
Received:
9 July 2018

Revised:
18 September 2018

Accepted:
24 September 2018

Cite as:
Mark W. Perlin. Efficient
construction of match strength
distributions for uncertain
multi-locus genotypes.
Heliyon 4 (2018) e00824.
doi: 10.1016/j.heliyon.2018.
e00824

https://doi.org/10.1016/j.heliyon.2018

2405-8440/� 2018 The Author. Publ

(http://creativecommons.org/licenses/b
Efficient construction of match
strength distributions for
uncertain multi-locus
genotypes

Mark W. Perlin∗

Cybergenetics, Pittsburgh, PA, USA

∗Corresponding author.

E-mail address: perlin@cybgen.com (M.W. Perlin).
Abstract

Natural variation in biological evidence leads to uncertain genotypes. Forensic

comparison of a probabilistic genotype with a person’s reference gives a

numerical strength of DNA association. The distribution of match strength for all

possible references usefully represents a genotype’s potential information. But

testing more genetic loci exponentially increases the number of multi-locus

possibilities, making direct computation infeasible.

At each locus, Bayesian probability can quickly assemble a match strength random

variable. Multi-locus match strength is the sum of these independent variables. A

multi-locus genotype’s match strength distribution is efficiently constructed by

convolving together the separate locus distributions. This convolution

construction can accurately collate all trillion trillion reference outcomes in a

fraction of a second.

This paper shows how to rapidly construct multi-locus match strength distributions

by convolution. Function convergence demonstrates that distribution accuracy

increases with numerical resolution. Convolution construction has quadratic

computational complexity, relative to the exponential number of reference

genotypes. A suitably defined random variable reduces high-dimensional

computational cost to fast real-line arithmetic.
.e00824
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Match strength distributions are used in forensic validation studies. They provide

error rates for match results. The convolution construction applies to discrete or

continuous variables in the forensic, natural and social sciences. Computer-

derived match strength distributions elicit the information inherent in DNA

evidence, often overlooked by human analysis.

Keywords: Molecular biology, Mathematical biosciences, Genetics, Computational

biology, Biotechnology, Bioinformatics

1. Introduction

Forensic identification is the science of match. When two objects have identical fea-

tures, their match statistic increases with the rarity of those features. Feature uncer-

tainty or dissimilarity reduces the match statistic. This balance between numerator

similarity and denominator surprise is the likelihood ratio (LR), first used forensi-

cally for glass evidence [1]. Match strength puts the LR on a logarithmic scale,

enabling the addition of independent evidence factors [2].

Deoxyribonucleic acid (DNA) testing of biological evidence generates laboratory

data from multiple genetic loci. Simple locus data from an unambiguous DNA refer-

ence can give a definite genotype having one value. But DNA evidence usually pro-

duces complex data. Such data leads to an uncertain locus genotype that assigns

probability to a hundred possible values. Statistical comparison of an inferred evi-

dence genotype with a definite reference genotype calculates LR match strength.

This LR numerically divides evidence genotype probability by population probabil-

ity, both evaluated at the reference genotype. Adding together independent locus

log(LR) values yields the total match strength.

An evidence genotype’s match strength is mathematically determined at every refer-

ence point before any comparison is made. The distribution of match strength values

gives insight into genotype uncertainty. A definite genotype concentrates all its prob-

ability at maximal strength for the one matching reference. An entirely uninformative

genotype collapses to zero match strength. Most genotypes fall in between these two

extremes, often showing a bell-shaped distribution of match strength along the real

line. For references unlikely to have contributed to the evidence, the uncertain geno-

type’s match strength distribution is centered left of zero (Fig. 1). For references likely

to have contributed to evidence, the contributor distribution is mainly positive (Fig. 2).

Match strength distributions have broad application in forensic science. Non-

contributor distributions have been graphed as Tippett plots [3] to assess data quality

and compare interpretation methods [4]. Distribution curves predict DNA database

search specificity [5] and kinship identification power [6]. The distributions provide

LR error bounds and tail probabilities [7]. In validation studies, match strength
on.2018.e00824
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Fig. 1. Non-contributor distribution. (Cumulative) An uncertain genotype’s cdf FX for non-contributor

random variable X shows cumulative probability (y-axis) relative to logarithmic match strength (x-axis).

(Probability) At bin resolution ε ¼ 10�3 ban, the corresponding pmf f εX gives the probability in each bin.
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distributions summarize the sensitivity and specificity of statistical methods for in-

terpreting DNA mixtures [8, 9].

There are exponentially many multi-locus genotypes. Listing all combinations, with

one value from each locus, forms the multi-locus possibilities. A dozen loci generate

a trillion trillion possible genotype outcomes. Brute force LR comparison of an un-

certain genotype with all these reference possibilities is not feasible. Instead, Monte

Carlo simulation samples representative match strengths [4, 10]. Branch-and-bound

[11] and importance sampling [5] algorithms can improve simulation performance in

some applications. But the genotype space grows exponentially with additional lo-

cus tests, and sampling is inexact.

There is an analogous combinatorial explosion in probability theory. When tossing a

coin n times, there are 2n possible outcomes of head (H) and tail (T) sequences. One

additional toss doubles the number of H-T sequences. But the interesting informa-

tion concerns the number of heads, not where in the sequence these heads occur.

With n tosses, there are just nþ1 counting results: 0, 1, 2, ., or n heads. A random

variable (RV) [12] summarizes the exponential 2n number of experiment outcomes

as a linear nþ1 number of informative results. The binomial probability Binom(k; n,

½) of getting k heads in n tosses of a fair coin is n!
k!ðn�kÞ!2

�n.
on.2018.e00824
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Fig. 2. Contributor distribution. (Cumulative) An uncertain genotype’s cdf FY for contributor random

variable Y shows cumulative probability (y-axis) relative to logarithmic match strength (x-axis). (Prob-

ability) At bin resolution ε ¼ 10�3 ban, the corresponding pmf f εY gives the probability in each bin.
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The binomial distribution is constructed as a sum of independent coin tosses [13].

