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Abstract

Mixtures are a powerful form of forensic DNA evidence. When two or more people
contribute their DNA to a biological item, science can statistically establish that they were
present on the same object. With rape kits, such co-location can place an assailant’s DNA
on a victim’s body. Handgun mixtures of many people can show who did or didn’t handle a
weapon. A shared hat dropped outside a bank can identify the robbers.

Crime laboratories generate informative mixture data, but do not always interpret
them properly. Misinterpreting DNA evidence produces inaccurate match statistics, or
gives no statistic at all. Unfounded statistical methods have failed on hundreds of
thousands of mixtures.

The result is injustice for defendants denied potentially exculpatory evidence,
injustice for victims whose cases are lost when inculpatory evidence is unreported, and
injustice for innocents victimized by crime that DNA could have prevented.

This article reviews the history of DNA mixture interpretation failure. We begin in
1985, at the start of the genomics revolution, discussing the origins of modern DNA testing.
Proceeding in five year increments, we outline the missed opportunities and policy failures
that have brought us to the current situation. We offer recommendations to help overcome

long-standing DNA interpretation problems.
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Background

Forensic science connects evidence through shared characteristics. Markings on a bullet
can match grooves in the barrel of a gun. Latent fingerprints left at a crime scene may be
similar to ridge patterns on a suspect’s hand. Tracks in the mud may mirror the treads of a
shoe or tire. Police gather forensic evidence to help build a case. And police dramas on
television convey the myth of forensic infallibility through the “CSI” effect (1).

In 2009, the National Academy of Sciences (NAS) published their seminal report on
“Strengthening Forensic Science” (2). The NAS report reviewed many forensic modalities,
and questioned their scientific validity. The interpretation of forensic data is often
unreliable. Match statistics are needed to gauge the strength of match between items,
relative to coincidence. But forensic statistics are typically absent or incorrect. Human
bias can skew answers by unconsciously selecting favorable data, using knowledge about
defendant characteristics, or trying to please stakeholders who have a desired criminal
justice outcome.

Deoxyribonucleic acid (DNA) evidence seems immune to such criticism, long serving
as a gold standard for other forensic disciplines. Abundant DNA from one person produces
pristine data signals. Interpreting these clear signals yields an unambiguous genetic type
(or, “genotype”). Comparing definite genotypes, relative to a random person, yields a
reliable match statistic that numerically conveys the probative force of DNA evidence. But
most crime scene DNA is now a mixture of two or more people, with good data but less
certain interpretation. As the NAS report noted, “there may be problems ... with how the
DNA was ... interpreted, such as when there are mixed samples ..."

Simplistic interpretation of DNA mixture data often fails to produce an accurate
match statistic, or give any answer at all. While the limitations and liabilities of unscientific
DNA mixture interpretation were recognized early on (3), only recently has this profound
forensic failure come to the fore. Crime laboratories in Austin, TX and Washington, DC
have been shuttered because of failed DNA mixture interpretation (4, 5). Virginia
reevaluated DNA match statistics for mixture evidence in hundreds of cases (6). Texas is
reviewing twenty four thousand criminal cases for flawed interpretation of DNA mixture

evidence (7). The New York State Police (NYSP) has suppressed reliable DNA mixture
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interpretation methods that could expose their crime laboratory’s mistakes in thousands of
cases (8). These numbers extrapolate to hundreds of thousands of mixture items
throughout the United States, and the national press has taken notice (9).

This failure of forensic DNA interpretation is of broad concern. Pervasive errors in
DNA match statistics undermine public trust in science, and erode confidence in
government agencies that misuse science to obtain convictions. A failed DNA gold standard
portends little hope for fledgling forensic fields. Perhaps the greatest loss is true justice in
a free society. Misinterpreting DNA evidence causes injustice for defendants denied
potentially exculpatory evidence, injustice for victims whose cases are lost when
inculpatory evidence is unreported, and injustice for innocents victimized by crime that
DNA could have prevented.

