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Abstract 

 

Computers have revolutionized DNA evidence interpretation, replacing guesswork by sound 

statistical inference. Probabilistic reasoning resolves complex DNA mixtures, extracting 

contributor genotypes whose uncertainty is expressed through probability. Information theory 

can tell us much about these “probabilistic” genotypes, even before making a comparison to 

calculate a likelihood ratio (LR). A genotype’s distribution of possible LR outcomes, under prior 

or posterior probability assumptions, shows the power and breadth of its match possibilities. 

 Genotype LR distributions can be rapidly computed by convolving independent locus 

distributions. The tail probability of the non-contributor distribution gives the chance that the 

evidence against a random person is as strong as it is against the suspect. This LR error is a 

generalized random match probability (RMP) for uncertain genotypes. A sexual assault case 

example applies these LR and RMP concepts to DNA mixture evidence and database search. 

 While the LR summarizes evidence, the RMP estimates error. Both statistical measures 

assist a trier of fact in understanding DNA evidence. 
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Introduction 

 

In forensic deoxyribonucleic acid (DNA) analysis, biological evidence is collected from a crime 

scene. Most samples are mixtures of two or more people who contributed their DNA to the 

evidence (Butler 2000). The data generated from a mixture reflect the additive combination of 

these contributors, along with random effects from the laboratory procedures (Perlin and 

Szabady 2001).  

A genotype is the genetic type of an individual’s DNA, a pair of alleles at one or more 

genetic locations. Computers can mathematically separate mixture data into the genotypes of 

each contributor by explaining the quantitative data (Perlin and Sinelnikov 2009). Multiple 

explanations for an uncertain genotype have associated probabilities (Perlin, Legler et al. 2011). 

Genotype uncertainty also arises when analyzing small amounts of DNA, or in reconstructing 

someone’s genotype from a kinship analysis of their relatives.  

Before analyzing evidence data, there is a prior probability distribution for a genotype. 

This prior probability describes the relative prevalence of different genotype values in a human 

population. The prior probability is ascertained by reviewing hundreds of genotypes at every 

tested chromosome location (i.e., “locus”). The frequency counts of genotype values mirror their 

prevalence.  

After analyzing informative evidence, the posterior genotype probability distribution 

accounts for the DNA data. This updating of prior genotype to posterior genotype by means of a 

data-explaining likelihood function is accomplished through Bayesian data analysis (Gelman, 

Carlin et al. 1995). More informative DNA data better concentrates genotype probability onto 

fewer possible values. 
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 Two genotypes are compared, relative to a prior (population) genotype, to produce a 

match statistic that quantifies their association. A person’s reference genotype has all probability 

placed on one genotype value. When an uncertain posterior evidence genotype is compared with 

a reference genotype, the match statistic sum reduces to a single term at the reference value. This 

term is the ratio of posterior to prior genotype probability, evaluated at the reference value.  

Alan Turing called this posterior-to-prior ratio the (Bayes) “factor,” and calculated it as a 

ratio of likelihoods (Good 1985). The factor numerically expresses how strongly the evidence 

supports a hypothesis. In DNA identification, the hypothesis is that a person contributed their 

DNA to the biological evidence. This hypothesis is mathematically assessed through the person’s 

genotype and the evidence data.  

Factors reside on a multiplicative scale. Taking logarithms converts factors to an additive 

information scale. When data are uninformative, the posterior probability does not move from 

the prior, so the ratio is one and the logarithm registers zero information. When posterior exceeds 

prior, the factor logarithm indicates positive identification information for a suspect. Larger 

numbers provide greater support. A posterior probability less than the prior gives a negative 

factor logarithm, reducing support for the identification hypothesis.  

Turing used base ten logarithms, measuring information in “bans” – named for the British 

town Banbury that printed punch cards for his World War II cryptanalysis laboratory. Turing’s 

statistician Jack Good called the logarithm (log) factor the “weight of evidence” (Good 1950).  

DNA analysis tests multiple genome locations in a single reaction tube (Collins, 

Hennessy et al. 2004). The number of simultaneous tests has increased over two decades from 

four to twenty two. These locations are genetically independent of one another. This 

independence permits multiplication of locus factors, often producing astronomical DNA match 
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statistics. On an additive scale, scientists combine information from aggregate DNA tests by 

adding together their independent log factors. 

Every reference genotype has log factor information, evaluated as the logarithm of its 

posterior-to-prior probability ratio. In principle, Bayesian genotype probability is never zero and 

so the log factor is always well defined. (Computational practice may require some domain 

adjustment.) This genotype information is known before any match comparison is made.  

The product set of aggregated multi-locus genotypes is large (around 102L, where L is the 

number of tested loci). Natural questions arise about log factor values distributed over the 

genotype set. What is the chance of a genotype having a log factor close to a particular 

information value? Or exceeding a specified value? Such genotype probabilities correspond to 

frequencies in a human population. Collapsing genotype probability and log factor values onto a 

one-dimensional distribution helps answer these questions (Appendix A).  

The joint log factor distribution of aggregate DNA tests provides considerable 

information about an uncertain genotype. The contributor distribution weights the log factors by 

posterior genotype probability. The expected value of this distribution is the Kullback-Leibler 

(KL) statistic (Kullback and Leibler 1951) – a positive number that predicts the match statistic to 

the true contributor, and measures genotype divergence between the evidence and a random 

population. The spread of a bell-shaped contributor distribution, whether broad or narrow, 

indicates the possible range of match statistics when comparing the genotype with a true 

contributor.  

The non-contributor distribution weights log factor values by prior genotype probability. 

This distribution shows the range of exclusionary match statistics. These (mainly negative) 

values are for a random person who has not contributed their DNA to the biological evidence. 
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Genotypes having distributions close to zero have little exclusionary power, because the negative 

log factors are small. More informative genotypes that can better exclude innocent people have 

more negative distributions, shifted away from zero information. 

We can rapidly calculate the joint log factor distribution for contributors or non-

contributors. The joint log factor is the sum of independent locus log factors. Each locus log 

factor distribution can be quickly assembled from prior and posterior genotype probabilities. It is 

well known that convolving the distributions of independent random variables yields the joint 

distribution of the sum of those variables (Feller 1968). Therefore, the joint distribution of the 

log factor sum can be rapidly computed by convolving the separate locus log factor distributions.  