Convolving the distribution of n tosses with another toss forms the expanded bino-

mial distribution Binom(k; nþ1, ½) for nþ1 tosses [14]. Convolution shifts and adds

lists of numbers, producing (for example) the binomial coefficients n!
k!ðn�kÞ! of Pas-

cal’s triangle [15]. In this paper, the concepts of RV and convolution are used to effi-

ciently construct match strength distributions for multi-locus evidence genotypes.

The Methods introduce evidence genotypes and their uncertainty. The match

strength RV arises from genotype probability functions, and is efficiently con-

structed by convolution. The function convergence of binned distributions helps

demonstrate their accuracy. Mixing genotype distributions to form composites accel-

erates validation studies.

The Results lend empirical support using an uncertain genotype derived from a 10%

DNA mixture component (Materials). The genotype’s match strength distribution is

constructed for one locus, and then convolved across many loci. Distribution accu-

racy is assessed by function convergence at increasingly fine bin resolutions. Effi-

ciency is measured by timing different stages of distribution construction.

Genotype sample space size is compared with the number of bin intervals. Bin event

occupancy explains why the convolution construction works efficiently. Composite
on.2018.e00824
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distributions can speed up validation. Match strength error rates are instantly calcu-

lated from (single or composite) genotype distributions.

The Conclusions discuss the general applicability of these match strength convolu-

tion methods for handling genotype uncertainty.
2. Methods

2.1. Multi-locus genotype

DNA is the linear information molecule that encodes cellular function in a four-letter

nucleic acid alphabet [16]. The three billion-letter genome sequence differs between

people, with greater genetic similarity in more closely related individuals. Two com-

plete genome copies, maternal and paternal, reside in the nucleus of most human

cells. When people deposit their biological material, they can be identified through

their DNA.

A short tandem repeat (STR) locus is a highly polymorphic marker that accentuates

DNA differences at a particular chromosomal location [17]. STR alleles vary by

length, based on the number of tandemly repeated short DNA words. A typical

STR locus used in human identification has about 15 different length variants. A ge-

notype at a locus is a pair of (maternal and paternal) alleles. With n¼ 15 alleles, there

are about n(nþ1)/2 z 100 unordered locus allele pairs. These 102 allele pairs form

the possible locus genotype values.

Forensic scientists sample from L ¼ 10 to 25 autosomal STR loci from genetically

independent locations across 22 chromosomes [18]. There are roughly (102)L¼ 102L

possible multi-locus genotype values. Even a dozen (L ¼ 12) loci provide a trillion

trillion (102,12¼ 1024) possible genotypes, far more genetic bar codes than the seven

billion (<1010) people on earth, and thus useful for forensic identification. The num-

ber of genotype values 102L grows exponentially with the number of tested loci L.

The human population is a small (1010) sampling of multi-locus genotype values

from the full (1024) set of genotype possibilities. These genotype values follow a

non-uniform population probability distribution based on locus allele frequencies

[19]. This population distribution corresponds to the prior probability of a genotype,

before observing phenotypic STR data.
2.2. Genotype uncertainty

Multiplex STR data can be generated for L loci in a single tube from one biological

specimen. A molecular biology laboratory extracts DNA molecules from the spec-

imen, amplifies the STR alleles using polymerase chain reaction, and detects the

relative amount of fluorescently-labeled alleles by DNA size separation [20]. With
on.2018.e00824
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abundant intact DNA from one person (e.g., a reference sample), the observed allele

events directly correspond to the person’s genotype.

With most DNA evidence, however, the STR data can support multiple genotype

explanations. Having different explanations leads to genotype uncertainty. The un-

certainty can arise from mixtures of two or more contributors to a DNA specimen

[21], damaged or small amounts of DNA [22], or reconstructed genotypes from rel-

atives [23].

Bayesian probability [24] can model STR mixture data as a weighted linear combi-

nation of contributor genotypes [25]. A robust probability model [26] accounts for

variance and nuisance parameters from the laboratory experiment (e.g., stutter,

imbalance, decay). Markov chain Monte Carlo (MCMC) numerically solves high

dimensional probability models through statistical sampling [27]. The result is geno-

type separation [28], producing a posterior genotype probability distribution for

each person who contributed DNA to the biological specimen.
2.3. Genotype probability functions

Genotype uncertainty can be expressed in the standard mathematical language of

probability, RV’s and their distributions [10, 29]. Let ul be a genotype allele pair

value for one person at one locus. Then u ¼ (u1, ., uL) is a person’s multi-

locus genotype value comprised of allele pairs at all L loci.

Sample space U is the set of all genotype outcomes u for one contributor to DNA

evidence. There are natural probability measures on U. Prior probability p(u) is

the chance of observing genotype u before examining evidence, based on popula-

tion probability. Function p maps U into the unit interval I ¼ [0,1], a subset of

the real numbers R.

STR data introduces a likelihood function l from U into R, where l(u) is the con-

ditional probability of observing the data, given a genotype u ˛ U. Posterior prob-

ability q(u) is the chance that a contributor has genotype u, after observing the STR

data. Function q maps genotypes U into interval I. This probability mass function

(pmf) is calculated from Bayes theorem as q(u)f l(u) $ p(u), the normalized prod-

uct of likelihood and prior.

The LR of genotype u ˛ U is the posterior-to-prior probability ratio q(u)/p(u) [30].