This article reviews the history of failed DNA mixture interpretation. We begin in
1985, at the start of the genomics revolution, discussing the origins of modern DNA testing.
Proceeding in five year increments, we outline the missed opportunities and policy failures
that have brought us to the current situation. We offer recommendations to help overcome

long-standing DNA interpretation problems.

Biology

The human genome contains three billion DNA letters, a text written across twenty three
chromosomes in the nucleic acid alphabet A, C, G and T. This textual information is used to
operate, maintain, evolve, and grow human organisms. Part of the genome’s power is the
encoding of this biological operating system. Another aspect is the variation between
people found in noncoding regions that scientists can use to trace ancestry, map disease,
and distinguish between individuals.

Scattered throughout the human genome are genetic locations (loci) that have a
short DNA word repeated in tandem. These short tandem repeats (STR) are a rich source
of genetic variation. The number of repeated words at a locus varies between different
people, and these STR length variants (alleles) can be used to identify individuals.

A cell nucleus has two complete genome copies of the 22 human autosomal

chromosomes, one inherited from each parent. So at a particular locus on a chromosome,
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there are two alleles - maternal and paternal. A person’s pair of alleles at a genetic locus
defines their genotype at that chromosome location.

An STR locus with many (say, fifteen) allele variants yields very many genotype
allele pair possibilities (say, a hundred). Examining multiple independent STR loci
multiplies those possibilities, allowing for a trillion trillion possible genotypes (24 powers
of ten). Since there are fewer than ten billion people alive today (10 powers of ten), there

are far more STR genotypes than people, making DNA useful for identification.

1985: Revolution

Three technologies triggered the DNA revolution in the automated genetic analysis of
minute biological samples. The first technology was polymerase chain reaction (PCR),
which let scientists easily make millions of copies of small DNA quantities at a genetic locus
(10). Second was the automated DNA sequencer (now called a “genetic analyzer”), which
used electrophoretic separation and laser detection to measure DNA fragment length and
quantity (11). Finally, cheap ubiquitous computing enabled automated analysis of genetic
data (12).

The STR genetic marker was an early beneficiary of this technological juxtaposition
(13). PCR amplification of an STR locus produced DNA fragments in detectable quantities.
Separating fragments on a DNA sequencer showed data peaks, with longer alleles having
greater length. Computer analysis of STR data could identify and size these peaks to

indicate allele events, and would eventually automate genotype determination.

1990: Threshold

The original STR genetic tests were done on DNA samples from a single source, not
mixtures. The locus data had one or two tall peaks, corresponding to the one or two
parental alleles in an individual’s genotype. The testing was done for genetic diagnosis,
genome mapping, and drug discovery (14).

With simple single source data, the interpretation issue was separating the true

alleles from background noise or data artifacts. This separation was accomplished by
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drawing a line that separated tall allele peaks from short non-allele peaks. A DNA
sequencer manufacturer advised setting this threshold at around 100 relative fluorescent
units (RFU). There was no statistical science involved, just a rule of thumb to help

technicians interpret their allele data based on peak height.

1995: Variation

With abundant DNA from one person, and clean data signals, thresholds worked well to
separate tall allele peaks (1000 to 2000 RFU) from baseline instrument noise (5 to 15 RFU).
However, there were other data artifacts that produced peaks over baseline, or subtler
peak patterns.

PCR stutter is an error in the DNA copying mechanism (15). When the polymerase
enzyme copies a DNA region of STR text, it can lose its place and skip over one of the short
repeated words. This deletion drops a repeated word, generating a DNA fragment one
word shorter than the actual allele (e.g., a 10 allele with 10 repeated words can produce a
fragment having only 9 repeated words). Such stutter alleles show around 5-15% of the
true allele’s peak height, and reside adjacent to the allele peak. Stutter peaks can be
identified and removed with single source DNA data, but complicate the interpretation of
mixed or low-level DNA.