Match statistic error rates can be calculated for a particular genotype. This is done by 

numerically summing regions under the genotype’s log factor distribution curve. The probability 

of genotypes having a factor value in an interval (e.g., around a reported match statistic) is the 

area under the curve within that interval. The probability of a random person having a match 

statistic at least as large as a suspect’s value is the right tail area under a non-contributor 

distribution. By reducing aggregate genotype log factors to a simple distribution curve, 

probabilities of genotype sets correspond to areas of match statistics.  

We begin with some “Mathematical Background,” defining likelihood ratio (LR) and 

generalized random match probability (RMP) for uncertain genotypes. We show how to rapidly 

construct a “Non-contributor Distribution” for an uncertain genotype’s log factor. We summarize 

similar results for the “Contributor Distribution.” We discuss “Measuring Error” for genotype 

match using a log factor distribution. LR error size helps contextualize DNA match statistics for 

contributors and non-contributors. We present a sexual assault “Case Example” with DNA 

mixture evidence. The RMP error analysis illustrates how log factor distributions apply to 



  9 

forensic mixtures and investigative databases. The case also provides data for verifying 

distribution accuracy.  

 

Mathematical Background 

 

We use probability to represent genotype uncertainty, both before and after examining DNA 

data. We are interested in match information and its error. This section describes related 

mathematical ideas and research.    

 

Genotype Probability  

 

We often want to compare a questioned item Q with a known exemplar K, and measure a 

degree of association between them. Suppose each known exemplar corresponds to a certain 

identifying type. Let X be the set of all possible types. With DNA testing, X is the set of all 

genotypes. Based on data, we can determine the type of a questioned item up to probability.  

In a human population, each genotype appears with some frequency. Let p x( )  be the 

probability Pr X = x{ }  of genotype x appearing in the population. This prior probability p x( )  is 

the chance that a questioned item has genotype x, before examining data. A non-contributor is 

someone who did not contribute DNA to biological evidence. Non-contributor genotypes follow 

the prior probability distribution p x( ) .  

Informative data changes our belief in an item’s type (O'Hagan and Forster 2004). After 

examining feature data measured from a questioned item, q x( )  is the posterior probability 
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Pr X = x data{ }  that the item has genotype x . A contributor is someone who contributed DNA 

to biological evidence. Contributor genotypes follow the posterior probability distribution q x( ) .  

 

Likelihood Ratio 

 

The Bayes factor, or just factor f x( ) , is the posterior to prior genotype probability ratio 

q x( ) p x( ) . For any known genotype xK , the factor α = f xK( )  expresses how much more a 

questioned item Q matches a known exemplar K than coincidence. The numerical association 

f x( )  is a likelihood ratio (LR) (Good 1950), which measures the probative force of evidence 

and factors out prior prejudice. Here is a routine proof showing that the factor is a LR.   

For a suspect genotype s, the factor f s( ) = q s( ) p s( )  is the posterior-to-prior probability 

ratio Pr X = s data{ } Pr X = s{ } . By Bayes theorem, this ratio equals likelihood over total 

probability Pr data X = s{ } Pr data{ } . Hypothesis H  is that the suspect contributed his 

genotype s to the data, while the alternative H  is that it was some unknown person. Therefore, 

the preceding expression is the LR = Pr data H{ } Pr data H{ } , a ratio of likelihoods.   

The factor calculation can adjust prior population p x( )  and degree of relatedness 

(Appendix B). Match information is not tied to a particular choice of genotype prior.   

The error set Eα  is the subset of genotypes x ∈X f x( ) ≥α{ }  for which the factor f x( )  

equals or exceeds factor α . When α = f xK( )  corresponds to a known exemplar K , Eα  

contains the genotypes x  whose numerical LR association f x( )  with questioned DNA item Q is 

at least as great as with xK .  
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Random Match Probability 

 

We are often interested in the size of error set Eα , relative to the random population 

p x( )  distribution. We define random match probability (RMP) as Pr x ∈Eα{ } , the sum 

p x( )
x∈Eα
∑  of prior probabilities p x( ) , taken over all genotype values in error set Eα . A small 

RMP indicates a small chance of a false positive that inaccurately associates an exemplar 

genotype with a questioned evidence item.  

For DNA mixtures, a generalized (or “restricted”) RMP accounts for quantitative data 

and parameters (Scientific Working Group on DNA Analysis Methods (SWGDAM) 2010). Our 

generalized RMP is defined for an uncertain genotype of one person, say, a contributor to a DNA 

mixture. All genotype values having an LR match statistic at least as large as a suspect’s LR 

level α  are included in the RMP index set Eα . Each included genotype’s prior probability is 

added to the RMP sum.  

Different RMP generalizations may employ a different set of allele pairs at a locus. Our 

RMP index set is optimal in several ways. Probabilistic computer inference comprehensively 

considers every genetically possible allele pair when forming the genotype index set. These 

allele pairs are for just one contributor, not mixture combinations. The index set contains the 

matching allele pair, since the suspect has minimal LR. The evidence against other allele pairs 

in the index set is as strong as it is against the suspect. The RMP sum is minimal for an index set 

containing the suspect’s genotype and all other genotypes matching the evidence as strongly.  
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Modern calculus integrates a function based on range values (Lebesgue 1902) instead of 

subdividing the domain (Riemann 1868); this improvement overcomes many technical issues. 

The distribution of a random variable has this function value perspective. Defining the RMP 

domain set Eα  as the genotype pre-image of factor function f match statistic values shares this 

modern view (Wheeden and Zygmund 1977).   

 

Definite Evidence Genotype 

 

A definite evidence genotype concentrates all posterior probability onto one value. (This 

may occur, for example, with abundant DNA left by a single biological source.) For a matching 

suspect genotype s, the posterior probability q s( )  is one. The LR factor becomes 1 p s( ) , the 

reciprocal of the suspect genotype’s prior probability.  

For a definite genotype, classical RMP equals p s( )  (National Research Council 1996). 

