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Forensic science connects evidence through
shared characteristics. Markings on a bullet can
appear to match grooves in the barrel of a gun.

Latent fingerprints left at a crime scene may be similar
to ridge patterns on a suspect’s hand. Tracks in the
mud may mirror the treads of a shoe or tire. Police
gather forensic evidence to help build a case, and
police dramas on television convey the myth of foren-
sic infallibility through the “CSI” effect.1

In 2009, the National Academy of Sciences (NAS)
published its seminal report titled Strengthening Forensic
Science in the United States.2 The NAS report reviewed
many forensic modalities and questioned their scientific
validity. The interpretation of forensic data is often unre-
liable. Match statistics are needed to gauge the strength
of match between items, relative to coincidence. But
forensic statistics are typically absent or incorrect.
Human bias can skew answers by unconsciously select-
ing favorable data, using knowledge about defendant
characteristics, or by trying to please stakeholders who
have a desired criminal justice outcome. 

Deoxyribonucleic acid (DNA) evidence seems
immune to such criticism, long serving as a gold standard
for other forensic disciplines. Abundant DNA from one
person produces pristine data signals. Interpreting these

clear signals yields an unambiguous genetic type (“geno-
type”). Comparing definite genotypes, relative to a random
person, yields a reliable match statistic that numerically
conveys the probative force of DNA evidence. But most
crime scene DNA is now a mixture of two or more people,
with good data but less certain interpretation. As the NAS
report noted, there may be problems with how the DNA
was interpreted, such as when there are mixed samples.

Simplistic interpretation of DNA mixture data often
fails to produce an accurate match statistic or give any
answer at all. While the limitations and liabilities of
unscientific DNA mixture interpretation were recog-
nized early on,3 only recently has this profound forensic
failure come to the fore. Crime laboratories in Austin,
Texas, and Washington, D.C., have been shuttered in
large part because of failed DNA mixture interpretation.4

Virginia re-evaluated DNA match statistics for mixture
evidence in hundreds of cases.5 Texas is reviewing 24,000
criminal cases for flawed interpretation of DNA mixture
evidence.6 The New York State Police (NYSP) has sup-
pressed reliable DNA mixture interpretation methods
that could expose its crime laboratory’s mistakes in
thousands of cases.7 These numbers extrapolate to hun-
dreds of thousands of mixture items throughout the
United States, and the national press has taken notice.8

This failure of forensic DNA interpretation is of
broad concern. Pervasive errors in DNA match statistics
undermine public trust in science and erode confidence in
government agencies that misuse science to obtain convic-
tions. A failed DNA gold standard portends little hope for
fledgling forensic fields. Perhaps the greatest loss is true
justice in a free society. Misinterpreting DNA evidence
causes injustice for defendants denied potentially exculpa-
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tory evidence, injustice for victims whose
cases are lost when inculpatory evidence
is unreported, and injustice for innocents
victimized by crime that DNA could have
prevented.

This article reviews the history of
failed DNA mixture interpretation. It
begins in 1985, at the start of the
genomics revolution, discussing the ori-
gins of modern DNA testing. Proceeding
in five-year increments, it outlines the
missed opportunities and policy failures
that have resulted in the current situa-
tion. The article offers recommenda-
tions to help overcome long-standing
DNA interpretation problems.

Biology

The human genome contains three
billion DNA letters, a text written across
23 chromosomes in the nucleic acid
alphabet A, C, G, and T. This textual infor-
mation is used to operate, maintain,
evolve, and grow human organisms. Part
of the genome’s power is the encoding of
this biological operating system. Another
aspect is the variation between people
found in noncoding regions that scientists
can use to trace ancestry, map disease, and
distinguish between individuals.

Scattered throughout the human
genome are genetic locations (loci) that
have a short DNA word repeated in tan-
dem. These short tandem repeats (STR)
are a rich source of genetic variation.
The number of repeated words at a locus
varies between different people, and
these STR length variants (alleles) can be
used to identify individuals. 

A cell nucleus has two complete
genome copies of the 22 human auto-
somal chromosomes, one inherited
from each parent. At a particular locus
on a chromosome, there are two alleles
– maternal and paternal. A person’s
pair of alleles at a genetic locus defines
the person’s genotype at that chromo-
some location.