The original STR loci used in genetic testing had two letters in a repeated word (13).
These di-nucleotide repeats were popular with geneticists because their high genome
density placed them near most genes. However, they gave complex stutter patterns with a
long trail of fragments having from 5 to 10 dropped words. For that reason, forensic
identification (which had to be explained to lay juries, and only needs a dozen loci)
employed tetra-nucleotide repeats having four letters in a repeated word (16). Their
simpler stutter patterns usually show just one prominent stutter peak.

Automated computer analysis could mathematically separate stutter peaks from
STR locus data (17). Some genetic and forensic practitioners used this computerized
approach (18), but most technicians were more comfortable removing stutter visually.

Other random factors affect genotype data. These largely arise from the inherent

random variation in PCR copying. Within a copying cycle, some DNA fragments will copy
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more efficiently than others. Given identical DNA input, this random copying process
introduces variation in the data output, with each PCR experiment producing its own data
pattern. This natural variation in DNA counting is well known to scientists, and has been

mathematically modeled (19).

2000: Mixture

The Federal Bureau of Investigation (FBI) helps regulate forensic DNA analysis in the
United States. Their Scientific Working Group on DNA Analysis Methods (SWGDAM)
convenes twice a year to discuss policies of interest to the FBI laboratory. SWGDAM
members are forensic practitioners, mainly government employees of crime laboratories or
police organizations. They are not experts in modern statistical computing and its
application to interpreting DNA data.

The FBI had developed a population statistics computer program (Popstats) for
calculating DNA match statistics. This software was distributed free of charge to state and
local crime laboratories that used the FBI's COmbined DNA Index System (CODIS) database
of DNA from convicted offenders, crime scenes, and other sources. Popstats could calculate
match statistics for DNA mixtures using the combined probability of inclusion (CPI)
method.

DNA mixture data contains considerable information. Since genotypes come in
allele pairs, the peak heights in mixture data can be used to separate the data into the
genotypes of each contributor (20). For example, a data pattern of two tall peaks and two
short peaks can be separated into a major genotype providing a large quantity of two
alleles, and a minor genotype contributing a small amount of two other alleles.

The FBI chose to simplify mixture interpretation by simplifying the data. Their
approach made little use of the STR data’s highly informative peak heights, patterns, and
variation. Instead, they applied a threshold to the data signal, separating peaks into two
categories - present or absent. Since thresholds worked well with single source DNA data,
the idea was to use them again for interpreting mixtures.

A probability of inclusion (PI) statistic was easily calculated at each locus by

plugging the population frequency of each present allele into a simple inclusion probability
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formula (add the frequencies, and square the sum). Since the loci are independent,
multiplying the individual locus PI's together using the product rule calculates a combined
CPI probability. (See (21) for a CPI example with data and calculations.)

The SWGDAM 2000 guidelines (22) for STR interpretation were promulgated and
widely adopted. Most DNA mixture interpretation in the United States was then done using
CPI, or a related threshold-based method that considered a known victim reference (CLR).
These simple methods let the FBI and crime labs across the country analyze mixtures of
two or more people, the most common type of criminal DNA evidence.

But there is actually no scientific basis for this threshold approach to analyzing
mixtures. Modifying observed data can introduce error or bias. Since peak variation scales
with height in the PCR counting process, a “one size fits all” threshold cannot work with
mixtures — major and minor contributors have different variations in allele quantity. The
CPI method was scientifically unfounded.

The FBI and other labs did not empirically validate mixture thresholds or CPI for
match statistic accuracy. Data interpretation followed SWGDAM rules, not rigorous
science. Laboratory audits and accreditation stressed adherence to these rules, ensuring
widespread usage. Unfortunately, thresholds often gave “inconclusive” results on

informative data, and CPI usually gave an inaccurate DNA match statistic (21).

