (Pa. 1998).

As the defense has argued that Foley is not controlling on the question of materiality of 

the source code, this Court held a two day hearing and considered expert testimony and 

argument. After considering the testimony, this Court determined that the source code is not 

material to the defendant’s ability to pursue a defense.

Moreover, release of the source code would not be reasonable under Pa. R. Crim. Pro. 

573 (A). Dr. Mark Perlin, founder of Cybergenetics, stated in his April 2015 Declaration that 

disclosure of the source code would cause irreparable harm to the company, as other companies 

would be able to copy the code and potentially put him out of business. (Commonwealth’s 

Supplemental Answer to Motion for Discovery, Exhibit 1, “Declaration of Mark W. Perlin, April

2



2015” para. 54-55) An order requiring Cybergenetics to produce the source code would be 

unreasonable, as release would have the potential to cause great harm to Cybergenetics. Rather 

than comply, Dr. Perlin could decline to act as a Commonwealth expert, thereby seriously 

handicapping the Commonwealth's case.

42 Pa.C.S. § 702(b) states that if the trial court believes the interlocutory order “involves 

a controlling question of law as to which there is substantial ground for difference of opinion and 

that an immediate appeal from this order may materially advance the ultimate termination of the 

matter, it shall so state in such order.” This Court is not of the opinion that the discoverability of 

the source code for Cybergenetics’ TrueAIIele Casework system involves a controlling issue of 

law to which a substantial ground for a difference of opinion exists. Defendant alleges that the 

Honorable Jeffrey A. Manning’s ruling in the State o f California v, Martell Chubbs creates a 

substantial ground for a difference of opinion. However, in that case J. Manning merely 

enforced a subpoena duces tecum ordering Dr. Perlin to appear in California with the documents 

subject to the subpoena but he left the ultimate disposition of the discovery request to the 

California court. Ultimately, the California Superior Court did not require Cybergenetics to 

produce the source code.1 Further, J. Manning, in another pending matter involving a discovery 

request for the TrueAIIele source code, declined1 2 to read his ruling in Chubbs as controlling or 

contradictory and deferred to this Court for a ruling on the issue of the discoverability of source 

code. Similarly, the Honorable Edward J. Borkowski, without a hearing, quashed a subpoena 

duces tecum requesting production of the TrueAIIele source code in another case pending in this 

this Court.3

1 2015 W L 139069 (Unpublished Opinion)
2 Com m onwealth v. Chelsea Arganda and Chester White, CC# 2013-17748 and CC# 2013-17753.
3 Com m onwealth  v. Wade, CC# 2014-04799.

3



Reviewing Foley and Chubb, as well as the pretrial proceedings of record in other matters 

pending before my colleagues in the Criminal division of the Court of Common Pleas of 

Allegheny County, and taking into consideration the briefs and arguments of the parties, this 

Court finds no reason to certify its December 7, 2015 Discovery Order for Interlocutory Appeal,

BY THE COURT: 

Honorable Jill E. Radgjos

\
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SUPERIOR COURT OF WASHINGTON FOR KING COUNTY

STATE OF WASHINGTON, )
)

Plaintiff, ) No. 10-1-09274-5 SEA
)

vs. )
) FINDINGS OF FACT AND

EMANUEL FAIR, ) CONCLUSIONS OF LAW ON
) DEFENSE MOTION TO COMPEL

Defendant. ) CYBERGENETICS ’ TRUEALLELE
) CASEWORIC SOURCE CODE
)

________________________________________________ )

A hearing on the Defense Motion to Compel Cybergenetics’ TrueAIIele Casework Source 

Code was heard from October 31 to November 28, 2016. After considering the evidence submitted 

by the parties, to wit: the Defense Motion to Compel Cybergenetics’ TrueAIIele Casework Source 

Code, the State’s Response to Defense Motion to Compel TrueAIIele Source Code, the Defense 

Reply Regarding Motion to Compel TrueAIIele Source Code, the exhibits attached to the pleadings, 

the testimony from witnesses including Jay Caponera, Nathan Adams, Dan Krane, Mark Perlin, 

David Balding, Kirk Lohmueller, and Brian Ferguson, the exhibits offered into evidence and hearing 

argument, the court makes the following findings o f fact and conclusions of law:

A. FINDINGS OF FACT

Mariane C. Spearman
FINDINGS OF FACT AND CONCLUSIONS OF LAW ON MOTION 516 3rd Avenue, Room C203
TO COMPEL TRUEALLELE CASEWORK SOURCE CODE - 1 Seattle Washington, 98104
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1. The Court heard testimony from Nathan Adams, a systems engineer at Forensic 

Bioinformatics in Dayton, Ohio. Bioinformatics is a DNA consulting company founded by Dr. 