An STR locus with many (for exam-
ple, 15) allele variants yields very many
genotype allele pair possibilities (for
example, 100). Examining multiple inde-
pendent STR loci multiplies those possi-
bilities, allowing for a trillion trillion
possible genotypes (24 powers of ten).
Since there are fewer than 10 billion peo-
ple alive today (10 powers of ten), there
are far more STR genotypes than people,
making DNA useful for identification.

1985: Revolution

Three technologies triggered the
DNA revolution in the automated

genetic analysis of minute biological
samples. The first technology was poly-
merase chain reaction (PCR), which let
scientists easily make millions of copies
of small DNA quantities at a genetic
locus.9 The second technology was the
automated DNA sequencer (now called
a “genetic analyzer”), which used elec-
trophoretic separation and laser detec-
tion to measure DNA fragment length
and quantity.10 Finally, cheap ubiqui-
tous computing enabled automated
analysis of genetic data.11

The STR genetic marker was an
early beneficiary of this technological
juxtaposition.12 PCR amplification of an
STR locus produced DNA fragments in
detectable quantities. Separating frag-
ments on a DNA sequencer showed data
peaks, with longer alleles having greater
length. Computer analysis of STR data
could identify and size these peaks to
indicate allele events and would eventu-
ally automate genotype determination.

1990: Threshold

The original STR genetic tests were
done on DNA samples from a single
source, not mixtures. The locus data
had one or two tall peaks, correspon-
ding to the one or two parental alleles in
an individual’s genotype. The testing
was done for genetic diagnosis, genome
mapping, and drug discovery.13

With simple single source data, the
interpretation issue was separating the
true alleles from background noise or
data artifacts. This separation was
accomplished by drawing a line that
separated tall allele peaks from short
non-allele peaks. A DNA sequencer
manufacturer advised setting this
threshold at around 100 relative fluores-
cent units (RFU). There was no statisti-
cal science involved, just a rule of thumb
to help technicians interpret their allele
data based on peak height.

1995: Variation

With abundant DNA from one per-
son, and clean data signals, thresholds
worked well to separate tall allele peaks
(1000 to 2000 RFU) from baseline instru-
ment noise (5 to 15 RFU). However, other
data artifacts produced peaks over base-
line, or subtler peak patterns. 

PCR stutter is an error in the DNA
copying mechanism.14 When the poly-
merase enzyme copies a DNA region of
STR text, it can lose its place and skip
over one of the short repeated words.
This deletion drops a repeated word,
generating a DNA fragment one word

shorter than the actual allele (e.g., a 10
allele with 10 repeated words can pro-
duce a fragment having only 9 repeated
words). Such stutter alleles show around
5-15 percent of the true allele’s peak
height and reside adjacent to the allele
peak. Stutter peaks can be identified and
removed with single source DNA data,
but complicate the interpretation of
mixed or low-level DNA.

The original STR loci used in genet-
ic testing had two letters in a repeated
word.15 These di-nucleotide repeats were
popular with geneticists because their
high genome density placed them near
most genes. However, they gave complex
stutter patterns with a long trail of frag-
ments having from 5 to 10 dropped
words. For that reason, forensic identifi-
cation (which had to be explained to lay
juries, and only needs a dozen loci)
employed tetra-nucleotide repeats hav-
ing four letters in a repeated word.16

Their simpler stutter patterns usually
show just one prominent stutter peak. 

Automated computer analysis
could mathematically separate stutter
peaks from STR locus data.17 Some
genetic and forensic practitioners used
this computerized approach,18 but
most technicians were more comfort-
able removing stutter visually. 

Other random factors affect geno-
type data. These largely arise from the
inherent random variation in PCR copy-
ing. Within a copying cycle, some DNA
fragments will copy more efficiently
than others. Given identical DNA input,
this random copying process introduces
variation in the data output, with each
PCR experiment producing its own data
pattern. This natural variation in DNA
counting is well known to scientists, and
it has been mathematically modeled.19

2000: Mixture

The Federal Bureau of Investigation
(FBI) helps regulate forensic DNA analysis
in the United States. The agency’s Scientific
Working Group on DNA Analysis
Methods (SWGDAM) convenes twice a
year to discuss policies of interest to the
FBI laboratory. SWGDAM members are
forensic practitioners, mainly government
employees of crime laboratories or police
organizations. They are not experts in
modern statistical computing and its
application to interpreting DNA data. 

The FBI had developed a popula-
tion statistics computer program
(Popstats) for calculating DNA match
statistics. This software was distributed
free of charge to state and local crime
laboratories that used the FBI’s
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COmbined DNA Index System
(CODIS) database of DNA from con-
victed offenders, crime scenes, and
other sources. Popstats could calculate
match statistics for DNA mixtures
using the combined probability of
inclusion (CPI) method. 