This classical value agrees with our RMP sum p x( )
x∈Eα
∑ , α = f s( ) , which collapses to the single 

term p s( )  (all other genotypes x  have zero posterior probability q x( ) , hence a factor 

q(x) p x( )  of zero). Therefore f x( ) < f s( )  for x ≠ s , and the singleton set Eα  contains only the 

suspect’s genotype s.   

Our generalized RMP cannot exceed 1 LR . Markov’s Inequality (Feller 1968) tells us 

that RMP p x( )
x∈Eα
∑  is bounded above by 1

α
f x( ) p x( )

x∈Eα
∑ . But f ⋅ p = q

p
⋅ p = q , so the bound 
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becomes 1
α

q x( )
x∈Eα
∑ . The partial probability sum cannot exceed one, so we have RMP ≤1 LR , 

since α = LR . Equality holds for a definite evidence genotype, i.e., RMP = 1 LR .  

 

Related Research 

 

Statisticians describe LR tail error (our RMP) as a probability of observing misleading 

statistical evidence (Royall 2000). Evidence and uncertainty “have different mathematical 

forms.” Whereas an LR quantifies the strength of observed evidence, uncertainty in the LR is 

represented by probability (Sjerps, Alberink et al. 2016).  

Forensic scientists have estimated LR error (our RMP) computationally (Gill, Curran et 

al. 2008, Slooten and Egeland 2015). Some approximated the LR distribution (Nothnagel, 

Schmidtke et al. 2010, Corradi and Ricciardi 2013). Monte Carlo simulation can count how 

frequently randomly generated genotypes exceed a reported match level (Slooten and Egeland 

2014). Branch and bound algorithms help prune the search when genotype error set Eα  is small 

(Dørum, Bleka et al. 2014), while divide and conquer methods can extend the search to larger 

sets (Kruijver 2015).  

When genotyping systems consider all possible allele values independently of the data 

(Perlin, Legler et al. 2011) the search space may increase exponentially beyond the range of such 

combinatorial methods. Some scientists avoid exact error determination altogether, either by 

using a generic 1/LR upper bound (Taylor, Buckleton et al. 2015), or by electing to not report LR 

error (Kruijver, Meester et al. 2015, Taroni, Bozza et al. 2016).  

The RMP can be viewed as a p-value, the probability that a non-contributor would attain 

an LR at least as large as the one observed for a suspect (Dørum, Bleka et al. 2014). Statistical 



 14 

hypothesis testing parallels decision-making in an adversarial justice system (Kenney 1988). 

There is an initial presumption of innocence, corresponding to the null hypothesis that a 

defendant is a non-contributor. The prosecutor’s task is to prove this assumption false.  

An LR summarizes the probative weight of identification evidence. The RMP measures 

the chance of false positive LR error, that an innocent non-contributor was incorrectly identified 

as a contributor. Jurors deliver a guilty verdict when they reject the null hypothesis (Saks and 

Neufeld 2011), finding a sufficiently small error “beyond reasonable doubt.” The RMP may 

assist jurors in assessing such error.  

 

Non-contributor Distribution  

 

Genotypes have a match statistic probability distribution for people who did not contribute their 

DNA to evidence. This section constructs the logarithmic factor distribution at a single locus, 

and shows how convolution of independent loci efficiently calculates the multi-locus log factor 

distribution. We connect exclusionary power to standard concepts from information theory.   

 

Logarithmic Factor 

 

The logarithm of the Bayes factor is a standard additive measure of information (MacKay 

2003). Additivity aids in understanding, visualizing, computing, combining, characterizing and 

communicating the match statistic. We examine the logarithmic distribution of match values for 

non-contributor genotypes that follow the prior probability distribution.  
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For each genotype x ∈X , the match statistic is the Bayes factor f x( ) = q x( ) p x( ) . The 

logarithm of this function is the weight of evidence log q x( ) p x( )⎡⎣ ⎤⎦ , measured in ban units 

(Good 1950). We would like to see how these logarithmic values are distributed according to 

prior distribution p x( )  for non-contributors – random people in the population who have not 

contributed their DNA to the biological evidence.  

We can map these log f x( )  values from a multi-dimensional set of genotypes to a 

simpler one-dimensional real line. Building the probability mass function (pmf) amounts to 

depositing ordered pairs log q x( ) p x( )⎡⎣ ⎤⎦,   p x( )( )  for every genotype x ∈X  as points on a two-

dimensional graph.  

 

Single Locus 

 

At a single genetic locus, genotype x  is a pair of inherited alleles. Since the log factor 

log f x( )  
is the logarithm of a ratio q x( ) p x( ) , we restrict attention to those genotypes x having 

prior denominator p x( ) > 0  and posterior numerator q x( ) > 0 , giving a well-defined value. 

(With nonzero prior probability and likelihood, the posterior probability is also nonzero, and the 

log factor is defined everywhere.)  Each well-defined genotype x ∈X  deposits a y-axis ordinate 

amount p x( )  to the non-contributor distribution at x-axis abscissa location log f x( ) .  

Adding together all the ordinate p x( )  probability amounts at abscissa location 

y = log f x( )  gives the total probability mass at one point  

 u y( ) = p x( )
x∈X   y=log f x( ){ }
∑   
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More compactly, we write log f −1 y( )  
for the set log f( )−1 y( )  of genotypes x ∈X y = log f x( ){ }  

having log factor value y . Then the non-contributor probability mass function is  

 u y( ) = p x( )
x∈log f −1 y( )
∑   

The accumulation of probability mass for the log f  distribution is shown in the Table 1 

example. Each genotype possibility x1,  x2,  x3,  x4( )  is listed in the first column. The prior p x( )  

and posterior q x( )  probabilities, before and after having seen data, respectively, are given in the 

next two columns. The Bayes factor f x( )  column contains the posterior-to-prior ratio 

q x( ) p x( )  of the preceding two columns. The last column is the logarithmic factor log f x( ) . 

The log factor is negative for exclusionary results where f x( ) <1 , positive for inclusionary 

results with f x( ) >1 , and zero when the factor f x( )  for genotype x is inconclusive.  