Bayes theorem can re-express q(u)/p(u) as a ratio of two likelihoods e the chance

l(u) of observing the data assuming genotype u, versus the total data probability
P

u˛U
lðuÞ$pðuÞ when the genotype is unknown [31].

The logarithm of the LR, or the “weight of evidence” [2], measures the strength of

association between the evidence genotype and reference u, relative to coincidence.

This match strength is a real-valued function s from genotypes U into numbers R,
on.2018.e00824
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where s(u) is log10[q(u)/p(u)]. The number resides on an additive scale in base ten

“ban” units.
2.4. Match strength distributions

The power set F contains all subsets of the finite genotype set U. F is a sigma field

[12], closed under set union, intersection and complement. When assigning prior

measure p, the triple (U, F , p) [29] forms a prior probability space for U. The

non-contributor RV X is a function from U to R, where genotype u is mapped

into match strength s(u).

The non-contributor distribution function FX is the set probability Pr{X < x} [12].

This cumulative distribution function (cdf) gives the prior probability p of the geno-

type subset {u ˛ U j X(u) < x} having match strength s(u) less than x ban. A

typical non-contributor FX cdf is shown in Fig. 1.

A partition of the real interval [a, b] is a finite sequence of real numbers a ¼ x0 < x1
< . < xN ¼ b [32]. For any bin resolution ε > 0, the bin set Bε is a set of subin-

tervals [xn, xn þ ε) of equal length ε covering [a, b], where endpoints xn ¼ a þ n$ε

form a regular partition. For convenience, let a, b and 1/ε be integers. The bin func-

tion bl:R/ Bε maps a real number x into a subinterval bl(x) denoted by the bin’s left

endpoint xn. Alternatively, bc can form ε-sized subintervals [xn e ε/2, xn þ ε/2)

centered at xn midpoints.

The probability mass function (pmf) f εX is a discrete density function with bin reso-

lution ε. Evaluated at bin xn, f
ε

XðxnÞ has value FX(xnþ1)e FX(xn), the chance Pr{xn�
X < xnþ1} that match strength X falls in bin xn. A typical non-contributor pmf f εX is

shown in Fig. 1.

The posterior probability space (U, F , q) assigns posterior measure q to genotype

set U. The contributor RV Y maps this genotype probability space U into R via

the match strength function s. The cdf FY(x) ¼ Pr{Y < x} is the contributor distri-

bution function. The discrete pmf f εYðxnÞ maps a match strength bin of Bε into its

genotype set probability Pr{xn � Y < xnþ1}. Fig. 2 shows a typical contributor

cmf FY and its pmf f εY.
2.5. Convolution construction

At one locus l, constructing the locus pmf f εXl
for the non-contributor RV Xl is

straightforward. For each genotype ul in the small finite set Ul, match strength

s(ul) is calculated. Function s is defined for ul whenever p(ul) > 0 and q(ul) >

0. The s(ul) number resides in bin xn ¼ b(s(ul)), for some integer n. Genotype

ul’s prior probability amount p(ul) is added to bin xn. Binning the (b(s(ul)),
on.2018.e00824
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p(ul)) pairs for all genotypes ul ˛ Ul forms non-contributor locus pmf f εXl
. Fig. 3

shows a locus pmf construction for the genotype rows of Table 1.

The total match strength X is the sum
PL

l¼1Xl of the independent locus match

strengths Xl, since independent factors multiply, and logarithms add the factors.

From elementary probability theory [13], the pmf fX of a sum of L independent

RVs is the L-fold convolution fX1
*fX2

*.*fXL
of their individual pmfs fXl

. Convo-

lution is a fast way of smoothing one function f with another function g to form a

new function hðxÞ ¼ P

y
fðyÞgðx� yÞ [33], as shown in Fig. 4.

Sequential convolution constructs pmf fX by adding one locus at a time. The first

locus has pmf fX1
. After constructing K loci, fX1þ.þXK

is extended by convolution

with locus pmf fXKþ1
to form the multi-locus fX1þ.þXKþ1

. That is,

fX1þ.þXKþ1 ¼ fX1*fX2*.*fXKþ1 ¼
�
fX1*fX2*.*fXK

�
*fXKþ1 ¼ fX1þ.þXK*fXKþ1

Convolving all L loci constructs fX. The cumulative sum of fX is cdf FX.
2.6. Distribution convergence

Distribution function Fε

X becomes more exact with smaller ε (Fig. 5). Genotype setU

is finite, so there is a smallest match strength distance d ¼ min
u;u0˛U

jsðu0Þ � sðuÞj be-
tween genotypes. At resolution ε0 ¼ d/2 ban, Fε0

X has at most one genotype event u

in each bin interval. Thus the binned Fε0

X and exact FX distributions both fully resolve

the events, assuring eventual convergence of Fε

X to the limit FX.
Fig. 3. Locus construction. Constructing non-contributor pmf f εXl
for locus CSF1PO at bin resolution ε ¼

1=4 ban. The lth colored bar represents the (bc(s(ul)), p(ul)) strength-probability pair for the correspond-

ing locus genotype ul in Table 1. For a genotype match strength s(ul), prior probability amount p(ul) is

added to match strength bin bc(s(ul)). Bar colors show the first (blue) and second (green) bin events.

Accumulating binned probability values over all genotypes builds the locus pmf.
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Fig. 4. Function convolution. Convolving a jagged function f (top, dark blue) with a blurring function g

(middle, green) to form a smooth function h (bottom, light blue). Here f is a partial pmf convolution

f εX1þ.þX4
of four loci, g is a binomial distribution (n ¼ 10, p ¼ 0.5), and h is their convolution. The

bin resolution is ε ¼ 1=4 ban.