DNA mixture data contains consid-
erable information. Since genotypes
come in allele pairs, the peak heights in
mixture data can be used to separate the
data into the genotypes of each contrib-
utor.20 For example, a data pattern of two
tall peaks and two short peaks can be
separated into a major genotype provid-
ing a large quantity of two alleles and a
minor genotype contributing a small
amount of two other alleles. 

The FBI chose to simplify mixture
interpretation by simplifying the data.
Its approach made little use of the STR
data’s highly informative peak heights,
patterns, and variation. Instead, the
FBI applied a threshold to the data sig-
nal, separating peaks into two cate-
gories — present or absent. Since
thresholds worked well with single
source DNA data, the idea was to use
them again for interpreting mixtures. 

A probability of inclusion (PI)
statistic was easily calculated at each
locus by plugging the population fre-
quency of each present allele into a
simple inclusion probability formula
(add the frequencies and square the
sum). Since the loci are independent,
multiplying the individual locus PI’s
together using the product rule calcu-
lates a combined CPI probability.21

The SWGDAM 2000 guidelines22 for
STR interpretation were promulgated
and widely adopted. Most DNA mixture
interpretation in the United States was
then done using CPI or a related thresh-
old-based method that considered a
known victim reference (CLR). These
simple methods let the FBI and crime
labs across the country analyze mixtures
of two or more people, the most com-
mon type of criminal DNA evidence. 

There is no scientific basis, however,
for this threshold approach to analyzing
mixtures. Modifying observed data can
introduce error or bias. Since peak varia-
tion scales with height in the PCR count-
ing process, a “one size fits all” threshold
cannot work with mixtures — major and
minor contributors have different varia-
tions in allele quantity. The CPI method
was scientifically unfounded. 

The FBI and other labs did not
empirically validate mixture thresholds
or CPI for match statistic accuracy. 
Data interpretation followed SWGDAM
rules, not rigorous science. Laboratory

audits and accreditation stressed adher-
ence to these rules, ensuring widespread
usage. Unfortunately, thresholds often
gave “inconclusive” results on informa-
tive data, and CPI usually gave an inac-
curate DNA match statistic.23

2005: Notice

A wake-up call came in 2005 from
the National Institute of Standards 
and Technology (NIST) in the U.S.
Department of Commerce. NIST 
conducted a MIX05 inter-laboratory 
comparison study, sending the same
two-person DNA mixture data to 69 
participating laboratories for interpre-
tation.24 The results showed extreme
variation in reported results. There
were many “inconclusive” responses.
The 29 labs that provided match statis-
tics had numbers ranging from 31
thousand to 213 trillion, spanning 10
powers of ten on the same data.25

These results on mixture statistic
variation were widely disseminated
throughout the forensics DNA com-
munity and wider audiences.26 NIST
presented the mixture reporting dis-
crepancies at conferences, workshops,
and scientific meetings. However, the
crime labs continued to use the FBI
Popstats software, reporting inaccurate
DNA mixture match statistics that
were not validated or reproducible. 

The CPI mixture interpretation fail-
ure extends to the CODIS database.
Simple allele list comparison (based on
set intersection, not identification infor-
mation) has a high false positive match
rate for DNA mixtures. To reduce false
matches to the wrong suspect, most mix-
tures analyzed by crime labs are not
uploaded to this database. Investigators
cannot use CODIS for this DNA evidence
to solve crimes or identify suspects.

2010: Crisis

Scientists and statisticians wrote
about the DNA mixture failure. They
contended that thresholds lacked a scien-
tific foundation.27 They found that CPI
statistics for low-level mixtures with little
DNA could be unfair to defendants.28

They questioned whether CPI even made
any sense as a match statistic.29

There was concern about human
bias in the CPI method, and producing
subjective results that were suspect-cen-
tric or pro-prosecution.30 A human ana-
lyst first adjusts the data (applying
thresholds, removing apparent stutter,
etc.), and then looks at the defendant’s
genotype to decide if the person is

included in the mixture. Only after first
changing the data and assuming inclu-
sion does the analyst then run CPI soft-
ware to calculate a match statistic, a
number often used in court to help
establish guilt. Assuming guilt to estab-
lish guilt is circular reasoning. 