The Figure 1 histogram shows log f x( ), p x( )( )  table row pairs binned at a deciban (i.e., 

1 10  of a ban) resolution. We begin the pair deposition process with genotype row 1 (Table 1). 

The logarithm of 1 2  is around –0.3, defining a log f x( )  bin “–0.3”. After depositing genotype 

x1 , this bin initially contains the prior non-contributor probability p x1( ) = 0.2 .  

We continue with genotype row 2 (Table 1). Genotype x2  has prior probability 

p x2( ) = 0.3 , and a log factor log f x2( )  of around –0.3. Adding the second genotype’s prior 

probability of 0.3 to bin “–0.3” gives a total log factor bin mass of 0.5 (Figure 1).  

Genotype x3  has a factor of 1, hence a zero log factor, placing a p x3( ) = 0.25  probability 

mass in bin “0”. For genotype x4 , factor q x4( ) p x4( ) = 2  has a log 2 factor of +0.3. We put its 

probability mass p x4( ) = 0.25  in bin “+0.3”, completing the picture (Figure 1). The cumulative 



 17 

distribution function (CDF) shown in Figure 2 is a step function that monotonically increases 

from 0 to 1, incrementally adding a probability mass p xi( )  at each abscissa point log f xi( ) .  

 

Multiple Loci 

 

An experiment can test more than one feature. In DNA identification, multiple genetic 

loci are tested in a single reaction tube, generating data for a dozen or so loci simultaneously 

(Collins, Hennessy et al. 2004). Each tested locus l  has its own locus genotype set Xl  and prior 

probability function pl . After testing, the single locus data can be analyzed to calculate the 

posterior probability ql , factor fl , and logarithmic factor log fl  functions. The previous section 

showed how to combine prior pl  and log factor log fl  to form a non-contributor locus pmf.  

 DNA testing uses short tandem repeat (STR) loci, where genotypes are pairs of alleles 

differentiated by sequence length (Weber and May 1989). The polymorphic loci used in forensic 

identification have many different alleles that help distinguish between people (Edwards, 

Civitello et al. 1991). The loci are chosen to be genetically independent of one another, either 

residing on different chromosomes or far apart on the same chromosome. This biological 

independence confers statistical independence, where events at one locus convey no information 

about events at another locus (Feller 1968). When testing multiple STR loci, independent results 

are multiplied together using the product rule.  

The joint factor f  over all L independent locus tests is the product fl
l=1

L

∏  of the locus 

factors fl . The logarithm of a product is the sum of the logarithms. Therefore,  



 18 

 log f = log fl
l=1

L

∏⎛⎝⎜
⎞
⎠⎟
= log fl

l=1

L

∑   

Thus the joint match statistic log f  is the sum of the logarithmic locus factors log fl
l=1

L

∑ .  

The joint probability density u  of a sum of independent random quantities having pmfs 

u1 , u2 , …, uL  is the convolution of their pmfs (Feller 1968). That is,  

 u = u1 ∗u2 ∗...∗uL   

For discrete distributions, the convolution u1 ∗u2  is determined at value z  as the sum 

 u1 ∗u2( ) z( ) = u1 y( ) ⋅u2 z − y( )
y∈Y
∑   

Convolving continuous distributions has a corresponding integral formulation.  

The joint non-contributor distribution for joint factor f  is readily computed by 

convolving the additive log fl  factor distribution functions of each locus l . Convolution is a fast 

built-in operation in many computer-programming languages, such as MATLAB (Natick, MA). 

Calculations can combine probability mass, cumulative distribution or integral transform 

functions to rapidly compute their convolution.  

 

Exclusionary Power 

 

The log f non-contributor distribution is an inherent property of an inferred 

“probabilistic” genotype. We can ascertain this distribution before making a match comparison 

to an exemplar genotype. Once posterior probability has been determined from the data, the 

log f  distribution can be calculated immediately. The non-contributor distribution describes the 

power of the genotype to statistically exclude non-contributors.  
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With informative data, posterior q x( )  is different from prior p x( ) , i.e., q ≠ p . The 

average match statistic must then be exclusionary, as shown here. The average non-contributor 

log f  is the expected value  

 Ep log f[ ] = p x( )log q x( )
p x( )x∈X

∑  

over multi-locus genotype tuples x1,  x2,  ...,  xL( )  in X. Since the logarithm of a reciprocal is the 

negative of the logarithm, this expected value equals  

 = − p x( )log p x( )
q x( )x∈X

∑   

The sum is the relative entropy of p  and q , which equals the expected value under prior 

probability p of the logarithmic ratio of probability functions p and q 

 = −Ep log
p
q

⎡
⎣⎢

⎤
⎦⎥

  

This expression is the negative value of the Kullback–Leibler divergence KLpq  between 

p  and q  (Kullback and Leibler 1951), or  

  = −D p ! q[ ]   

Since  D p ! q[ ] > 0  when p ≠ q  (applying Jensen’s inequality to the concave logarithm 

function), we have that Ep log f[ ] < 0 . So the expected non-contributor match value is 

exclusionary. A larger KLpq  indicates greater genotype exclusionary power.  
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Contributor Distribution 

 

Genotype match statistics also have a probability distribution for the person who contributed 

their DNA to evidence. We apply ideas from the previous section to construct contributor 

distributions and discuss their inclusionary power.   

 

Posterior Weighting 

 

We can similarly examine the logarithmic distribution of match values for contributor 

genotypes, now weighted by posterior probability q x( ) . These logarithmic values are associated 

with posterior genotypes of people who are more likely to have contributed their DNA to the 

biological evidence.  

We build this distribution by layering log factor and posterior probability, the pairs 

log q x( ) p x( )⎡⎣ ⎤⎦,   q x( )( ) , for all genotypes x ∈X . For each abscissa location y = log f x( ) , the 

ordinate contributor probability mass is  

 v y( ) = q x( )
x∈log f −1 y( )
∑   

The joint contributor distribution of the additive log factor is then obtained by convolving these 

independent locus log factor distributions.  
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Inclusionary Power 

 

The average contributor log f
 
match statistic is derived from a genotype as the expected 

value relative to posterior probability q  as  

 Eq log f[ ] = q x( )log q x( )
p x( )x∈X

∑   

This relative entropy is the KL divergence between probability distributions q  and p   

  = D q ! p[ ]   

The positive KL number is the expected inclusionary LR information for posterior 

genotype pmf q , relative to population prior p . Large KL values correspond to more 

informative genotypes that have greater inclusionary power.  

