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ABSTRACT: Computer methods have been developed for mathematically interpreting mixed and low-template DNA. The genotype model-
ing approach computationally separates out the contributors to a mixture, with uncertainty represented through probability. Comparison of
inferred genotypes calculates a likelihood ratio (LR), which measures identification information. This study statistically examined the genotype
modeling performance of Cybergenetics TrueAllele� computer system. High- and low-template DNA mixtures of known randomized composi-
tion containing 2, 3, 4, and 5 contributors were tested. Sensitivity, specificity, and reproducibility were established through LR quantification in
each of these eight groups. Covariance analysis found LR behavior to be relatively invariant to DNA amount or contributor number. Analysis
of variance found that consistent solutions were produced, once a sufficient number of contributors were considered. This study demonstrates
the reliability of TrueAllele interpretation on complex DNA mixtures of representative casework composition. The results can help predict an
information outcome for a DNA mixture analysis.
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Deoxyribonucleic acid (DNA) evidence is the forensic gold
standard (1). Millions of short tandem repeat (STR) (2) geno-
types have been assayed for forensic comparison. The principles
of STR interpretation are clearest on pristine, single source items
containing abundant DNA (typically about 1 ng). A definite
genotype can first be inferred, and then compared with another
definite genotype, in order to compute a random match probabil-
ity (RMP) statistic relative to a “random” population genotype.
This is certainly the situation when comparing the pristine DNA
of individual reference items.
However, crime laboratories today process DNA evidence that

is far less pristine. The biological evidence can be mixed (con-
taining two or more contributors), lower level (having under
200 pg of DNA [3]), or degraded. In some forensic DNA labo-
ratories, the majority of evidence items are mixtures, possibly
low level, that often contain three or more contributors. The
manual “threshold-based” data interpretation procedures (4),
originally developed for pristine samples, are not as effective on
mixed DNA data (5).
Computer interpretation methods that use more of the quanti-

tative STR peak height data (rather than thresholds) have been
used for twenty years (6). Basic “mixture deconvolution” of
forensic DNA mixture data into possible contributor genotypes
is performed by other software applications such as Applied

Biosystems’ Genemapper� ID-X and NicheVision Forensics’
ArmedXpertTM. Qualitative allele “dropout” methods put a proba-
bility to unobserved peak data, as in David Balding’s likeLTD
(7) and Adele Mitchell’s FST (8) software programs.
The “genotype modeling” method goes further and strives to

preserve DNA identification information by explaining the
observed STR data in terms of adding together contributor geno-
types (9,10). This method develops Bayesian probability model
equations that can explain the data and (when the solution space
becomes vast) uses statistical search methods to solve the equa-
tions. Such computer systems include DNAmixtures (11) and
related efforts (12), MixSep (13), STRmix (14), and TrueAllele�

Casework (15,16).
Cybergenetics TrueAllele Casework system separates complex

mixture data into its component genotypes. For each contributor,
at each locus, a genotype and its uncertainty is described by a
probability distribution over allele pair possibilities. This geno-
type summarizes the data’s identification information and
imparts to DNA mixtures the original simplicity of single source
interpretation. For example, the match statistic resembles RMP,
as inferred genotypes are compared with one another.
Previous TrueAllele validation studies have been published.

Two-person mixtures of known composition have been exam-
ined for their information response, with varying amounts of
template DNA (17) and on small quantities using joint interpre-
tation (18). Over 150 casework mixture items containing 2, 3, or
4 contributors have been analyzed for match information across
a broad range of mixture weights and quantities, with compari-
son made to human review methods (15,16,19). However, there
has not yet been a study of known mixtures with up to five
unknown contributors, where the mixture weights reflected real-
istic casework instead of simple integer ratios.
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This study explores the strengths and limitations of DNA
interpretation using the TrueAllele Casework system on labora-
tory-synthesized mixtures of known composition. Mixtures
having 2, 3, 4, and 5 contributors are tested, having both high
and low DNA amounts. A randomized study design ensures
realistic simulation of real-world casework evidence. DNA
match information is used throughout to assess interpretation
results.