Table 1. Constructing non-contributor pmf f εXl
at locus CSF1PO with bin reso-

lution ε ¼ 1/4 ban. For each locus genotype ul row, the columns show the

numbered allele pair, prior p(ul) and posterior q(ul) genotype probabilities, LR

q(ul)/p(ul), logarithmic match strength s(ul), and the rounded bin’s center point

bc(s(ul)). Rows are sorted by ascending LR.

Genotype Allele pair Prior Posterior LR Strength Bin

1 Many 0.1561 0.0000 0.0000 �2.0000 �2.00

2 8 12 0.0209 0.0002 0.0096 �2.0000 �2.00

3 9 12 0.0188 0.0004 0.0239 �1.6215 �1.50

4 12 12 0.0894 0.0028 0.0313 �1.5042 �1.50

5 11 13 0.0295 0.0018 0.0627 �1.2028 �1.25

6 12 13 0.0332 0.0015 0.0451 �1.3460 �1.25

7 11 11 0.0703 0.0080 0.1138 �0.9439 �1.00

8 7 10 0.0171 0.0029 0.1718 �0.7651 �0.75

9 11 12 0.1586 0.0236 0.1485 �0.8282 �0.75

10 10 13 0.0299 0.0114 0.3805 �0.4197 �0.50

11 10 10 0.0725 0.0946 1.3045 0.1154 0.00

12 10 12 0.1610 0.2743 1.7037 0.2314 0.25

13 10 11 0.1428 0.5785 4.0517 0.6076 0.50
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Fig. 5. Bin resolution. Locus CSF1PO cdf Fε

Xl
is shown for increasingly fine bin resolution ε values. For

illustration, the resolutions are set at εk ¼ 2�k for k ¼ 0, 1, 2, 3.
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The largest vertical difference max
x˛BεWBε

0

��Fε
0
X � Fε

XðxÞ
�� between two functions Fε

X and

Fε
0

X is the standard LN supremum norm
��Fε

0
X � Fε

X

��
N
[32]. As ε decreases, function

distance
��Fε

0
X � Fε

X

�� measures the Cauchy convergence [32] of Fε

X to FX.
2.7. Composite distribution

Combining a set of genotype probability distributions produces a new aggregate dis-

tribution. A composite mixture distribution FN averages together N individual evi-

dence distributions [34]. Suppose Fn is the distribution function of the nth

individual genotype RV Xn. Equally weighting individual genotype components,

the composite RV XN has the mixture cdf FN ¼ 1
N

PN
n¼1Fn. A composite mixture

pmf fN is similarly formed as 1
N

PN
n¼1fn from individual genotype pmfs fn.
3. Materials

3.1. Statistical software

The fully Bayesian TrueAllele� Casework system (Cybergenetics, Pittsburgh, PA)

separates STR mixture data to produce a genotype for each DNA contributor [25].

Genotype uncertainty is represented as prior and posterior probability. The computer

constructs non-contributor X and contributor Y match strength distributions by
on.2018.e00824
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convolution, draws their pmf curves, and calculates tail probabilities. It summarizes

genotype information, providing a Kullback-Leibler (KL) statistic E[Y] that predicts
LR values [35].

TrueAllele can compare a separated evidence genotype with a reference genotype,

relative to a population, to calculate LR match strength. The match module accounts

for population co-ancestry via its coefficient q. The match calculation can substitute

one population prior for another by Bayesian rearrangement. Locus log(LR) values

are bounded below by e2 ban, based on validation studies [36].
3.2. STR mixture data

Two-person STR mixture data was available from a previous study [21]. The sam-

ples were amplified using PowerPlex� 16 (Promega, Madison, WI), a multiplex kit

containing 15 independent STR locus tests. Readout from an ABI Prism� 310

(Applied Biosystems, Foster City, CA) capillary sequencer produced .fsa electronic

data files [37]. The population frequencies used were from the FBI’s expanded

Caucasian allele database [38].

This study used data from the ten 250 pg samples. The mixture ratios were 1:9 (B3,

F3, I3, M3), 3:7 (C3, E3, J3, L3), and 5:5 (D3, K3). The results here focus on the

minor M3 12.67% component. It contained 30 pg of DNA (12% of 250 pg), amount-

ing to 5 cells (6 pg DNA per cell). The non-overlapping minor data peaks heights

were all under 50 relative fluorescent units (RFU). The minor genotype had a KL

of 7.8364 ban. Comparison with the known reference gave log(LR) values of

5.7291 (q ¼ 0) and 5.4989 (q ¼ 0.01) ban.
4. Results

4.1. Locus binning construction

Fig. 3 steps through the single locus construction of non-contributor pmf fεXl
. Table 1

lists 13 ul allele pairs at locus CSF1PO for mixture sample M3’s minor genotype.

Each row shows the genotype variable’s prior and posterior probabilities, and the

posterior-to-prior LR, with its base ten match strength logarithm. The interval parti-

tion uses centered bins, rounding log(q/p) match strengths to the nearest xn point at

resolution ε ¼ 1/4.

The first table row represents genotypes having zero posterior probability, putting a

total 0.1561 prior probability dose into bin e2 (Fig. 3, blue bar 1). The second row

for allele pair 8,12 adds more probability p(8,12)¼ 0.0209 to the same bine2 (green

bar 2). For the third genotype 9,12 (blue bar 3), the LR is 0.0239, which has log

strength e1.6215, corresponding to the centered bin e1.5 representing subinterval

[e1.5 e ε, e1.5 þ ε). This genotype deposits a prior probability of p(9,12) ¼
on.2018.e00824
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0.0188 into bin e1.5 (blue bar 3). Genotype 12,12’s log(LR) is match strength

s(12,12) ¼ e1.5042, and so its prior probability p(12,12) ¼ 0.0894 is added to

bin e1.5 (green bar 4).