 

Measuring Error 

 

There are close relationships between information measures and sums that pertain to the extreme 

set Eα . We explore those connections here to calculate RMP. We apply these ideas to assess 

error in inclusionary and exclusionary statistical match.   

 

Average Factor Ratio 

 

On a genotype set E, the average value of function f  with respect to probability p  is  

avg p
E

f =
sum
E

 f ⋅ p

sum
E

p
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When f  is a Bayes factor q
p

, f ⋅ p  is q
p
⋅ p . Cancelling the prior function p  reduces f ⋅ p  to the 

posterior distribution q , and so the average factor is a ratio of probability sums  

 avg p
E

f =
sum
E
q

sum
E

p
  

This function average over a set helps describe error values in an easy way.  

 

Random Match Probability 

 

Exchanging the left hand side with the right hand side denominator, we have  

 sum
E

p =
sum
E
q

avg p
E

f
  

For LR error analysis, we can examine the extreme subset Eα = x ∈X  f x( ) ≥α{ }  of genotype 

domain elements having function values at least as great as factor α .  

In forensic DNA, this subset Eα  is the set of genotypes x  whose match statistic f x( )  is 

greater than or equal to the match statistic α = f xK( )  for a known person of interest K. The 

RMP measures the “random man” size sum
Eα

p  of this extreme genotype set Eα .  

Writing the above equality with extreme set Eα , the RMP is the ratio  

sum
Eα

p =
sum
Eα

q

avg p
Eα

f
 

Algebraically separating numerator and denominator into multiplicative factors gives 
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 sum
Eα

p = 1
avg p
Eα

f
⋅sum

Eα
q   

Multiplying through by 1, written as α α , we then have  

 sum
Eα

p = 1
α
⋅ α
avg p
Eα

f
⋅sum

Eα
q   

The left hand side RMP is less than or equal to factor reciprocal 1 α . This inequality is 

immediate because the right hand side is 1 α  multiplied by factors bounded by one: a minimum 

cannot exceed an average, and partial probability cannot exceed total probability.   

In a specific match comparison, small shrinkage factors can make RMP much smaller 

than the generic 1 LR  bound. The Case Example below illustrates such error estimate 

improvement.  

 

Non-contributor Distribution – Right Tail Probability  

 

RMP is the prior size of genotype error set Eα . We calculate this false positive specificity 

statistic as the right tail probability of non-contributor pmf u y( )  when y ≥ logα . To determine 

match error for contributor genotypes we find an area under the distribution curve.  

Suppose a contributor’s genotype xK  has an inclusionary LR of α . A small genotype set 

size Pr Eα{ }  shows that few non-contributors have a match statistic larger than α . The small 

(prior) right tail probability value supports the contributor having contributed DNA to the 

evidence. The match statistic α  is far away from the bulk of non-contributor match scores. The 

small RMP indicates the observed match statistic is specific for a genotype match.  
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Contributor Distribution – Left Tail Probability 

 

The posterior genotype match probability of contributor pmf v y( )  when y ≥ logα  is 

 v y( ) = q x( )
x  f x( ) ≥ α{ }
∑

y≥logα
∑   

This genotype set size relates to the statistical sensitivity of the match statistic. It measures the 

size Pr Eα data{ }  of set Eα  after examining data.   

Suppose a non-contributor’s genotype xK  has an exclusionary LR α . A large genotype 

set probability Pr Eα data{ }  would show that most true genotypes have a match statistic larger 

than α . Equivalently, a small genotype set probability 1− Pr Eα data{ }  shows few true 

genotypes having a match statistic as small as α . This gives low probability for a true 

contributor genotype. So a small (posterior) left distribution tail area 1− Pr Eα data{ }  supports 

the hypothesis that someone did not contribute DNA to the evidence.  

 

Case Example  

 

We apply the RMP concept of LR error to a sexual assault case in Britain. The example 

illustrates how error determination helps with DNA database investigation and evidence. The 

data are used to verify convolution accuracy.   
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Sexual Assault Information 

 

On New Year’s night, 1 January 2014, a woman was sexually assaulted when walking 

home through a park at 3 a.m. in Southampton, England. The police collected vaginal swabs 

from the victim, and submitted them to a forensic laboratory for DNA testing with an SGMplus® 

STR kit (Applied Biosystems, Foster City, CA). Searching the DNA evidence against England’s 

national DNA database (NDNAD) identified 13 candidate suspects based on allele similarity. 

Other non-biological factors, such as geographical location, singled out homeless Stuart Ashley 

Burton as the likely perpetrator.  

Cybergenetics (Pittsburgh, PA) applied the TrueAllele® Casework software to the 

SGMplus data, separating out the genotypes of two contributors. The major 85% contributor 

matched the victim with a statistic of a trillion. Comparing the minor 15% genotype distribution 

q x( )  with Burton’s known genotype xk , relative to a Caucasian population p x( ) , gave an LR 

(Bayes factor) f xK( )  of 67,890, with log f xK( )  = 4.8318 ban.  

TrueAllele can bin locus log fl x( )  values for genotypes x , weighted by prior 

probabilities pl x( ) , to form non-contributor densities ul y( )  along a y = log f  scale. Convolving 

these ul  locus densities produces a joint non-contributor distribution u y( ) , as shown in Figure 3. 

This u  distribution has an average exclusionary power  

 E p log
q x( )
p x( )

⎡

⎣
⎢

⎤

⎦
⎥   

of −KLpq  = –3.4397 ban, with a standard deviation of 1.6253 ban.  
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Random Match Probability 

 

Burton’s f xK( )  match statistic of 67.9 thousand has log f xK( )  of 4.8318 ban, which 

gives a right tail RMP of 0.9197x10-6, or 1/1,087,000. Therefore, the chance that a non-

contributor (someone who did not contribute their DNA to the vaginal swab evidence) has a 

match statistic of 67.9 thousand or more, is one in 1.087 million. This precise RMP is 16 times 

smaller than the generic 1 α  (reciprocal LR) error estimate of one in 67.9 thousand. The two 

shrinkage factors locate where RMP improves on the 1/LR error estimate.  