There is bias when an analyst subjec-
tively picks data by choosing loci after
first looking at the defendant’s geno-
type.31 One report showed how analysts
could justify including any “Tom, Dick, or
Harry” who was not actually in the DNA
evidence.32 In another study, analysts who
had the “potentially biasing context” that
their corroborating DNA evidence “was
essential to the prosecution” did not
exclude a defendant from a mixture;
however, without such context, only 1 of
17 other DNA examiners agreed, while 16
“reached a different and conflicting con-
clusion” (12 exclude, 4 inconclusive).33

Most mixture interpretation software
requires an analyst to prepare the input
by first selecting a subset of the data.

In its oft cited “cartoon” paper,34

the FBI proposed a solution: since one
threshold failed, use two thresholds.
The FBI introduced a second “stochas-
tic threshold” at a higher level to dis-
card data that might have too much
variation. No statistical theory or
empirical data supported this unfound-
ed proposal — just cartoon drawings.
No validation studies were done to
establish accuracy. Sophisticated math-
ematics can model data variation, but
applying another simplistic threshold
simply discards more data.

Regardless, the FBI’s SWGDAM
2010 guidelines35 imposed stochastic
thresholds on crime laboratories, mak-
ing the cartoon paper de facto national
policy. The labs compliantly determined
these thresholds and applied them to
mixture evidence. The second threshold
greatly decreased their match statistics
and increased inconclusive outcomes,36

eliminating needed DNA information.

2010: Alternative

In 1999, Cybergenetics began devel-
oping a sophisticated statistical solution
to DNA mixture interpretation.37 After a
decade of development, testing and
refinement, the TrueAllele® technology
become available. In 2009, TrueAllele
was used in a Pennsylvania homicide
trial.38 A scientific study (the first of over
30 such validation studies, seven of them
peer-reviewed) demonstrated a large
“information gap” between the empiri-
cally tested TrueAllele system and the
FBI’s unvalidated CPI approach.39
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Instead of discarding peak data,
TrueAllele uses all the height informa-
tion. Rather than applying thresholds,
TrueAllele statistically determines PCR
and instrument variation directly from
the data. The statistical computation
explores most conceivable solutions,
objectively separating genotypes out of
the mixture data. Only afterwards does
comparison with another person’s
genotype calculate a match statistic. A
human analyst cannot bias the out-
come: all the data goes into the comput-
er, with results based on scientific evi-
dence, not a person’s preconceptions.

However, some DNA workers pre-
ferred to “control their data” and would
not cede that control to an accurate,
objective forensic calculator. Others
viewed TrueAllele as a threat to their jobs
or status as “DNA experts.” Moreover,
TrueAllele automation opened a window
into past interpretation failures that
could expose potential liabilities. The
subjective examination of DNA mixture
data continued to produce inaccurate or
inconclusive match statistics.

2015: Failure

A 2011 TrueAllele validation study
conducted jointly with the NYSP DNA
lab (Albany, New York) showed that
CPI vastly underreported DNA’s proba-
tive value.40 Whenever the lab was able
to report a CPI statistic, the number
was (on average) a million times less
than the true match statistic on the
same data. CPI analysis removed con-
siderable DNA information.

A 2013 NYSP validation study exam-
ined how human mixture analysis per-
formed on data where the TrueAllele com-
puter produced a match result.41

TrueAllele’s median match statistic was
around a quadrillion. When TrueAllele
gave a result, 70 percent of the time thresh-
olds failed to report any match statistic.
Human review was silent about most
DNA evidence, incorrectly concluding that
informative items were inconclusive.

In 2013, NIST conducted a MIX13
inter-laboratory study.42 The hope was that
the new stochastic threshold procedure
had adequately addressed natural data
variation. The hope went unrealized when
a hundred participants examined a three-
person mixture that did not contain a par-
ticular suspect. Seventy groups incorrectly
included this suspect, whose DNA was not
present in the mixture (70 percent false
match rate), giving irrelevant DNA match
statistics that ranged from 9 to 344,000.
Twenty-four labs found the comparison
inconclusive. Only six correctly excluded

the suspect (6 percent accuracy rate), with
one of them using TrueAllele.

A 2014 TrueAllele validation paper
conducted on 72 Virginia mixture cases
showed the extent of CPI’s lost informa-
tion.43 On 100 DNA comparisons, the
average TrueAllele match statistic of a
hundred billion (1011) dropped to only
millions (106) when a threshold was
applied and CPI calculated. Applying a
second (stochastic) threshold to the same
mixture data further reduced the modi-
fied CPI statistic to just hundreds (102).
Moreover, the SWGDAM 2010 proce-
dure did not eliminate all false matches.