Materials

Randomized Design

A validation study helps establish the reliability of a method,
and its suitability for forensic application. DNA mixture evi-
dence contains contributions from two or more individuals in
random, unknown proportions. Most mixture studies use integer
mixture ratios, providing a convenient simplification for labora-
tory sample assembly. While these integral ratios may suffice for
manual interpretation, computer modeling can extract more
information from quantitative data. Therefore, randomized mix-
ture ratios were used in this study to more realistically represent
actual casework evidence.
There were four mixture groups, corresponding to 2, 3, 4, or

5 contributors. Within each group, ten mixtures were constructed

from five known reference samples. The contributors included in
each mixture were determined by randomly selecting DNA refer-
ences. The mixture weights of the contributors in each mixture
item were randomly drawn from a uniform distribution, com-
puted by Dirichlet sampling. The four mixture groups, each con-
taining ten items, yielded a total of 40 randomized DNA mixture
items (Table 1).

STR Data

STR mixture data were developed from the known DNA sam-
ples according to the experimental design (Table 1). DNA tem-
plates were amplified using an Applied Biosystems (Foster City,
CA) Identifiler� Plus STR panel at two different DNA concen-
trations (1 ng and 200 pg). The PCR products were detected on
an Applied Biosystems 3130xl Genetic Analyzer, with the higher
concentration injected for 5 sec, and the lower amount for
10 sec. (The lower amount was also injected for just 5 sec, but
the 10 sec data were more informative.)

Methods

Genotype Inference

TrueAllele Casework has a hierarchical probability model
that describes STR data (17). In this Bayesian model (20), the
prior genotype probability comes from population allele preva-
lence, while the likelihood function compares linear combina-
tions of contributor genotypes (with experimental distortion) to
observed STR data patterns. The computer uses Markov chain
Monte Carlo (MCMC) statistical search (21) to sample from
the joint posterior probability distribution. The posterior geno-
type probability is reported for each contributor at every
locus. To eliminate examination bias, where conclusions can
be affected by knowledge of a comparison reference (22),

TABLE 1––Study design. Five known references were used to randomly create ten mixture samples having 2, 3, 4, and 5 contributors. The mixture weights are
shown.

Reference Sample Two Three Four Five Sample Two Three Four Five

1 1 0.4674 0.5568 0.1628 0.0346 6 0.0891 0.0489 0.4786
2 0.3064 0.0274 0.0150 0.0475 0.0720
3 0.5326 0.4852 0.3106 0.8976 0.1236
4 0.1368 0.0876 0.2238 0.9109 0.4711 0.0060 0.0782
5 0.7222 0.2413 0.2184 0.2477
1 2 0.2322 0.5367 0.6423 7 0.4350 0.4159
2 0.3430 0.0530 0.5650 0.2087 0.0392
3 0.1770 0.0498 0.5224 0.2900
4 0.2731 0.0746 0.0730 0.2162 0.3385 0.0751
5 0.8230 0.4948 0.0457 0.1820 0.4350 0.2614 0.0179 0.1798
1 3 0.0989 0.4115 0.0930 8 0.1116 0.5774 0.0077 0.4932
2 0.4382 0.0085 0.8884 0.0728 0.0869 0.0400
3 0.1322 0.0586 0.3498 0.5230 0.0655
4 0.2702 0.3969 0.3854 0.3824 0.0876
5 0.9011 0.3182 0.0327 0.4545 0.3136
1 4 0.0271 0.2781 9 0.1197
2 0.2149 0.0585 0.6270 0.0043 0.0802
3 0.3855 0.9438 0.4956 0.2442 0.7007 0.4272
4 0.6145 0.0515 0.4117 0.1468 0.9415 0.0619 0.1750 0.2290
5 0.0047 0.0656 0.1159 0.3111 0.1201 0.1438
1 5 0.0444 10 0.6840 0.3718 0.4555
2 0.8866 0.2749 0.0397 0.3963 0.3160 0.1522 0.2480 0.1777
3 0.1044 0.3229 0.0009 0.3252 0.0197
4 0.1134 0.3603 0.1278 0.1198 0.0317
5 0.6208 0.2771 0.4306 0.5227 0.2604 0.3154

TABLE 2––Mixture weight variation. The average standard deviation is
shown for three concordant methods of computing mixture weight.