Genotype binning of prior probability into match strength bins continues until all 13

values have been added to form pmf f εXl
(all bars).

4.2. Multi-locus convolution

Fig. 6 shows the sequential convolution of individual locus pmfs fXl
to form the

multi-locus pmf fX1þX2þX3þX4
. The first row is for locus D2S1338 of M3’s minor

genotype. Locus pmf fX1
is shown on a focused [e2, 2] ban locus-level scale (left),

and also on a broader [e10, 5] ban multi-locus scale (right). The bin resolution is

1/4 ban.

The second row adds a second locus TPOX. On the left is locus pmf fX2
. The right

plot convolves fX1
(above) with fX2

(left) to form (light green arrows) the multi-locus
Fig. 6. Sequential convolution. Sequential convolution builds pmf f εX at four loci. The left column shows

individual locus pmf f εXK
bar charts for locus K ¼ 1, 2, 3, 4. The right column shows K-fold partially

convolved pmf f εX1þ.þXK
bar charts for locus K ¼ 1, 2, 3, 4. The convolution process combines partial

convolution f εX1þ.þXK
(right column, row K), with locus pmf f εXKþ1

(left, row Kþ1), to extend (green

arrows) the multi-locus convolution to f εX1þ.þXKþ1
(right, row Kþ1). The bin resolution is ε ¼ 1=4 ban.
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pmf fX1þX2
(right). The two locus combination shows more locus pair genotype

events (as bars) for fX1þX2
than for either of the single genotype locus pmfs fX1

or fX2
.

The third row shows pmf fX3
for locus D3S1358 on the left. Combining with fX1þX2

(above right) forms (green arrows) the convolution fX1þX2þX3
(right). The triple locus

combined pmf is jagged, but now developing shape.

The fourth row combines the FGA locus pmf fX4
(left) with fX1þX2þX3

(above right)

to form (dark green arrows) the quadruple convolution fX1þX2þX3þX4
(right).

Convolving more loci has made this pmf smoother than its multi-locus precursors

(right column). Each non-contributor locus XK adds exclusionary power, pushing

fX1þ.þXK
further to the left (right column).

Adding more loci to match strength
PK

l¼1Xl continues these trends (Fig. 7). With

five loci, fX1þ.þX5
has a unimodal shape (green). At ten loci, a smooth bell-

shaped curve emerges for fX1þ.þX10
, further shifted to the left (blue). Combining

all fifteen loci, fX1þ.þX15
shows the distribution of match strength for non-

contributor multi-locus genotypes (black). Increasing convolution with more loci

smooths the curve, pushing the pmf leftward toward greater exclusionary power.
4.3. Cumulative distribution convergence

Locus cdf Fε

Xl
is the cumulative sum of locus pmf f εXl

. As ε decreases, cdf Fε

Xl
con-

verges to FXl
. Fig. 5 shows this convergence for the minor M3 genotype at locus

CSF1PO.

Setting εk¼ 2ek ban, increasingly fine resolutions discretize cdf FXl
for k¼ 0, 1, 2, 3.

Moving from ε0 ¼ 1 to ε1 ¼ 1/2 ban refines the partitioning of function Fε

Xl
on the
Fig. 7. Further convolution. Sequential convolution incrementally constructs the multi-locus pmf

f εX1þ.þXK
as K increases from 5 (green) to 10 (blue) to 15 (black) loci. The bin resolution is

ε ¼ 1=10 ban.
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interval [e2, 1] (Fig. 5, k¼ 0, 1). Further cdf F ε2

Xl
step function refinement continues

with ε2 ¼ 1/4 ban, corresponding to the pmf f ε2Xl
histogram binning shown in Fig. 3.

Resolutions beyond ε3 ¼ 1/8 ban do not change F ε

Xl
, so F ε3

Xl
has converged to the

limit distribution FXl
.

Multi-locus cdf F ε

X combines the individual F ε

Xl
locus distributions through the

match strength sum X1 þ .þ XL. Fig. 8 shows F εk

X for a series of increasingly

fine bin resolutions εk ¼ 10ek ban, as k progresses from 0 to 3. At k ¼ 0, εk is 1

ban, and the step function Fε0

X has clear one ban increments. At k ¼ 1, εk is 1/10

ban, and the steps of F ε1

X are still visible. Once k ¼ 2, the εk ¼ 1/100 bin resolution

is no longer visible for F ε2

X . Beyond that resolution, as shown for εk ¼ 1/1000 ban at

k ¼ 3, F εk

X looks the same as F ε2

X .
4.4. Binned distribution accuracy

The convergence of binned F εk

X functions, as resolution k increases, measures their

accuracy. Since there are finitely many genotypes, F εk

X must eventually reach the dis-

tribution limit FX. The goal is a bin resolution εk that provides sufficient accuracy in

reasonable time.

The maximum probability difference
��F εk

X � F ε6

X

�� between F εk

X at bin resolution εk

¼ 10ek ban, and F ε6

X at ε6 ¼ 10�6 ban, was measured for the minor M3 genotype.
Fig. 8. Distribution resolution. Joint cdf F ε

X is shown at increasingly fine bin resolutions. For illustration,

the resolutions εk ¼ 10�k are set at k ¼ 0, 1, 2 and 3.
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These function distances are listed in Table 2 for non-contributor X and contributor

Ymatch strengths. As bin resolution k becomes finer, the cdf differences get smaller.

Fig. 9 plots the non-contributor cdf differences on a logarithmic scale (blue cross

line). The negative linear slope indicates exponential improvement with increasing

k. At ε2 ¼ 10�2 ban, the maximum cdf difference is 8.215 � 10�4, or under one

in a thousand (Table 2). With k ¼ 3 and ε3 ¼ 10�3 ban, the difference is 8.533 �
10�5, or under one in ten thousand. At either resolution, k¼ 2 or k¼ 3, the F εk

X prob-

ability error is negligible.