In 2015, comparison of inclusion
probability with TrueAllele match infor-
mation showed that CPI was a one-sided
random number generator, uncorrelated
with identification information.44 The sub-
jective CPI statistic depends on the num-
ber of loci tested, not on the probative
value of the DNA evidence. That is why
(using all loci) CPI always gave the same
answer — around a million — regardless
of the data. After an analyst first decides
that a defendant’s DNA is in a mixture
(viewed as guilt by a jury), CPI can after-
wards provide an impressive statistic that
only restates a human judgment.

Law

DNA holds considerable prejudicial
sway over a jury. In a courtroom, the
three letters can seem to abbreviate “Do
Not Acquit.” When DNA match statis-
tics are routinely wrong or lack proba-
tive value, it is hard to justify introduc-
ing them in criminal trials. The Federal
Rules of Evidence (FRE) provide legal
mechanisms for excluding harmful
DNA evidence from court.45

FRE 403 permits a court to “exclude
relevant evidence if its probative value is
substantially outweighed by a danger of
one or more of the following: unfair prej-
udice, confusing the issues, misleading the
jury, undue delay, wasting time, or need-
lessly presenting cumulative evidence.” A
CPI match statistic essentially counts up
the number of loci deemed an “inclusion”
by a human analyst.46 The statistic is
cumulative evidence that reframes an ana-
lyst’s subjective conclusions as an objec-
tive-sounding match number that can
mislead a jury. Since CPI is uncorrelated
with identification information, it has lit-
tle probative value. Mixture statistics that
are more prejudicial than probative can be
challenged in a pretrial hearing to keep the
jury from hearing unfair DNA results.

FRE 702 guides who can testify as
an expert witness to render a scientific
opinion about DNA evidence. The

expert’s testimony must be based on reli-
ably applying a reliable method to suffi-
cient data. After a pretrial hearing, a
judge can exercise her gatekeeper role to
protect the jury from hearing unreliable
scientific evidence. Unreliable DNA
match statistics are susceptible to chal-
lenge. The judge may rule that inaccu-
rate or insufficiently validated DNA
mixture statistics are not admissible.
Challenging unreliable DNA interpreta-
tion can keep out bad evidence, even
when there is good underlying data.47

In Brady v. Maryland,48 the U.S.
Supreme Court held that the suppres-
sion by the prosecution of evidence
favorable to an accused upon request
violates due process where the evi-
dence is material either to guilt or to
punishment. This ruling applies irre-
spective of the good faith or bad faith
of the prosecution because society wins
not only when the guilty are convicted,
but when criminal trials are fair.

When mixture interpretation fails,
no DNA match statistic is reported. The
absence of a report can hide potential
exculpatory DNA evidence. But if a
defendant requests all data from all lab-
oratory testing, Brady requires the gov-
ernment to provide that data. Effective
interpretation of the government’s
DNA data by an independent expert
might exonerate the accused or impli-
cate another person.

Conclusion

Unscientific, untested “statistical”
analysis of DNA mixtures has led to
incorrect results on hundreds of thou-
sands of items of evidence. When
thresholds give an “inconclusive” result
on mixtures with data, that silent non-
answer is usually wrong. Likewise,
when CPI match statistics are reported,
the answer is usually wrong.

Innocent people remain in prison
because informative DNA was not used
in their defense. Defendants are wrong-
fully convicted when misinterpreted
DNA cannot identify the true culprit.
Perpetrators go free when DNA evi-
dence is failed by forensic statistics.
Freed criminals then commit more
crime, which DNA should have prevent-
ed, needlessly harming innocent vic-
tims. This is not the fairest justice that
DNA science can provide.

Modern genotyping programs use
probability to help interpret DNA mix-
tures.49 TrueAllele has a fully Bayesian
model50 that considers all data and all
solutions. Less thorough programs
remove data to simplify the problem
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using thresholds, dropout parame-
ters,51 or peak filters.52 Subjective pro-
grams let a human operator choose
input data and parameters to overcome
software limitations.53 While crime labs
have started adopting better match 
statistic software, validation studies 
are needed to determine their range 
of applicability.54

The following recommendations
may help society move beyond mixture
interpretation failure and enjoy consis-
tently more reliable DNA evidence: 

1.     Open DNA data to public scrutiny.
The crime labs have failed to pro-
duce reliable match statistics for over
15 years. The solution is open access
to all DNA data so that impartial sci-
entists can publicly reassess crime lab
results in every case.