Daniel Krane. Mr. Adams has a B.S. in Computer Science and is working towards obtaining his 

M.S. in computer science.

2. Mr. Adams testified that source code is the human language that a computer can 

understand and translate to machine language in order to execute its operations. True Allele software 

contains 170,000 lines of code.

3. Mr, Adams testified that he had reviewed the source code of another probabilistic 

genotyping system (PGS) called STRmix under a protective order and that because o f that order, he 

was unable to share any specific findings from his source code review.

4. Mr. Adams testified that his review of STRmix’s source code occurred with 

numerous precautions, in addition to the protective order, to insure that the code would not be stolen. 

Mr. Adams was not allowed to bring any photographic, recording, or USB devices into the room 

where the review occurred, the computer on which he reviewed the code was disconnected from the 

internet, and that he was monitored at all times by an armed guard.

5. Mr. Adams testified that in 30 hours he was able to identify potential issues in 

STRmix’s source code that negatively affected the functioning o f the software that could not have 

been learned from any other source. However, due to the protective order, Mr. Adams could not 

disclose what those potential issues were.

6. Mr. Adams testified that there are three levels of source code review. First, a 

dedicated software firm could be hired to review the code for possible errors. This would cost 

hundreds of thousands of dollars. A  mid-range review involving a 200 hour* review o f the code 

would cost approximately $40,000 at $200 per hour. This would take several months. Lastly, a brief

Mariane C. Spearman
FINDINGS OF FACT AND CONCLUSIONS OF LAW ON MOTION 516 3rd Avenue, Room C203
TO COMPEL TRUEALLELE CASEWORK SOURCE CODE - 2 Seattle Washington, 98104
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20 hour review could provide insight into the general practices and standards of the code but would 

not allow a thorough investigation of all the models of molecular behavior.

7. The Court heard testimony about a number of different PGS products. Many PGS are 

open source, meaning the source code o f the software can be reviewed by the public. PGS including 

TrueAIIele, STRmix, and FST are proprietary and do not publish their source code. STRmix and 

FST have disclosed their source codes pursuant to court order. TrueAIIele has not been ordered to 

disclose its source code1.

8. Brian Ferguson is a lawyer with over twenty years’ experience in intellectual property 

litigation. Mr. Ferguson is the co-chair of the Patent Litigation department at the law firm o f Weil, 

Gotshal, and Manges, LLP, in Washington, D.C. Mr. Ferguson’s work focuses on patent 

infringement cases involving disputes between companies regarding whether or not a particular 

patent has been violated.

9. Mr. Ferguson testified that source code is disclosed in intellectual property litigation 

because that is the only way for the particular functionality of the product to be assessed. If a 

dispute arises between smartphone companies over whether a particular function of a smartphone or 

tablet has been copied by a rival company, there is a need to determine how the software was 

programmed. That can only be done by reviewing the source code.

10. Mr. Ferguson testified that in intellectual property litigation, the parties retain a 

software engineering expert to review the source code with guidance from a subject matter expert. 

The subject matter expert will review the source code with the attorneys to identify the particular 

functionality in the patent that is key to determining whether or not an infringement has occurred. 

Then the source code expert will focus on reviewing that functionality in the source code.

1 A California trial court did order Cybergenetics to disclose its source code but this order was later overturned on 
appeal. People  v. Superior Court (Chubbs), 2015 WL Reporter 139069.
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11. The defense made an oral offer of proof to the Court that experts like Dr. Krane, Mr.

Adams, Dr. Lohmueller, or Dr. Balding could be used as subject matter experts should the Court 

order TrueAllele’s source code disclosed. Additionally, the defense made an oral offer of proof that 

it had contacted a software engineer expert who was qualified and available to review the source 

code itself.

12. Dr. Balding testified that he not understand how TrueAIIele performs some o f its 

functions, including how it models drop out and drop in and that no publication or document 

describes how TrueAIIele accounts for drop-out. Dr. Balding further testified that he wrote the 

original source code for LikeLTD but the current version was written by software engineers and he 

hasn’t reviewed it.