The first shrinkage factor says the minimum α = f xK( ) , or min
Eα

 f , cannot exceed the 

average factor avg p
Eα

f . Substituting into the expression 

 min
Eα

 f ≤ avg p
Eα

f =
f x( ) p x( )

x∈Eα
∑

p x( )
x∈Eα
∑   

where f ⋅ p =∑ q∑ , the match values yield 

 67,890 ≤ 236,500 = 0.2175
0.9197 ×10−6   

A larger genotype error set Eα  can increase RMP, leading to a greater divergence between 

min f  and avg f . Here the avg f min f  improvement is 3.4841.  

The second shrinkage factor says the contributor distribution tail probability on Eα  

cannot exceed one. The right contributor tail (Figure 4, white region) has probability mass  

 q x( )
x∈Eα
∑ = 0.2175   

The reciprocal 1 sumq  equals 4.5969. A smaller right tail gives a higher factor gain.  
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Combining the two shrinkage factors as 3.4841 times 4.5969 equals 16.016. There is a 

16-fold improvement from the generic error 1/LR = 1/67,890 upper bound to the exact RMP = 

1/1,087,000. Not one in a million people would have a genotype that reached the reported match 

statistic by chance. The small RMP is persuasive that the match statistic does not falsely include 

an innocent person (Koehler 2001).  

 

DNA Database Identification 

 

When a DNA database search of evidence returns multiple people k  =  1,...,K , they can 

be differentiated by their match statistic. For each retrieved known genotype xk , determining the 

posterior-to-prior probability ratio q xk( ) p xk( )  gives a Bayes factor of f xk( )  that can be used 

to compare the retrieved genotypes (Table 2, column 2).  

In the Southampton rape case, the genotypes show mainly positive log f xk( )  values 

(Table 2, column 3 & Figure 5). This is because they were all retrieved from a database search 

through allelic similarity to the same evidence genotype q x( ) . However, relative to the 

evidence, Burton’s genotype has a log f  value of 4.8318. This log LR( )  is over 4 ban greater 

than the 0.4731 ban match statistic average of the other twelve, and over 3 ban away from the 

largest neighboring value of 1.7455 ban (Table 2, column 3).  

The RMP can provide further information useful for differentiating between similar 

genotypes found from a database search. The RMPs of the 12 less likely suspects range from 1 in 

11, to 1 in 808 (Table 2, last column). However, Burton’s LR error is 1 in 1.087 million, which is 

highly specific. Unlike the other suspects, his RMP shows it is extremely unlikely that he is a 

non-contributor whose genotype produced the 67,890 match statistic by chance.  
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Based on the DNA match statistics, and other evidence, Burton pleaded guilty to the New 

Year’s Day sexual assault. He was sentenced to twelve years in prison.  

 

Verifying Distribution Accuracy 

 

To verify RMP accuracy, a cumulative distribution for the evidence genotype was 

independently calculated by Monte Carlo simulation. Ten thousand non-contributor genotypes 

were randomly drawn from a Great Britain Caucasian (GBC) population. The TrueAllele VUIer 

software compared the evidence genotype with these randomly simulated exemplars, relative to a 

GBC population, to calculate match statistics and their base ten logarithms. A co-ancestry theta 

of 1% was used.  

 Empirical CDFs for the convolution-based log f  values (blue) and the Monte Carlo 

simulated values (red) are shown in Figure 6. The two CDF curves are quite similar. A two-

sample Kolmogorov-Smirnov (K-S) test (Massey 1951) accepted the null hypothesis that the 

data curves are from the same continuous distribution (p = 0.2475). The K-S statistic was 0.0102, 

with a critical value of 0.0136.  

The two distributions are the same, statistically. But whereas convolving probability 

functions gives exact values throughout the entire log factor range, Monte Carlo approximation 

has limited sampling in the sparse probability tail regions. Since error determination focuses on 

the tail regions, exact convolution is better suited for determining accurate RMP probability than 

is Monte Carlo simulation.  
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Conclusion 

 

Forensic scientists make comparisons to quantify associations between objects. However, they 

do not directly compare these objects. Nor do they directly compare the data derived from 

features of these objects. Rather, they compare the underlying types that produce feature data. 

With DNA evidence, we compare genotypes inferred from observable phenotypic data.  

 The strength of genotype association is quantified in the DNA match statistic. The 

statistic is the probability of a match between the evidence and a suspect, relative to coincidence. 

This LR value measures the strength of DNA evidence against the suspect.  

We also care about LR error. RMP is a standard DNA statistic for conveying potential 

error. Stated in LR evidentiary terms, generalized RMP is the probability that the evidence 

against a random person is as strong as it is against the suspect. A low probability inspires 

confidence in match specificity, while a high probability of spurious match raises doubt.  

Twenty years ago, the RMP statistic summarized simple DNA evidence having a definite 

genotype. For a genotype having a population prior probability of p, the LR is 1/p and the RMP 

is p. The strength of simple DNA evidence is simply expressed through the single number p. 

More complex DNA data introduces uncertain genotypes. Mathematical mixture 

separation or kinship analysis can represent this uncertainty using probability. A contributor’s 

genotype at a genetic locus is a probability distribution over allele pairs. At the suspect’s 

genotype, the posterior evidence genotype probability is q. The LR generalizes to q/p, the ratio of 

posterior to prior genotype probabilities. The reduction from 1 (definite) to q (uncertain) in 

numerator posterior probability expresses reduced DNA evidence strength.  
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RMP quantifies LR error. Genotype uncertainty introduces multiple possibilities into an 

RMP sum. The LR factor function f defines these genotype possibilities. The genotype 

candidates form a set Eα  of genotypes x having an LR value f x( )  that is at least as large as the 

suspect’s LR value α .   

Instead of one prior probability p for a definite genotype, with genotype uncertainty the 

RMP becomes a sum p x( )
x∈Eα
∑  of prior probabilities over many genotype values. Reciprocal 

equality between LR and RMP becomes the inequalities LR ≤1 RMP  and RMP ≤1 LR . The 

RMP sum becomes a tail probability of the genotype’s non-contributor LR distribution.  