2.     Revisit all past DNA mixture cases.
Hundreds of thousands of DNA
mixtures have been improperly
interpreted. Only an unbiased,
accurate software review of all this
evidence can rectify the problem.

3.     Educate trial attorneys and judges.
Law attracts many who would rather
not study science or mathematics.
However, lawyers need to under-
stand the evidence they attack or
defend. Appropriate education is
needed to teach them DNA statistics. 

4.    Fully automate mixture interpreta-
tion. Human analysts are trained
to remove DNA data from the
input to their interpretation soft-
ware, which introduces bias and
error. Automated computing can
help eliminate such human deci-
sion-making. 

5.    Extensively validate DNA interpreta-
tion. Most mixture statistics have
not been validated for their intend-
ed use. No method, whether done
by man or machine, should ever be
introduced as evidence without
supporting validation. 

6.    Keep methods within their limits.
Defense vigilance helps ensure that
crime labs stay within the bounds of
their validated interpretation meth-
ods. Without this DNA pressure,
false positives may falsely identify or
convict innocent people. 

7.    Go beyond laboratory limits. Better
interpretation methods can solve
DNA mixtures that crime labs can-

not. Independent groups should
interpret these data. Otherwise
false negatives may fail to identify,
withholding potentially exculpato-
ry evidence. 

Unfounded DNA statistics have
inflicted considerable injustice on
defendants, crime victims, and society.
Every case that involved inconclusive
DNA mixtures or unfounded match
statistics should be revisited. It is time
to rectify two decades of forensic fail-
ure with accurate, objective, and vali-
dated DNA interpretation.

© Mark W. Perlin, 2016. All rights
reserved.

Notes
1. N.J. Schweitzer & M.J. Saks, The CSI

Effect: Popular Fiction About Forensic
Science Affects the Public’s Expectations
About Real Forensic Science, 47 JURIMETRICS

357 (2007).
2. NATIONAL RESEARCH COUNCIL,

STRENGTHENING FORENSIC SCIENCE IN THE UNITED

STATES: A PATH FORWARD (2009).
3. J.M. BUTLER, FORENSIC DNA TYPING: BIOLOGY

AND TECHNOLOGY BEHIND STR MARKERS (2000).
4. K.L. Alexander, National Accreditation

Board Suspends All DNA Testing at D.C. Crime
Lab, WASH. POST, May 26, 2015; T. Plohetski,

Austin Police DNA Lab Closed Amid Forensics
Commission’s Concerns, AUSTIN AMERICAN-
STATESMAN, June 10, 2016.

5. M.P. Flaherty, Virginia Re-evaluates DNA
Evidence in 375 Cases, WASH. POST, July 16, 2011.

6. S. Augenstein, DNA Mixtures Present
Statistical Problem, Texas Labs Proactively
Examining Thousands of Cases, FORENSIC
MAGAZINE, October 2015.

7. Editorial Board, A Mystery at the State
Lab, TIMES UNION, 2016.

8. M. Shaer, The False Promise of DNA
Testing, THE ATLANTIC, June 2016.

9. K.B. Mullis, The Unusual Origin of the
Polymerase Chain Reaction, SCIENTIFIC
AMERICAN, April 1990.

10. L.M. Smith et al., Fluorescence
Detection in Automated DNA Sequence
Analysis, NATURE, June 1986.

11. G. Williams, The Apple Macintosh
Computer, BYTE MAGAZINE, 1984.

12. J. Weber & P. May, Abundant Class of
Human DNA Polymorphisms Which Can Be
Typed Using the Polymerase Chain Reaction,
44 AM. J. HUM. GENET. 388 (1989).

13. L.S. Schwartz et al., Fluorescent
Multiplex Linkage Analysis and Carrier
Detection for Duchenne/Becker Muscular
Dystrophy, 51 AM. J. HUM. GENET. 721 (1992).

14. X.Y. Hauge & M. Litt, A Study of the
Origin of ‘Shadow Bands’ Seen When Typing
Dinucleotide Repeat Polymorphisms by the



PCR, 2(4) HUM. MOLEC. GENET. 411 (1993).
15. J. Weber & P. May, Abundant Class of

Human DNA Polymorphisms Which Can Be
Typed Using the Polymerase Chain Reaction,
44 AM. J. HUM. GENET. 388 (1989).