Computer calculation time is shown in Table 2, for both X and Y. The non-

contributor times for constructing distribution F εk

X are plotted on a logarithmic scale

in Fig. 9 (red plus line) as k varies. For k ¼ 0, 1, 2 and 3, the time is under 1/100 sec

(Table 2). That time increases to over 1/10 sec for k � 4. A practical choice of bin

resolution is thus at k ¼ 3 for ε3 ¼ 10�3 ban, used in the remainder of this paper,

where the probability function deviation is under 10�4 and the computer time is un-

der 10�2 sec.
4.5. Computational complexity analysis

The divide-and-conquer convolution algorithm for computing F ε

X has quadratic

computational complexity O(L2) in the number of tested loci L. There are three

main algorithmic steps.

(a) Constructing each locus pmf function f εXl
uses a fixed bin resolution ε for a rela-

tively constant number of locus genotypes Ul. So each locus function f εXl
incurs

a constant O(1) construction cost. Across L loci, the cost adds up to O(L).
Table 2. Accuracy and efficiency at different bin resolutions εk ¼ 10�k ban. The

accuracy of non-contributor cdf F εk

X is measured by its maximum probability

difference
��F εk

X � F ε6

X

�� from the micro-ban resolution cdf F ε6

X . Efficiency is

measured by the computer time (sec) needed to construct F εk

X . Accuracy and

efficiency are also shown for contributor distribution F εk

Y .

X Y

Resolution Difference Time Difference Time

0 4.0542E-02 2.2753E-03 1.3910E-01 2.2050E-03

1 1.8200E-03 3.4260E-03 1.6871E-02 3.3593E-03

2 8.2153E-04 5.2983E-03 3.5183E-03 5.2863E-03

3 8.5332E-05 9.4160E-03 1.9434E-04 9.0350E-03

4 2.8206E-06 1.1621E-01 1.8599E-05 1.0425E-01

5 1.1386E-06 1.6800Eþ00 3.2775E-06 1.6754Eþ00

6 3.4960Eþ01 3.1200Eþ01
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Fig. 9. Accuracy vs. efficiency. Assessing joint cdf Fε

X accuracy and efficiency for bin resolutions εk ¼
10�k where k ¼ 0, 1, ., 6. Accuracy is logarithmically plotted (blue cross) as the maximum cdf differ-

ence between Fεk

X and Fε6

X for increasing resolution k. Efficiency is logarithmically plotted (red plus) as the

time (sec) computing Fεk

X for increasing k.
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(b) The pmf f εX1þ.þXK
of the first K < L loci is sequentially convolved with the

(Kþ1)st locus pmf f εXKþ1
to form the pmf f εX1þ.þXKþ1

¼ f εX1þ.þXK
*f εXKþ1

of

the first Kþ1 loci. This pairwise convolution combines O(K) bins from the first

K loci, with O(1) bins from the next locus, to augment the number of bins to

O(Kþ1). The O(K) stepwise cost is bounded above by O(L). Iterating over L

loci, the cost tallies to O(L2).

(c) Cumulative summation of pmf f εX to form cdf F ε

X visits all bins. After

convolving L loci, there are O(L) bins. So there is an O(L) summation cost.

Since step (b) dominates the F ε

X formation cost, the process has quadratic cost O(L2).
4.6. Empirical efficiency measurements

Empirical timings on the minor M3 genotype concur with the algorithmic

complexity analysis. The computing times for building the locus pmfs f εXl
, and

convolving them to form the multi-locus mass functions fX1þ.þXL
, are listed in

Table 3 for both non-contributor X and contributor Y. The locus breakdown gives

the incremental costs of sequentially constructing f εX.

Fig. 10 plots the computing times for building the locus pmfs (blue cross) and

convolving the multi-locus pmfs (red plus). The f εXl
locus build time is relatively con-

stant (blue cross line & Table 3). The f εX1þ.þXK
multi-locus convolution time in-

creases linearly with each additional locus K (red plus line & Table 3). A constant

locus build time across L loci has O(L) cost, while a linearly increasing multi-

locus convolution time for L loci has O(L2) cost.
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Table 3. Locus efficiency breakdown. At each incremental locus step, there is a

time cost (sec) for building the locus pmf, and a cost for convolving with the

preceding convolved loci. These timings are shown for the non-contributor X and

contributor Y distributions.

X Y

Locus Build Convolve Build Convolve

1 2.705E-04 2.229E-04 1.979E-04 1.206E-05

2 3.478E-04 4.609E-04 4.347E-04 1.402E-04

3 2.838E-04 6.287E-04 9.809E-04 2.394E-04

4 2.937E-04 8.052E-04 3.696E-04 3.753E-04

5 1.249E-04 9.678E-04 1.449E-04 4.980E-04

6 1.551E-04 1.294E-03 1.921E-04 6.309E-04

7 2.306E-04 1.604E-03 3.400E-04 8.046E-04

8 2.629E-04 1.939E-03 3.378E-04 1.004E-03

9 1.527E-04 2.225E-03 2.997E-04 1.186E-03

10 2.455E-04 2.564E-03 2.604E-04 1.404E-03

11 2.734E-04 2.996E-03 4.023E-04 1.692E-03

12 4.453E-04 3.596E-03 9.856E-04 2.053E-03

13 3.719E-04 4.118E-03 6.317E-04 2.401E-03

14 1.326E-04 4.544E-03 2.488E-04 2.691E-03

15 4.421E-04 5.128E-03 8.595E-04 3.098E-03

Fig. 10. Building vs. convolving. Computing time (sec) for pmf f εX at each locus l, as locus number in-

creases. The timings are shown in two parts, building (blue cross line) a locus f εXK
pmf, and convolving