2005: Notice

A wake up call came in 2005 from the National Institute of Standards and Technology
(NIST) in the United States Department of Commerce. NIST conducted a MIX05 inter-
laboratory comparison study, sending the same two person DNA mixture data to 69
participating laboratories for interpretation (23). The results showed extreme variation in
reported results. There were many “inconclusive” responses. The 29 labs that provided
match statistics had numbers ranging from 31 thousand to 213 trillion, spanning 10
powers of ten on the same data (24).

These results on mixture statistic variation were widely disseminated throughout
the forensics DNA community and wider audiences (25). NIST presented the mixture

reporting discrepancies at conferences, workshops, and scientific meetings. However, the
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crime labs continued to use the FBI Popstats software, reporting inaccurate DNA mixture
match statistics that were not validated or reproducible.

The CPI mixture interpretation failure extends to the CODIS database. Simple allele
list comparison (based on set intersection, not identification information) has a high false
positive match rate for DNA mixtures. To reduce false matches to the wrong suspect, most
mixtures analyzed by crime labs are not uploaded to this database. Investigators cannot

use CODIS for this DNA evidence to solve crimes or identify suspects.

2010: Crisis

Scientists and statisticians wrote about the DNA mixture failure. They contended that
thresholds lacked a scientific foundation (26). They found that CPI statistics for low-level
mixtures with little DNA could be unfair to defendants (27). They questioned whether CPI
even made any sense as a match statistic (28).

There was concern about human bias in the CPI method, and producing subjective
results that were suspect-centric or pro-prosecution (2). A human analyst first adjusts the
data (applying thresholds, removing apparent stutter, etc.), and then looks at the
defendant’s genotype to decide if the person is included in the mixture. Only after first
changing the data and assuming inclusion does the analyst then run CPI software to
calculate a match statistic, a number often used in court to help establish guilt. Assuming
guilt to establish guilt is circular reasoning.

There is bias when an analyst subjectively picks data by choosing loci after first
looking at the defendant’s genotype (29). One report showed how analysts could justify
including any “Tom, Dick or Harry” who was not actually in the DNA evidence (30). In
another study, analysts who had the “potentially biasing context” that their corroborating
DNA evidence “was essential to the prosecution” did not exclude a defendant from a
mixture; however, without such context, only 1 of 17 other DNA examiners agreed, while
16 “reached a different and conflicting conclusion” (12 exclude, 4 inconclusive) (31). Most
mixture interpretation software requires an analyst to prepare the input by first selecting a

subset of their data.
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In their oft cited “cartoon” paper (32), the FBI proposed a solution - since one
threshold failed, use two thresholds. They introduced a second “stochastic threshold” at a
higher level to discard data that might have too much variation. There was no statistical
theory or empirical data to support this unfounded proposal, just cartoon drawings. No
validation studies were done to establish accuracy. Sophisticated mathematics can model
data variation, but applying another simplistic threshold simply discards more data.

Regardless, the FBI's SWGDAM 2010 guidelines (33) imposed stochastic thresholds
on crime laboratories, making the cartoon paper de facto national policy. The labs
compliantly determined these thresholds, and applied them to mixture evidence. The
second threshold greatly decreased their match statistics and increased inconclusive

outcomes (34), eliminating needed DNA information.

2010: Alternative

In 1999, Cybergenetics (Pittsburgh, PA) began developing a sophisticated statistical
solution to DNA mixture interpretation (20). After a decade of development, testing and
refinement, the TrueAllele® technology become available. In 2009, TrueAllele was used in
a Pennsylvania homicide trial (35). A scientific study (the first of over thirty such
validation studies, seven of them peer-reviewed) demonstrated a large “information gap”
between the empirically tested TrueAllele system and the FBI's unvalidated CPI approach
(36).

Instead of discarding peak data, TrueAllele uses all the height information. Rather
than applying thresholds, TrueAllele statistically determines PCR and instrument variation
directly from the data. The statistical computation explores most conceivable solutions,
objectively separating genotypes out of the mixture data. Only afterwards does
comparison with another person’s genotype calculate a match statistic. A human analyst
cannot bias the outcome - all the data goes into the computer, with results based on
scientific evidence, not a person’s preconceptions.