16. A. Edwards et al., DNA Typing and
Genetic Mapping with Trimeric and
Tetrameric Tandem Repeats, 49 AM. J. HUM.
GENET. 746 (1991).

17. M.W. Perlin et al., Toward Fully
Automated Genotyping: Genotyping
Microsatellite Markers by Deconvolution,
57(5) AM. J. HUM. GENET. 1199 (1995).

18. S.Y. Hill et al., A Genome Wide Search
for Alcoholism Susceptibility Genes, Am. J.
Med. Genetics Part B: Neuropsychiatric
Genetics, 128B(1):102-13 (2004).

19. G. Stolovitzky & G. Cecchi, Efficiency
of DNA Replication in the Polymerase Chain
Reaction, 93(23) PROC. NAT’L ACAD. SCI. USA
12947 (1996).

20. M.W. Perlin & B. Szabady, Linear
Mixture Analysis: A Mathematical Approach
to Resolving Mixed DNA Samples, 46(6) J.
FORENSIC SCI. 1372 (2001).

21. For a CPI example with data and
calculations, see M.W. Perlin, Inclusion
Probability for DNA Mixtures Is a Subjective
One-Sided Match Statistic Unrelated to
Identification Information, 6(1) J. PATHOL.
INFORM. 59 (2015).

22. Scientific Working Group on 
DNA Analysis Methods (SWGDAM), Short
Tandem Repeat (STR) Interpretation
Guidelines, 2(3) Forensic Science
Communications (2000).

23. M.W. Perlin, Inclusion Probability for
DNA Mixtures Is a Subjective One-Sided
Match Statistic Unrelated to Identification
Information, 6(1) J. PATHOL. INFORM. 59 (2015).

24. J.M. Butler & M.C. Kline, NIST
Mixture Interpretation Interlaboratory
Study (2005) (MIX05) Poster #56,
Promega’s Sixteenth International
Symposium on Human Identification;
Grapevine, Texas (2005).

25. J.M. Butler, Standardizing Mixture
Interpretation: An Open Discussion,
Accommodating the Demands of
Increasing Volume: A Workshop for Public
and Private DNA Profiling Laboratories,
Grapevine, Texas, Human Identity Trade
Association (2005).

26. L. Geddes, How DNA Evidence
Creates Victims of Chance, NEW SCIENTIST,
August 2010, https://www.news
cientist.com/article/mg20727743-300-
how-dna-evidence-creates-victims-of-
chance (last visited June 17, 2018).

27. P. Gill & J. Buckleton, Commentary
on: B. Budowle et al., Mixture
Interpretation: Defining the Relevant
Features for Guidelines for the Assessment
of Mixed DNA Profiles in Forensic Casework,
54(4) J. FORENSIC SCI. 810 (2009); 55(1) J.

FORENSIC SCI. 265 (2010).
28. D.J. Balding & J. Buckleton,

Interpreting Low Template DNA Profiles, 4(1)
FORENSIC SCI. INT. GENET. 1 (2009).

29. C.H. Brenner, The Mythical
‘Exclusion’ Method for Analyzing DNA
Mixtures — Does It Make Any Sense at All?,
AAFS 63rd Annual Scientific Meeting
(Chicago, Illinois): American Academy of
Forensic Sciences at 79 (2011).

30. NATIONAL RESEARCH COUNCIL,
STRENGTHENING FORENSIC SCIENCE IN THE UNITED

STATES: A PATH FORWARD (2009).
31. J.M. Curran & J. Buckleton,

Inclusion Probabilities and Dropout, 55(5) J.
FORENSIC SCI. 1171 (2010).

32. W.C. Thompson, Painting the
Target Around the Matching Profile: The
Texas Sharpshooter Fallacy in Forensic DNA
Interpretation, 8(3) LAW, PROBABILITY AND RISK
257 (2009).

33. I.E. Dror & G. Hampikian, Subjectivity
and Bias in Forensic DNA Mixture
Interpretation, 51(4) SCIENCE & JUSTICE
204 (2011).

34. B. Budowle et al., Mixture
Interpretation: Defining the Relevant
Features for Guidelines for the Assessment of
Mixed DNA Profiles in Forensic Casework,
54(4) J. FORENSIC SCI. 810 (2009).