Contributors N=
Human
Scoring

Genotype
Unknown

Genotype
Known

2 20 0.03285 0.02859 0.01944
3 30 0.07699 0.02390
4 40 0.11543 0.01894
5 50 0.15075 0.02221
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TrueAllele objectively infers genotypes solely from the evi-
dence data.
Electronic data (.fsa) files were processed through the Tru-

eAllele Casework system, and interpretation requests were
formed that assumed 1, 2, 3, 4, 5, or 6 contributors. One,
two, and three contributor requests were processed with a
burn in time of 100,000 MCMC cycles, and sampled from
the joint posterior distribution for 100,000 cycles. Requests
having four or more contributors were burned in and sampled
for twice as many cycles. All requests were run in duplicate,
and further replicated as needed, possibly with longer run
times.

Match Statistic

Comparing two genotypes relative to a population produces
a likelihood ratio (LR) (23). The LR is unaffected by prior
beliefs about guilt or innocence and focuses on how well the
evidence data support an identification hypothesis. A better
mathematical model can elicit more identification information
from the same data and (through an inferred evidence geno-
type) produce a more accurate LR (24). The LR is a Bayes
factor that considers the effect of evidence on changing the
odds of an identification, commonly used in forensic science
to assess the probative force of a DNA match (25). The base

FIG. 1––DNA information vs. amount. Scatterplots of TrueAllele-inferred log(LR) versus known DNA contributor amount shown for different numbers of con-
tributors (2, 3, 4, and 5 individuals) and DNA amounts (1 ng and 200 pg). Only match results having positive log(LR) are displayed.
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ten logarithm of the LR, “log(LR)” or “weight of evidence”, is
a standard additive measure of information change, expressed
in “ban” units (26).
A competent TrueAllele user reviewed the computer-inferred

genotype and match results. Because of genotype uncertainty, a
contributor may match more than one reference. Using the study
design information, each contributor genotype inferred from a
mixture item was paired with a unique known reference. Other
useful pairing information included the expected contributor
genotype LR value (Kullback–Leibler divergence, or “KL”) (27),
LR match statistics, and the mixture weights.
Match statistics were calculated relative to the United States

Federal Bureau of Investigation allele databases for African
American, Caucasian, and Hispanic populations (28). The most
conservative LR value among these populations was used. The

reported log(LR) was the average of two independent computer
runs, where all contributor match values were within one ban
and the genotypes were concordant. On average, 3.1 computer
runs were conducted per sample. The co-ancestry coefficient
(theta value) was set to 1% (29).

Results

Mixture Weight

The mixture weight (w) of each item’s contributor had a pre-
determined design value (Table 1), but was subject to laboratory
variation (e.g., pipetting, volumes, quantification). As the study
relates other variables to w, it was important to obtain an accu-
rate mixture weight estimate. Therefore, empirical methods based
on observed data, rather than expected design values, were used
to estimate w for the items.
First, TrueAllele estimated mixture weights in the usual case-

work manner, without making any genotype assumptions. That
is, all variables (including w and the genotypes) were estimated
solely from the quantitative STR peak height data (15).
Next, the TrueAllele system used the known contributor geno-

types as provided input when estimating mixture weight. That is,
the genotypes were assumed, but the other variables (including
w) were estimated based on the data and that genotype knowl-
edge (10). As this approach starts with more information, it can
produce more precise results.
Finally, mixture weights were manually calculated for all the

two contributor items. Within each item, loci were identified
where the two contributors had nonoverlapping alleles. The
allele peak heights from these loci were entered into an Excel�

(Microsoft�, Redmond, WA) spreadsheet that found each con-
tributor’s mixture weight mean and standard deviation.
There was a strong pairwise association (r2 = 0.999) between

all three data-derived contributor w values for an item, whether
calculated by TrueAllele or a person. However, less association
(r2 = 0.907) was found between the data-derived mixture
weights and the experimental design values. The TrueAllele

TABLE 3––Regression coefficient estimates. Log–log scatterplot regression
line parameters of LR versus DNA contributor amount (pg). The x-intercept

log(w�[DNA]) value is calculated as “�y-intercept/slope”.

Contributors DNA (pg) N= Slope y-intercept x-intercept

2 1000 20 11.4148 �14.8765 1.3033
3 1000 29 11.9879 �17.8749 1.4911
4 1000 31 12.9912 �20.7610 1.5981
5 1000 41 10.3856 �17.1034 1.6468
2 200 18 15.4039 �16.8288 1.0925
3 200 26 14.0801 �17.0204 1.2088
4 200 25 17.1104 �23.9083 1.3973
5 200 31 13.2820 �18.6383 1.4033

FIG. 2––Information change regression slopes. Scatterplots of log(LR) vs.
DNA amount are shown for eight different groups: 2, 3, 4, or 5 contributors,
and either 1 ng or 200 pg of DNA. The scatterplots and regression lines are
overlain to show their similar slope behavior.

TABLE 4––Analysis of covariance for regression slope. The last column in
the ANCOVA gives the statistical significance of the interaction term

“ncon*DNA”.

Source d.f. Sum Sq Mean Sq F p > F

ncon 7 1731.33 247.33 24.99
DNA 1 3647.95 3647.95 368.57
ncon*DNA 7 78.03 11.15 1.13 0.3478
Error 205 2029.02 9.90

FIG. 3––Information with excess contributors (two-person mixtures). In
separate computer runs, TrueAllele assumed 2, 3, 4, 5, or 6 unknown con-
tributors and inferred log(LR) match statistics. For each mixture component,
the regression line and data points are shown under these five different con-
tributor assumptions.
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calculations that used both the observed data and known geno-
types gave the most precise mixture weights (Table 2). With two
contributors, for example, the average mixture weight standard
deviation was 0.0194. These minimum variance mixture weight
values, inferred by TrueAllele with all genotypes known, were
used in this study.

Information Response

TrueAllele’s inferred identification information varies with
contributor DNA amount in a predictable way (17). A scatterplot
of log(LR) information (y-axis) as a function of a contributor’s
log(w�[DNA]) quantity (x-axis) is roughly linear. Linear regres-
sion of a scatterplot permits examination of many match results
within a single analysis, and lets each contributor in a group of
mixture items be considered separately.
There are expected deviations from linearity in some situa-

tions. First, when mixture weights are equal, peak height data do
not help uniquely assign alleles to a particular genotype. This
inherent genotype ambiguity impedes contributor separation, dif-
fusing probability across multiple allele pair possibilities. Such
genotype probability diffusion at equal mixture weights reduces
the LR, as seen in Figure 10 of (15). Second, once there is suffi-
cient contributor DNA to achieve the RMP maximum value,
additional DNA cannot further increase the LR beyond this limit.
Thus, at high DNA amounts there is an information saturation,
where the LR plateaus instead of continuing to linearly increase,
as seen in Figure 7 of (17).
Scatterplots of log(LR) information versus log(w�[DNA]) con-

tributor quantity were developed from the mixture contributors

TABLE 5––Contributor sufficiency. How TrueAllele behaves when assuming
more than the known number of contributors. For each mixture sample hav-
ing a known number of contributors (known), TrueAllele processed the data
assuming up to six total contributors. This produced a group of log(LR) val-
ues for each sample’s contributor. A linear model y = (a + ai) + (b + bi)
x + e was fitted to the data, where x is the assumed number of contributors,
y is the log(LR) information obtained, there are average a and group ai y-
intercepts, average b and group bi slopes, and e is the error. The table

shows the average b slope values for each number of known contributors.