However, some DNA workers preferred to “control their data” and would not cede
that control to an accurate, objective forensic calculator. Others viewed TrueAllele as a

threat to their job, or status as a “DNA expert.” Moreover, TrueAllele automation opened a
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window into past interpretation failures that could expose potential liabilities. The
subjective examination of DNA mixture data continued to produce inaccurate or

inconclusive match statistics.

2015: Failure

A 2011 TrueAllele validation study conducted jointly with the NYSP DNA lab (Albany, NY)
showed that CPI vastly underreported DNA’s probative value (37). Whenever the lab was
able to report a CPI statistic, their number was (on average) a million times less than the
true match statistic on the same data. CPI analysis removed considerable DNA information.

A 2013 NYSP validation study examined how human mixture analysis performed on
data where the TrueAllele computer produced a match result (38). TrueAllele’s median
match statistic was around a quadrillion. When TrueAllele gave a result, 70% of the time
thresholds failed to report any match statistic. Human review was silent about most DNA
evidence, incorrectly concluding that informative items were inconclusive.

In 2013, NIST conducted a MIX13 inter-laboratory study (39). The hope was that
the new stochastic threshold procedure had adequately addressed natural data variation.
Their hope went unrealized when a hundred participants examined a three person mixture
that did not contain a particular suspect. Seventy groups incorrectly included this suspect,
whose DNA was not present in the mixture (70% false match rate), giving irrelevant DNA
match statistics that ranged from 9 to 344,000. Twenty four labs found the comparison
inconclusive. Only six correctly excluded the suspect (6% accuracy rate), with one of them
using TrueAllele.

A 2014 TrueAllele validation paper conducted on 72 Virginia mixture cases showed
the extent of CPI's lost information (34). On a hundred DNA comparisons, the average
TrueAllele match statistic of a hundred billion (1011) dropped to only millions (10°) when a
threshold was applied and CPI calculated. Applying a second (stochastic) threshold to the
same mixture data further reduced the modified CPI statistic to just hundreds (10%).
Moreover, the SWGDAM 2010 procedure did not eliminate all false matches.

In 2015, comparison of inclusion probability with TrueAllele match information

showed that CPI was a one-sided random number generator, uncorrelated with
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identification information (21). The subjective CPI statistic depends on the number of loci
tested, not on the probative value of the DNA evidence. That is why (using all loci) CPI
always gave the same answer - around a million - regardless of the data. After an analyst
first decides that a defendant’s DNA is in a mixture (viewed as guilt by a jury), CPI can

afterwards provide an impressive statistic that only restates a human judgment.

Law

DNA holds considerable prejudicial sway over a jury. In a courtroom, the three letters can
seem to abbreviate “Do Not Acquit.” When DNA match statistics are routinely wrong or
lack probative value, it is hard to justify introducing them in criminal trials. The Federal
Rules of Evidence (FRE) provides legal mechanisms for excluding harmful DNA evidence
from court (40).

FRE Rule 403 permits a court to “exclude relevant evidence if its probative value is
substantially outweighed by a danger of one or more of the following: unfair prejudice,
confusing the issues, misleading the jury, undue delay, wasting time, or needlessly
presenting cumulative evidence.” A CPI match statistic essentially counts up the number of
loci deemed an “inclusion” by a human analyst (21). The statistic is cumulative evidence
that reframes an analyst’s subjective conclusions as an objective-sounding match number
that can mislead a jury. Since CPI is uncorrelated with identification information, it has
little probative value. Mixture statistics that are more prejudicial than probative can be
challenged in a pretrial hearing to keep the jury from hearing unfair DNA results.