35. Scientific Working Group on 
DNA Analysis Methods (SWGDAM),
Interpretation Guidelines for Autosomal
STR Typing by Forensic DNA Testing
Laboratories (2010), http://www.fbi.gov
/ a b o u t - u s / l a b / c o d i s / s w g d a m -
interpretation-guidelines.

36. M.W. Perlin et al., TrueAllele®
Casework on Virginia DNA Mixture
Evidence: Computer and Manual
Interpretation in 72 Reported Criminal
Cases, 9(3) PLoS ONE e92837 (2014).

37. M.W. Perlin & B. Szabady, Linear
Mixture Analysis: A Mathematical Approach
to Resolving Mixed DNA Samples, 46(6) J.
FORENSIC SCI. 1372 (2001).

38. M.W. Perlin, The Blairsville Slaying
and the Dawn of DNA Computing, in A.
Niapas (ed.), DEATH NEEDS ANSWERS: THE COLD-
BLOODED MURDER OF DR. JOHN YELENIC (2013).

39. M.W. Perlin & A. Sinelnikov, An
Information Gap in DNA Evidence
Interpretation, 4(12) PLoS ONE e8327
(2009), doi: 10.1371/journal.pone.0008327.

40. M.W. Perlin et al., Validating
TrueAllele® DNA Mixture Interpretation, 56(6)
J. FORENSIC SCI. 1430 (2011).

41. M.W. Perlin, J.L. Belrose & B.W.
Duceman, New York State TrueAllele®
Casework Validation Study, 58(6) J. FORENSIC
SCI. 1458 (2013).

42. M.D. Coble et al., NIST Inter-
Laboratory Studies for DNA Mixture
Interpretation (MIX13), 66th Annual Meeting
of the American Academy of Forensic

Sciences, Seattle, Washington (2014).
43. M.W. Perlin et al., TrueAllele®

Casework on Virginia DNA Mixture
Evidence: Computer and Manual
Interpretation in 72 Reported Criminal
Cases, 9(3) PLoS ONE e92837 (2014).

44. M.W. Perlin, Inclusion Probability
for DNA Mixtures Is a Subjective One-Sided
Match Statistic Unrelated to Identification
Information, 6(1) J. PATHOL. INFORM.
59 (2015).

45. G. FISHER, EVIDENCE (3d. ed.) (2012).
46. M.W. Perlin, Inclusion Probability for

DNA Mixtures Is a Subjective One-Sided
Match Statistic Unrelated to Identification
Information, 6(1) J. PATHOL. INFORM. 59 (2015).

47. M.W. Perlin, When Good DNA Goes
Bad, J. FORENSIC RES. (2013), S11:003. doi:
10.4172/2157-7145.S11-003.

48. Brady v. Maryland, 373 U.S. 
83 (1963).

49. J. Ropero-Miller et al., Landscape
Study of DNA Mixture Interpretation Software,
National Institute of Justice (2015).

50. A. O’HAGAN & J. FORSTER, BAYESIAN
INFERENCE (2d ed. 2004).

51. D.J. Balding, Evaluation of Mixed-
Source, Low-Template DNA Profiles in
Forensic Science, 110(30) PROC. NAT’L ACAD.
SCI. USA 12241 (2013).

52. R.G. Cowell et al., Analysis of DNA
Mixtures with Artefacts, 64(1) J. ROYAL STAT.
SOC’Y SERIES C APPLIED STAT. 1 (2013).

53. M.R. Wilson, In response to: Todd W.
Bille et al., Comparison of the Performance
of Different Models for the Interpretation of
Low Level Mixed DNA Profiles, 35
ELECTROPHORESIS 3125 (2014); 36
ELECTROPHORESIS 489 (2015).

54. Scientific Working Group on 
DNA Analysis Methods (SWGDAM),
Guidelines for the Validation of
Probabilistic Genotyping Systems (2015),
http://media.wix.com/ugd/4344b0_22776
006b67c4a32a5ffc04fe3b56515.pdf. n

WWW. N A C D L . O R G                                                                          T H E  C H A M P I O N56

F
A
IL
IN
G
 T
O
 I
N
T
E
R
P
R
E
T
 D
N
A
 M

IX
T
U
R
E
 E
V
ID
E
N
C
E

About the Author
Dr. Mark Perlin is the Chief 

Scientific Officer 
at Cybergenetics.

Mark W. Perlin, Ph.D., M.D., Ph.D.
Cybergenetics 
Pittsburgh, Pennsylvania
412-683-3004

perlin@cybgen.comEMAIL