13. Dr. Lohmueller testified that TrueAllele’s source code would be helpful in 

understanding how TrueAIIele behaves when it is modelling samples where there is the possibility of 

drop-out. Dr. Loehmueller further testified that scientists can test data without the source code. The 

source code is only one piece of the validation process. In fact, he has never looked at the source 

code for his own PGS, Lab Retriever.

14. Dr. Rrane testified that first and foremost he is a Biology professor and has no formal 

degrees in math or statistics. He testified that he could not review TrueAllele’s source code entirely 

by himself. He would need at least a team of at least a dozen software engineers to do a 

comprehensive review although even a 40 hour review might reveal something important, fie 

testified that the source code would be helpful to understand how the software deconvolutes 

mixtures; distinguishes signal from noise when looking at peaks as low as 10/0 RFU; and identifies 

peaks and peak heights, which TrueAIIele does using a method different than any other PGS.

Mariane C. Spearman
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15. Dr. Mark Perlin, founder of Cybergenetics, testified that his company has invested 

millions of dollars over the last two decades to develop the TrueAIIele software. The technology is 

patented but the source code has never been revealed in any patent. Cybergenetics considers the 

TrueAIIele source code to be a trade secret. Dr. Perlin testified that disclosure of the TrueAIIele 

source code would allow competitors to copy the software and cause irreparable financial harm to 

his company.

16. Dr. Perlin further testified that disclosure of the source code is not necessary to 

validate the reliability of the program.

17. Jay Caponera, a forensic scientist with the New York State Police, testified that the 

source code is not necessary to determine the reliability of TrueAIIele because the code is not used in 

validation. Reliability of software is determined by use of the validation metrics o f sensitivity, 

specificity, accuracy and reproducibility. He testified that he validated TrueAIIele in 2011 without 

access to the source code.

18. John Donahue is employed as the DNA Technical Leader at the Beaufort County 

Sheriffs Office Forensic Services Laboratory in Beaufort, South Carolina, In his Declaration, he 

testified that his lab has used TrueAIIele for three years. They purchased the software in 2013 and 

spent two years performing validation studies before implanting it into casework in January 2016.

He testified that the source code was not necessary to determine the reliability of TrueAIIele because 

in their validation studies they tested TrueAIIele against known samples and known results and 

obtained the expected results.

19. Thomas Hebert is employed as the DNA Technical Leader for the Baltimore City 

Police Department. In his Declaration, Mr. Hebert testified that his lab has used TrueAIIele for 

casework since October 2015. In his opinion, the source code is not necessary to determine the

Mariane C. Spearman
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reliability o f software programs for forensic used. A proper validation requires testing samples with 

known results. These results can then be compared to results generated by the program. A wide 

variety of samples should be used to simulate real casework type samples to show the limits of the 

software.

20. Kevin Miller is employed as the Forensic Scientist Leader at Hamilton Robotics. In 

his Declaration, he testified that he assisted the Kern Comity Regional Crime Laboratory in 

California in purchasing and validating TrueAIIele for casework in 2014. He testified that DNA 

analysts are not required to have the computer science or engineering backgrounds required to 

review source code. Forensic analysts rely on instrumentation to perform a wide array o f 

mathematical calculations without requiring the analysts to check the calculations or know the 

source code for the procedures.

21. Joanne SguegHa was previously employed at the Massachusetts State Police Crime 

Laboratory where TrueAIIele was validated in 2011. In her Declaration, Ms. Sgueglia testified that 

she has been involved in forensic DNA research and development/validation efforts for over 28 

years. She testified that knowledge of the source code is not needed to validate TrueAIIele. In the 

field o f forensics, labs evaluate and validate many systems by testing without specific knowledge of 

the underlying mechanisms, programming, algorithms or chemistry.

22. Dr. Gary Shutler is employed as the DNA Technical Leader for the Washington State 

Patrol Crime Laboratory (WSPCL). In his Declaration, Dr, Shutler testified that the WSPCL does 

not currently have the funds to do probabilistic genotyping in their laboratory so it contracts with 

Cybergenetics for interpretation of complex DNA mixtures. Dr. Shutler testified that the WSPCL 

uses a variety of software technologies in their lab (such as GeneMapper and PopStats) and has 

never found it necessary to review the source code to establish validation.