Rule 702 guides who can testify as an expert witness to render a scientific opinion
about DNA evidence. The expert’s testimony must be based on reliably applying a reliable
method to sufficient data. After a pretrial hearing, a judge can exercise their gatekeeper
role to protect the jury from hearing unreliable scientific evidence. Unreliable DNA match
statistics are susceptible to challenge. A judge may rule that inaccurate or insufficiently
validated DNA mixture statistics are not admissible. Challenging unreliable DNA
interpretation can keep out bad evidence, even when there is good underlying data (41).

In Brady v. Maryland (42) the Supreme Court of the United States held “that the

suppression by the prosecution of evidence favorable to an accused upon request violates
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due process where the evidence is material either to guilt or to punishment.” This ruling
applies “irrespective of the good faith or bad faith of the prosecution” because “society wins
not only when the guilty are convicted, but when criminal trials are fair.”

When mixture interpretation fails, no DNA match statistic is reported. The absence
of a report can hide potential exculpatory DNA evidence. But if a defendant requests all
data from all laboratory testing, Brady requires the government to provide that data.
Effective interpretation of the government’s DNA data by an independent expert might

exonerate the accused, or implicate another person.

Conclusion

Unscientific, untested “statistical” analysis of DNA mixtures has led to incorrect results on
hundreds of thousands of evidence items. When thresholds give an “inconclusive” result on
mixtures with data, that silent non-answer is usually wrong. When CPI match statistics are
reported, again the answer is usually wrong.

Innocent people remain in prison because informative DNA wasn’t used in their
defense. Defendants are wrongfully convicted when misinterpreted DNA can’t identify the
true culprit. Perpetrators go free when DNA evidence is failed by forensic statistics. Freed
criminals then commit more crime, which DNA should have prevented, needlessly harming
innocent victims. This is not the fairest justice that DNA science can provide.

Modern genotyping programs use probability to help interpret DNA mixtures (43).
TrueAllele has a fully Bayesian model (44) that considers all data and all solutions. Less
thorough programs remove data to simplify the problem using thresholds, dropout
parameters (45) or peak filters (46). Subjective programs let a human operator choose
input data and parameters to overcome software limitations (47). While crime labs have
started adopting better match statistic software, validation studies are needed to
determine their range of applicability (48).

The following recommendations may help society move beyond mixture

interpretation failure, and enjoy consistently more reliable DNA evidence:
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1. Open DNA data to public scrutiny. The crime labs have failed to produce reliable
match statistics for over fifteen years. The solution is open access to all DNA data,
so that impartial scientists can publicly reassess crime lab results in every case.

2. Revisit all past DNA mixture cases. Hundreds of thousands of DNA mixtures have been
improperly interpreted. Only an unbiased, accurate software review of all this
evidence can rectify the problem.

3. Educate trial attorneys and judges. Law attracts many who would rather not study
science or mathematics. But lawyers need to understand the evidence they attack
or defend. Appropriate education is needed to teach them DNA statistics.

4. Fully automate mixture interpretation. Human analysts are trained to remove DNA
data from the input to their interpretation software, which introduces bias and
error. Automated computing can help eliminate such human decision-making.

5. Extensively validate DNA interpretation. Most mixture statistics have not been
validated for their intended use. No method, whether done by man or machine,
should ever be introduced as evidence without supporting validation.

6. Keep methods within their limits. Defense vigilance helps ensure that crime labs stay
within the bounds of their validated interpretation methods. Without this DNA
pressure, false positives may falsely identify or convict innocent people.

7. Go beyond laboratory limits. Better interpretation methods can solve DNA mixtures
that crime labs cannot. Independent groups should interpret these data. Otherwise

false negatives may fail to identify, withholding potentially exculpatory evidence.

Unfounded DNA statistics have inflicted considerable injustice on defendants, crime

victims, and society. Every case that involved inconclusive DNA mixtures or unfounded

match statistics should be revisited. It is time to rectify two decades of forensic failure with

accurate, objective, and validated DNA interpretation.
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