At a locus, we can assemble the (contributor or non-contributor) LR log factor 

distribution from prior and posterior genotype probabilities. Convolving independent locus 

distributions rapidly calculates the joint factor LR distribution. RMP is then computed as a right 

tail probability (beyond the suspect’s LR value) of the non-contributor distribution. 

These LR and RMP methods are not limited to DNA identification. In every forensic 

modality, observable features produce data, from which underlying types can be ascertained. 

Combining a forensic type’s prior and posterior probabilities can construct its LR log factor 

distribution. The LR distribution tells us about the type’s strength of evidence, and facilitates 

RMP and other error calculations. This statistical analysis applies to all types of forensic 

features, whether discrete or continuous (Appendix A).  

In the courtroom, forensic experts can deluge a trier of fact with DNA details. The LR 

summarizes all the evidence against a defendant in a single number. RMP describes the 

probability of LR error. Multiplying RMP by a relevant population size gives the number of 

innocent people for whom the DNA evidence is as strong as it is against the defendant. LR and 

RMP statistics can both help a trier of fact to understand the evidence.   
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Appendix A: From Genotypes to Distributions  

 

Reducing genotype probability and log factor values to a one-dimensional distribution simplifies 

and accelerates error determination. We show that discrete genotype match error is a tail 

probability. This correspondence is a special case of the “pushforward measure.” For more 

general forensic comparisons, we show how to construct this measure, and apply it to contributor 

and non-contributor log factor distributions.  

 

Discrete Probability 

 

With discrete genotypes, the specificity error for false positive matches is RMP – the size 

of genotype error set Eα . This set size also equals the right tail probability of the non-contributor 

pmf u y( )  when y ≥ logα . We show here that the (easily calculated) tail probability u y( )
y≥logα
∑  

equals the size of the genotype error set Pr x ∈Eα{ } .  

First express the u y( )  tail probability as  

 u y( )
y≥logα
∑ = p x( )

x∈log f −1 y( )
∑

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥y≥logα

∑   

by expanding pmf u  as a sum of prior probabilities p x( )  over non-contributor genotypes x  

sharing log factor y . Writing out the inner summation for the set of genotypes x , we have 

 =  p x( )
x∈X   log f x( ) = y{ }

∑
y≥logα
∑   

This reduces to the combined sum 
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 = p x( )
x∈X   log f x( ) ≥ logα{ }

∑   

Exponentiating the logarithms on both sides of the summation’s set condition inequality, 

the expression equals 

 = p x( )
x∈X   f x( ) ≥ α{ }
∑   

Since Eα is the genotype error set x ∈X  f x( ) ≥α{ } , we obtain the prior probability sum 

= p x( )
x∈Eα
∑  

which equals the RMP set size 

 = Pr x ∈Eα{ }   

 

Measure and Integral 

 

The Lebesgue theory of measurable sets, functions and integrals generalizes continuous 

functions and Riemann integration to handle pathological situations (Wheeden and Zygmund 

1977). Lebesgue measure and integration work with finite and infinite sets, over discrete and 

continuous domains, and eliminate technical issues involving sets of measure zero and infinite 

discontinuities.  

For a set X, a σ-algebra Σ of subsets of X contains X, and is closed under set 

complementation and countable set unions. A measure µ is a nonnegative function on 

measureable subsets E in Σ for which 
 
µ EK∪( ) = µ EK( )∑ , whenever EK{ }  is a countable 

family of disjoint sets in Σ.  
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A measure space is a triple X,Σ,µ( ) . A real-valued function f x( )  defined for x in a 

measureable set E in Σ is a measureable function when x ∈E f x( ) ≥α{ }  is a measureable set 

for all finite real numbers  α ∈! . The Lebesgue integral f dµ
E∫  of a measureable function f 

over a measureable set E with respect to measure µ is more robust than its Riemann counterpart, 

and enjoys many useful convergence properties.  

 

Pushforward Measure 

 

Let X,Σ,µ( )  be a measure space, and f a measureable function from X to  !1 . Let 

  !,B( )  be the space of real numbers with the Borel σ-algebra B. Then the pushforward 

measure f* µ( )  is a nonnegative measure defined as  

 f* µ( ) B( ) = µ f −1 B( )( )   

for every Borel set B in B. The resulting measure space   !,B , f* µ( )( )  is the one induced on  !  

by measure space X,Σ,µ( )  and function f.  

 In particular, for any  α ∈! , consider the half infinite interval 

  [α ,∞) = y∈! y ≥α{ }   

Taking the inverse image of this Borel set under function f, we have that  

 Eα = f −1 [α ,∞)( ) = x ∈X f x( ) ≥α{ }   

is the subset of X having f x( ) ≥α . The measure of this subset Eα   

 µ Eα( ) = µ f −1 [α ,∞)( )( )   
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describes the size of Eα . Given a measure space X,Σ,µ( ) , the pushforward measure f* µ( )  

specifies a distribution function on  ! .  

 When µ is a probability measure, so that µ X( ) = 1,  

 

µ Eα( ) = µ f −1 [α ,∞)( )( )
= f* µ( ) [α ,∞)( )
= df* µ( )

α

∞

∫
  

Thus subset probability µ Eα( )  is pushed forward from X,Σ,µ( ) , and equals the tail probability 

df* µ( )
α

∞

∫  on the half infinite interval [α ,∞)  in the measure space   !,B , f* µ( )( ) . On any 

probability space X,Σ,µ( ) , the pushforward measure for f  induces a probability distribution 

function on the real line. Product measures correspond to tuples of elements drawn from 

independent spaces.  

 

Genotype Tail Probability 

 

The tail probability u y( )
y≥logα
∑  equals the genotype error set probability Pr x ∈Eα{ } . 

This equality follows immediately from measure theory when the tail probability is defined 

through a pushforward measure.  