Known Slope b SE p-value

2 �0.6653 0.1120 1.5401 9 10�7

3 �0.8501 0.1151 6.6154 9 10�10

4 �1.3025 0.2930 1.2587 9 10�4

5 �0.2598 N/A* N/A*

*Five contributors provided only two points per line (assuming 5 or 6),
which was insufficient for some statistical estimates.

FIG. 4––Sensitivity (1 ng). Histograms of the log(LR) distribution for mixtures having (a) 2, (b) 3, (c) 4, and (d) 5 contributors. Average replicate log(LR)
scores were used.
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using their weight, quantity, and log(LR) values (Fig. 1). The
scatterplots of positive match results were roughly linear
(r2 = 0.505), and for two contributors showed the expected
log(LR) reductions for equal contributor weights and high DNA
amounts. The average regression slope across all groups was
13.33 log(LR)/log(DNA), with a standard error of 0.74. This
slope value means that a 10-fold change in contributor DNA
amount yields about a trillion-fold change in LR (Table 3).

Interpretation Invariance

There were eight test groups, two for DNA quantity (high,
low) and four different contributor numbers (2, 3, 4, and 5 indi-
viduals). The slope parameter describes an important aspect of
interpretation behavior, namely how contributor DNA amount
affects match information. Finding similarity in the slope param-
eter between the groups’ regression results would suggest that
TrueAllele’s interpretation behavior is relatively invariant across
these conditions. Such interpretation invariance would show that
TrueAllele behaves consistently, regardless of the number of
contributors or amount of DNA.
Consider, for example, the interpretation of a two-person

high-template mixture, relative to that of a five-person low-tem-
plate mixture. The peak height data for these two situations

would look entirely different. On average, there is more identifi-
cation information in a 1 ng two-person mixture than in a
200 pg five-person mixture, as seen in the 4 ban difference in
respective y-intercept values of �14.9 and �18.6 (Table 3). But
their respective slopes of 11.4 and 13.3 are similar, indicating a
consistent information response to changes in contributor DNA
amount.
Analysis of covariance (ANCOVA) was used to test this simi-

larity hypothesis. The covariate was the slope of a regression
line (Fig. 2). The null hypothesis was that the slopes (across the
eight groups) were the same. To reject the null hypothesis, there
would need to be a significant difference between the slopes.
(The intercept values were expected to differ, as each DNA mix-
ture group had its own average identification information.)
The eight groups showed different intercept values (Table 3),

expressing group differences in DNA detectability (x-intercept)
and identification information (y-intercept). There was no signifi-
cant difference in regression line slope (p = 0.3478 > 0.05), and
so the null hypothesis could not be rejected (Table 4). Table 3
indicates the slope invariance across four different contributor
numbers (2, 3, 4, and 5) and DNA template amounts (1 ng and
200 pg). This invariance shows that TrueAllele’s overall infor-
mation response to DNA data does not significantly depend on a
particular mixture’s number of contributors or template amount.

FIG. 5––Sensitivity (200 pg). Histograms of the log(LR) distribution for mixtures having (a) 2, (b) 3, (c) 4, and (d) 5 contributors. Average replicated log
(LR) scores were used.
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Contributor Sufficiency

Each assumed unknown genotype provides another dimension
that can explain the data. When too few contributors are
assumed, genotype inference can be restricted. This restriction
artificially sharpens genotype (and match) results for major con-
tributors, and dissipates minor contributor genotypes (and
matches). With a surplus of assumed (relative to actual) contrib-
utors, there is sufficient genotype dimensionality to resolve a
mixture.
Every mixture item in this study was synthesized with a

known number of contributing individuals. TrueAllele processed
each 1 ng mixture over a full range (1, 2, 3, 4, 5, and 6) of
assumed unknown contributors, that is, the one correct value and
five alternative values. Duplicate log(LR) results for an inferred
genotype were averaged together. Figure 3 shows match infor-
mation regression lines for two-person mixtures (one line for
each mixture contributor) as the number of contributors assumed
by the computer’s interpretation is varied.