Mariane C. Spearman
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23. Dr. Susan Greenspoon is employed as a Molecular Biologist at the Virginia 

Department of Forensic Science. In her April 4, 2016, letter, she wrote that the internal validation 

study performed in her laboratory assessed TrueAllele’s accuracy, reproducibility, sensitivity (ability 

to detect minor contributors) and specificity (ability to eliminate non-contributors) without the need 

for the source code.

24. The Scientific Working Group on DNA Analysis Methods (SWGDAM) is a group of 

approximately 50 scientists representing federal, state and local forensic DNA laboratories in the 

United States and Canada. They meet twice a year and issue documents to provide direction and 

guidance for the scientific community. The 2015 SWGDAM Guidelines for the Validation of 

Probabilistic Genotyping Systems do not require or even mention the need for a computer source 

code for validation.

25. 34 validation studies of TrueAIIele have been published. Seven have been published 

in peer-reviewed journals. Ex 44. None of the validation studies included a review of the source 

code,

26. Cybergenetics provided the defense with a case report and case packet containing 4 

GB of information detailing the testing done in this case. Additionally, Cybergenetics provides 

defense experts with a 96-day license to use TrueAIIele in a read-only viewer and the ability to test 

their own mixtures using their own data on the TrueAIIele on the Cloud at no charge.

B. CONCLUSIONS OF LAW

Mariane C. Spearman
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1. The discovery which the defense seeks is not in the State’s possession. Dr. Perlin 

advised the State that Cybergenetics considers the TrueAIIele source code to be a trade secret and 

would not be providing it. CrR 4.7(d).

2. The Court can order the disclosure o f materials outside of the required disclosures 

under CrR 4.7(a), (c), (d), if the information sought is material and the discovery request is 

reasonable. CrR 4.7(e)(1), State v. Norby, 122 Wn.2d 258 (1993).

3. The court can condition or deny disclosure if it finds that there is a substantial risk of 

harm or unnecessary annoyance resulting from such disclosure which outweighs the usefulness of 

any disclosure to the defendant. CrR 4.7(e)(2).

4. Materiality requires that the defendant “make a particularized factual showing that 

information useful to the defense is likely to be found in the records.” State v. Diemel, 81 Wn.App. 

464, 469(1996).

5. The Defense has not articulated with particularity what material information, if any, 

could be found by reviewing the source code. As several experts who work in the field of forensic 

DNA testing have testified, an examination of the source code is not necessary in order to determine 

the reliability of TrueAIIele and validate it for casework.

6. This is not a situation where production of the source code is necessary so that a 

particular functionality of the software can be examined to see if a patent infringement has occurred.

7. TrueAIIele has been validated for use in casework by laboratories in California, 

Louisiana, Maryland, New York, Ohio, Pennsylvania, South Carolina, Virginia, Northern Ireland 

and Australia without having access to the source code.

8. The Defense has failed to meet its burden to show that disclosure of the source code 

is material and reasonable. Based upon the factual findings set forth above, this Court is not

Mariane C. Spearman
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persuaded that a review of the source code is necessary in order to determine whether TrueAIIele is 

reliable. The defense demand for the source code is not material or reasonable because the

testimony in this case from both state and defense experts establishes that scientists can confirm the 

reliability of Trueallele without access to the source code. This testimony is consistent with the 

holding o f other courts that have addressed this same issue. State v. Wakefield, 47 Misc. 3d 850,

854, 9 N.Y.S.3d 540, 543 (N.Y. Sup. Ct. 2015) (“scientists can, and have, validated the reliability of 

Cybergenetics TrueAIIele Casework even though the source code underlying the process is not 

available to the public.”); Com. v. Foley, 38 A.3d 882, 889 (Penn. Sup. Ct. 2012) (“scientists can 

validate the reliability of a computerized process even if  the 'source code’ underlying that process is 

not available to the public.”).

9, Further, Hie usefulness of disclosing the source code is outweighed by a substantial

risk of financial harm to Cybergenetics. Scientists can confirm the reliability of Trueallele without 

access to the source code. Dr. Perlin and Cybergenetics have a legitimate interest in keeping the 

source code, a hade secret, confidential.

C. ORDER

For the reasons stated above, the defendant’s motion to compel the disclosure of TrueAllele’s 

source code is DENIED.

Signed th is_____ day of January, 2017.