 In general, pushing f forward from X to  !  reduces the problem of finding a measure 

µ Eα( )  in a multi-dimensional probability space X,Σ,µ( )  to that of calculating an integral in the 

one-dimensional probability space 
  
!1,B , f* µ( )( ) . This integral is the right tail probability 

df* µ( )
α

∞

∫  of f starting from point α, which is the same as one minus the cumulative distribution 
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df* µ( )
−∞

α

∫  of f ending at α. The pushforward dimension reduction translates subset probability in 

X,Σ,µ( )  into a simpler integral over  !1 .  

 When the measure µ is the prior distribution p x( ) , the pushforward measure f* p( )  

describes the non-contributor factor distribution. When µ is the posterior q x( ) , pushforward 

measure f* q( )  gives the contributor factor distribution. Using log f  in place of f  pushes 

forward onto  !  the corresponding log factor distribution.  
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Appendix B: Population Genetics Adjustments 

 

There are well-known adjustments that can be made for population genetics. The co-ancestry 

correction for relatedness lowers the match statistic. Any population’s allele frequencies can be 

substituted into a match statistic, replacing the original genotype prior.   

 

Co-ancestry Correction 

 

All people share a common ancestry, more so in closely related populations. Therefore, 

human genotypes are not entirely independent of each other. The usual Hardy-Weinberg 

equilibrium population probability for a genotype ij 

Pr X = ij{ } = pi
2,  i = j

2pi pj ,  otherwise

⎧
⎨
⎪

⎩⎪
 

assumes independent mating, and therefore requires some adjustment. 

A simple and effective correction is to introduce a co-ancestry coefficient θ  that 

measures the degree of inbreeding within a population. Then the prior genotype probabilities 

become (Ott 1991) 

 Pr X = ij  θ{ } =
pi

2 +θ pi 1− pi( ),  i = j

2 1−θ( ) pi pj ,  otherwise
⎧
⎨
⎪

⎩⎪
  

accounting for an increase in homozygote ( i = j ) genotypes, with a commensurate decrease in 

heterozygotes ( i ≠ j ).  
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Population Substitution 

 

Bayesian genotype inference updates population prior p x( )  to a posterior q x( ) . This 

update is mediated though a likelihood function 

 l x( ) = Pr data X = x,...{ }   

based on observed DNA data, where  

 q x( )∝ l x( ) p x( )   

So for a different population po x( ) ≠ p x( )  having different allele frequencies, the 

posterior qo x( ) ≠ q x( )  is different as well. We can transform one genotype posterior qo x( )  

based on prior po x( )  to a new q x( )  based on p x( ) . This is easily done through the likelihood 

function  l  using Bayes theorem by writing posterior function q  as  

 q x( ) = l x( ) p x( )
l y( ) p y( )

y∈X
∑   

for any prior function p . In a vectorized computer language, q  can be calculated over the entire 

domain x ∈X  in one step.  

In the MATLAB programming language, for example, likelihood l  and prior p  column 

vectors are combined as  l.*p  over  l'*p  to produce the posterior genotype probability vector 

q . In practice, one can first exhaustively compute a genotype qo x( )  using any prior po x( ) , and 

later swap in a new population p x( )  using Bayes theorem. Changing populations does not 

require extensive genotype re-computation.  
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Tables 

 

Table 1. Forming log f  factors from prior and posterior genotype probability. 

 

 

 

 

 

 

  

Type% Prior% Posterior% Factor%% log%factor%

x" p(x)" q(x)" f(x)" log"f(x)"

1" 0.20" 0.10" 0.5" '0.301"

2" 0.30" 0.15" 0.5" '0.301"

3" 0.25" 0.25" 1.0" 0.000"

4" 0.25" 0.50" 2.0" 0.301"



 42 

Table 2. The LR match statistics and RMP error probabilities in the Southampton case. Each 

row represents a different retrieved DNA database genotype, with “SB” the accused. The last 

column’s “one in” value is the reciprocal of the RMP given in the preceding column.  

 

 

Item% LR% log(LR)% RMP% one%in:%

1" 1/(17.7)" '1.2485" 0.09155110" 11"

2" 1/(2.72)" '0.4339" 0.03595410" 28"

3" 1.21" 0.0824" 0.01818210" 55"

4" 1.54" 0.1878" 0.01569030" 64"

5" 2.01" 0.3025" 0.01330630" 75"

6" 3.35" 0.5248" 0.00958381" 104"

7" 3.35" 0.5248" 0.00958381" 104"

8" 5.21" 0.7166" 0.00713871" 140"

9" 5.90" 0.7709" 0.00655932" 152"

10" 17.8" 1.2513" 0.00297871" 336"

11" 17.9" 1.2535" 0.00296855" 337"

12" 55.6" 1.7455" 0.00123809" 808"

SB" 67,890" 4.8318" 0.00000092" 1,087,000"
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Legends 

 

Figure 1. Histogram of binned log f x( ), p x( )( )  pairs constructs a probability mass function at a 

locus. The x-axis is the factor expressed in logarithmic ban units, while the y-axis is probability 

mass. 

 

Figure 2. Cumulative probability represents a log factor distribution at a locus. The x-axis is the 

factor expressed in logarithmic ban units, while the y-axis is cumulative probability. 

 

Figure 3. The Southampton case joint non-contributor distribution (blue line) for a genotype 

separated from DNA mixture evidence data. The x-axis is the factor expressed in logarithmic ban 

units, while the y-axis is probability density. Computed by the TrueAllele computer and 

displayed in its user interface. 

 

Figure 4. The Southampton case joint contributor distribution (blue line). The green arrow 

indicates the log factor value of the suspect’s genotype. The left (red region) and right (white 

region) tail probabilities are shaded. The x-axis is the factor expressed in logarithmic ban units, 

while the y-axis is probability density. (Rendered by TrueAllele.) 

 

Figure 5. The Southampton case joint non-contributor distribution (blue line) for a genotype 

separated from mixture data. The green arrows indicate the log factor values of retrieved DNA 

database genotypes. The x-axis is the factor expressed in logarithmic ban units, while the y-axis 

is probability density. (Rendered by TrueAllele.) 
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Figure 6. CDFs for convolution-based log f  values (blue line) and Monte Carlo simulated 

values (red line). The x-axis is the factor expressed in logarithmic ban units, while the y-axis is 

cumulative probability. (Rendered by MATLAB.) 
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