(red plus line) a partial joint f εX1þ.þXK�1
with a new locus f εXK

to form the augmented pmf f εX1þ.þXK
. The

bin resolution is ε ¼ 10�3 ban.
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4.7. Construction method comparison

The quadratic number of convolved bin events is far less than the exponential num-

ber of multi-locus genotypes. Table 4 lists the numbers of single genotypes #UK and

multi-locus genotypes #U1�.�UK considered at each locus K for M3’s minor ge-

notype. The straight line (red plus) plotted on Fig. 11’s logarithmic scale shows the

exponential rise of multi-locus genotype counts. At 15 loci, there are 1.355 � 1023

genotypes. Constructing a match strength distribution directly from the genotype

sample space U can be exponentially expensive.

The convolution method instead used discrete bins on a bounded interval [e35, 35],

with resolution ε¼ 10�3 ban. Bins are filled by genotype events at each locus (Table

4, Bins column), and expanded with each multi-locus convolution step (X & Y col-

umns). The multi-locus bin growth is linear (Fig. 11, blue cross), as seen by the log-

arithmic curve plotted on a logarithmic scale. At 15 loci, 52,406 of the total 70,000

f εX bins were occupied. Clearly, 7� 104 numeric bins are far fewer than 1.355� 1023

multi-locus genotypes.
Table 4. Counting genotypes and numeric bins. Shown at each incremental locus

step K are the number of locus genotypes #UK and number of partial product

genotypes #U1�.�UK. Also shown is the number of locus bins, and occupied

partial multi-locus bins for the non-contributor X and contributor Y distributions.

Locus Genotypes Product Bins X Y

1 11 1.100Eþ01 8 8 8

2 45 4.950Eþ02 40 310 303

3 39 1.931Eþ04 37 5,104 4,985

4 56 1.081Eþ06 49 10,323 9,851

5 13 1.405Eþ07 12 13,474 12,864

6 23 3.232Eþ08 22 17,081 16,105

7 40 1.293Eþ10 37 20,595 19,516

8 46 5.948Eþ11 42 24,036 22,231

9 25 1.487Eþ13 21 27,189 25,279

10 36 5.353Eþ14 36 30,653 28,099

11 55 2.944Eþ16 46 36,453 33,304

12 83 2.444Eþ18 77 41,675 38,446

13 60 1.466Eþ20 56 45,347 42,030

14 12 1.759Eþ21 11 48,550 45,233

15 77 1.355Eþ23 69 52,406 48,941
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Fig. 11. Bins vs. genotypes. Counting f εX computation size with increasing locus number. Shown is the

number (blue cross line) of ε-bins in bin set Bε for the real interval [a, b] after processing K loci. Also

shown is the number (red plus line) of genotype K-tuples in the locus product U1 �.� UK after pro-

cessing K loci. The bin resolution is ε ¼ 10�3 ban.
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4.8. Match strength bin occupancy

Numeric convolution operates on one-dimensional bins, not multi-dimensional ge-

notypes. For the M3 minor genotype mixture data, 1023 genotypes were represented

in 105 bins. This space efficiency stems from using an RV X that reduces the expo-

nential genotype space U to a bounded interval on the real line R. The convolution

operation layers quantitative real-valued locus pmfs atop one another, shifting bins

and adding probabilities.

Match strength bins are efficiently reused, as measured by bin occupancy (Table 5).

On reaching the STR kit’s 15 loci, non-contributor RV X had 75% bin occupancy,

while contributor Y’s bins were 70% occupied.

Re-convolving the loci a second time shows the bin behavior out to 30 loci (Fig. 12).

The respective X (blue cross) and Y (cyan plus) bin occupancy rates remain level

beyond 15 loci. On average, one ε ¼ 10�3 ban interval for X numerically collects

1.936 � 1018 multi-locus genotypes per milliban bin (i.e., 1.355 � 1023 genotypes

/ 7 � 104 bins).
4.9. Composite genotype distribution

A composite mixture distribution aggregates multiple genotypes into one combined

distribution. For example, validation studies can examine a system’s specificity as a

histogram of evidence genotype match strength [8, 9]. A costly Monte Carlo
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Table 5. Bin occupancy rate. As loci are incrementally convolved, the total

number of numeric bins increase. The number of bins occupied by a genotype

event, and the occupancy rate (fraction of total occupied) are shown for non-

contributor X and contributor Y distributions.

X Y

Loci Total Occupied Rate Occupied Rate

1 4,000 8 0.20% 8 0.20%

2 8,000 310 3.88% 303 3.79%

3 14,000 5,104 36.46% 4,985 35.61%

4 18,000 10,323 57.35% 9,851 54.73%

5 22,000 13,474 61.25% 12,864 58.47%

6 26,000 17,081 65.70% 16,105 61.94%

7 30,000 20,595 68.65% 19,516 65.05%

8 34,000 24,036 70.69% 22,231 65.39%

9 38,000 27,189 71.55% 25,279 66.52%

10 42,000 30,653 72.98% 28,099 66.90%

11 50,000 36,453 72.91% 33,304 66.61%

12 58,000 41,675 71.85% 38,446 66.29%

13 62,000 45,347 73.14% 42,030 67.79%

14 66,000 48,550 73.56% 45,233 68.53%

15 70,000 52,406 74.87% 48,941 69.92%
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approach compares each uncertain genotype against thousands of reference geno-

types to calculate their match statistics, and then bins the results and collates a com-

posite histogram. Numerical aggregation of match strength distributions can be far

more efficient.