_______________ e-filed___________________
THE HONORABLE MARIANE SPEARMAN

Mariane C. Spearman
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Com m onwealth of V irginia v. C lark W atson
Cybergenetics response to Defendant's Motion for a Certificate to compel the production of 
docum ents

Septem ber 17, 2019

Materials

• Cybergenetics TrueAIIele DVD (provided with response)

Response

b. A ll materials generated by [laboratory] when performing validation studies 
concerning the TrueAIIele®  system, including, but not limited to:

i. All records and electronic data used as “input” to the TrueAIIele system and  
the software param eters used to analyze this data .

Cybergenetics ’ electronic data for validation is provided on the TrueAIIele 
DVD  in the 2-Validation > 2-Data folder. Software parameters are described 
in the validation paper or report provided on the TrueAIIele DVD in the 2- 
Validation > 1-Studies folder.

//. All records and electronic data generated by the TrueAIIele system and/or 
laboratory personnel during the course o f the study.

No relevant materials.

ill. A ny analyses o f (3)a.i and 3)aM  above), including bench notes,
measurements, statistics, memos, summaries, conclusions, tables, graphics, 
and any resulting publications, presentations, and reports.

Validation papers and reports are provided on the TrueAIIele DVD in the 2- 
Validation > 1-Studies folder.

iv. A ll communications relating to the design and results of the study, both within 
and external to the laboratory.

No relevant materials.



v. All records of unexpected results, including false positives (false inclusions), 
false negatives (false exclusions), and the conditions under which the 
unexpected results were generated.

Fa lse positives and negatives are described in the validation write-up for the 
study provided on the TrueAIIele DVD  in the 2-Validation > 1-Studies folder.

vi. A ll records o f software glitches, crashes, bugs, or errors encountered during 
the study.

The software is described in the validation paper or report provided on the 
TrueAIIele DVD in the 2-Validation > 1-Studies folder.

vii. Software version numbers o f the components o f the TrueAIIele®  system used  
for the study.

Software version numbers appear in the validation paper or report provided 
on the TrueAIIele DVD  in the 2-Validation > 1-Studies folder.

c. AH m aterials described in (3)a) that were produced by any other laboratory or entity 
concerning a validation study cited by [laboratory] as describing the capabilities 
and/or justifying the use o f the TrueAIIele® software system for casework.

Validation reports are provided on the TrueAIIele DVD in the 2-Vaiidation > 1-Studies 
folder. O ther materials are not available to Cybergenetics.

d. Copies o f ail materials used for TrueAIIele® training received or provided by  
[laboratory], including handouts, sample tests, presentations, and videos.

Train ing videos are provided on the TrueAIIele C ase  DVD in the 3-Tutorials folder. 
TrueAIIele course syllabi, with U R L  links to materials, are provided on the TrueAIIele 
DVD in the 5-M isce llaneous > 1-Training folder.

e. Proficiency testing materials used by [laboratory], including materials used for testing, 
all materials submitted by a test-taker, and results o f all tests taken.

No relevant materials.



f. Source code for the version(s) o f the TrueAIIele®  system used in the instant case as  
well as the versions that apply to (3)a, 3)b, 3)c, and 3)d  above), including all 
software dependencies such as third-party code libraries, toolboxes, plug-ins, and  
frameworks.

An invitation to review TrueAIIele source code by defense experts is provided on the 
TrueAIIele DVD in the 4-VUIer > 6-Source code folder.

g. Software engineering and developm ent materials describing the development, 
deployment, and m aintenance of the version(s) o f the TrueAIIele® software system  
used In the Instant case as well as the versions that apply to (3)a, 3)b, 3)c, and 3)d  
above) including the software engineering documents recom m ended by  
organizations such as the Institute o f Electrical and Electronics Engineers (IEEE) or 
the international Organization for Standardization (ISO ) such as:

i. Software requirements specification documents.
ii. Software architecture and algorithm design documents.
iii. Software implementation documents.
iv. Software deployment documents.
v. Software m aintenance documents.

No relevant materials.

h. All documents relating to the above software engineering and developm ent materials  
including, but not limited to:

i. Modifications, revisions, or updates to original documents.
ii. Software bug and issue tracking logs.

No relevant materials.

iii. Validation and testing documentation and reports for all levels o f the software 
system hierarchy, including subroutines and software components, modules, 
and programs.

Validation materials are provided on the TrueAIIele DVD in the 2-Validation 
folder.

iv. Requests for changes to the system m ade by any designer, developer, or  
user of the system.

No relevant materials.

v. Release, change, update, and upgrade descriptions and logs.

Provided on the TrueAIIele DVD in the 5-M isce llaneous > 2-VUIer updates 
folder.
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