TrueAllele separated the 250 pg two person samples (B3eM3) into their component

genotypes. The ten minor contributor genotypes were combined into a composite

distribution. Each genotype’s match strength cdf Fε

n was computed at high resolution

(ε¼ 10�3 ban), and then averaged into an aggregate distribution Fε

N. Taking one-ban

cdf differences Fε

Nðmþ 1Þ � Fε

NðmÞ constructed a f 1
NðmÞ pmf histogram. Fig. 13

shows the resulting non-contributor specificity (red left) and contributor sensitivity

(blue right) histograms. The average time to construct all genotype cdfs, form a com-

posite mixture, and construct a histogram was 0.703 sec.
4.10. Match strength error frequency

Cumulative distributions FX and FY, and their associated histograms fX and fY, offer

a frequency perspective on match strength. For any evidence genotype, the distribu-

tions reveal how frequently a match event would occur at that magnitude, relative to
on.2018.e00824
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Fig. 12. Bin occupancy. The percentage of occupied bins when increasing from 1 to 30 loci for

non-contributor pmf f εX (blue cross line), and contributor pmf f εY (cyan plus line). The bin resolution

is ε ¼ 10�3 ban.
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all possible reference genotypes. One application is determining false positive error

rate e how often a non-contributor would adventitiously match as strongly as the

defendant [39].

Statisticians call false positive LR error the probability of misleading evidence

(PME) [7]. Comparing an evidence genotype with a reference u yielding match

strength x ¼ s(u) ban, the PME is Pr{X � x}, or 1 e Pr{X < x}, which equals

1 e FXðxÞ. This cdf value is the tail probability of pmf fX beyond x.
Fig. 13. Composite frequency. Validation plots computed as composite f ε

N pmfs for non-contributor X
specificity (red left histogram), and contributor Y sensitivity (blue right histogram) genotype mixture dis-

tributions. The histogram bin resolution shown is ε ¼ 1 ban.
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Comparing M3’s minor genotype with its known contributor u gives an LR of 536

thousand, for a log(LR) of 5.7291. Evaluating non-contributor distribution FX

(Fig. 1, Cumulative) at this match strength gives a PME of 1 e FXð5:7291Þ, which
is 1.3662 � 10�7. Thus, based on the evidence genotype, the chance that a non-

contributor matches the DNA evidence as strongly as does the reference is one in

7.32 million.

A validation study’s composite FN can estimate an ensemble PME based on a set of

representative genotypes. One may ask how often a suspect’s 5.7291 ban match

would occur in a 250 pg two-person minor mixture. Binning at 1 ban resolution,

the composite non-contributor f 1
N histogram (Fig. 13, red left) provides an answer.

Calculating either cdf 1� F1
Nð5Þ at bin 5, or the equivalent pmf right tail bin sum

P
m�5 f

1
NðmÞ, gives an ensemble PME frequency of 1.0367 � 10�7. This is a one

in 9.65 million validation probability estimate that the evidence would match a

non-contributor as strongly as it does the suspect.
5. Conclusions

Forensic interpretation is an information science [40]. The computer can organize a

sample space of possible outcomes, describe the prior probability of each outcome,

and compute the outcome’s posterior probability from available evidence data. Con-

structing probability spaces and random variables from these elements provides a

detailed match strength analysis of an evidence item. All reference outcomes are ac-

counted for, so no comparison reference is needed at this pre-match stage. The match

strength distributions are useful for quantifying potential identification information,

preparing database searches, assessing data or methods, performing validation

studies, and calculating LR error.

All forensic information should be extracted from evidence data. In the DNA

mixture example, the minor contributor contained five cells, with all non-

overlapping peaks having low heights under 50 RFU. Crime labs typically discard

such DNA data as uninterpretable, inconclusive, too low, or too complex. They

do not use the evidence for database searches or match comparisons. Yet the match

strength RV distributions were informative. Eventual comparison with the true

contributor reference gave a match statistic of 536 thousand. That level of DNA as-

sociation could help convict or acquit a defendant.

The mathematical probability framework led to efficient algorithms for constructing

match strength distributions and calculating LR error. The independence of additive

locus RVs permitted rapid and accurate joint RV construction by convolution. The

sample space contained exponentially many multi-locus genotypes. The match

strength RV mapped these multi-dimensional outcomes into uni-dimensional

numbers, collecting and preserving match information in quadratic time.
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The convolution approach numerically constructs an exact match strength distri-

bution at a given bin resolution. Independently, a Monte Carlo construction

randomly samples genotypes from the underlying probability distribution. A sta-

tistical test for distribution equality can compare a convolved cdf with a sampled

empirical cdf. For M3’s minor genotype, comparing convolved and sampled

(N ¼ 10,000) non-contributor distributions gave a Kolmogorov-Smirnov statistic

[41] of 0.0090 (p ¼ 0.3863), supporting cdf equality. Distribution comparison

jointly assesses convolution and sampling methods, mutually validating their

accuracy.

The match strength RV approach is quite general. While genotypes have a discrete

representation, other variables (e.g., glass index of refraction) are continuous. The

RV distribution approach extends to continuous variables and any dimensionality,

with integration replacing summation [12]. LR associations are used in fields

beyond forensic science, for example, in artificial intelligence [42], medical diag-

nosis [43] and legal reasoning [44]. Rapid construction of match strength distribu-

tions may offer insights, applications and efficiencies in handling uncertainty in

such areas.

Uncertainty is prevalent in the natural and social sciences. Bayesian probability

modeling helps extract information from real world data to harness that uncertainty

[45]. Advance knowledge of the full range of possible outcomes aids decision-

making, whether in forensic biology or diagnostic medicine. This paper showed

how probabilistic RV analysis can preserve and use identification information,

even when the evidence data are thought to be uninterpretable and no reference is

available for comparison.
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