Once TrueAllele had assumed a sufficient number of contribu-
tors (i.e., at least as many as the actual number), the match
results remained consistent (Fig. 3). With an excess of assumed
contributors, the log(LR) scatterplot values generally decreased.
Most of the information slopes were negative, suggesting that
match statistic decreases as excess assumed contributors are
added.
For all actual contributor numbers (2, 3, 4, and 5), linear

regression showed negative average slopes for interpretations
that had an excess of contributors (Table 5). Note that the nega-
tive slope values were sufficiently greater than their standard
errors to be statistically different from zero (p < 0.01). The slope
magnitudes were small, with values ranging from �1.30 to
�0.26, indicating little average reduction in log(LR). Thus,
assuming extra contributors in TrueAllele preserves the average
match result, without overstating the match statistic.

Inclusion Distribution

Sensitivity measures the extent to which a mixture interpreta-
tion method includes a contributor. The log(LR) measures the
degree of match between a genotype inferred from an evidence
item and the genotype of an individual who has contributed to
that item, relative to a population genotype. Previous studies
have shown that this match information (in ban units) correlates
with how much of that contributing individual’s DNA (on a log-
arithmic scale) is present in the item (17).
Sensitivity was determined for each of the eight test groups.

Figure 4 shows the log(LR) frequency distribution for each
match of the high DNA quantity group (1 ng) for separate con-
tributor numbers (2, 3, 4, or 5), while Fig. 5 shows the distribu-
tion for the low DNA quantity (200 pg) groups. The bar charts
show a leftward shift as contributor number increases, indicating
a decrease in average identification information. Using less DNA
(200 pg vs. 1 ng) further reduced the log(LR) score.

TABLE 6––Sensitivity. Sensitivity statistics were calculated for the eight groups (quantity and contributor number) as the average of two replicate log(LR) val-
ues. (a) The minimum, mean, maximum, and standard deviation (ban) use the smallest values across three ethnic populations. (b) The number of false exclu-

sions are binned by log(LR) value (rows), with a total of 59 events.

ncon

1 ng 200 pg

2 3 4 5 2 3 4 5

(a) Summary statistics
N= 20 30 40 50 20 30 40 50
Min 0.219 �11.422 �8.994 �11.315 �0.722 �5.970 �9.719 �7.883
Mean 14.084 10.476 6.789 4.723 11.388 6.656 2.691 1.276
SD 6.209 6.542 8.375 5.716 7.572 6.323 7.258 4.725
Max 20.799 20.789 20.304 19.923 20.799 20.723 19.665 11.483

log(LR)

1 ng 200 pg

2 3 4 5 2 3 4 5

(b) False exclusions
�1 1 2 2 1 1 1
�2 1 2 1 3
�3 2 2 1 5
�4 1 3 4
�5 1 1 3 1
�6 2 3 2
�7 2 1 1
�8 1 1 2
�9 1 1
�10 1
�11
�12 1 1

Total 0 1 9 9 2 4 15 19

TABLE 7––Sensitivity varies with mixture weight. The true inclusion rate
(one minus the false exclusion rate) based on positive log(LR) counts is
shown for mixture weight ranges. There were a total of 280 observations,

divided equally between the 1 ng and 200 pg DNA levels.

N= Mixture Range, % 1 ng, % 200 pg, %

4 0–1 0 0
20 1–5 40 0
17 5–10 82 24
33 10–25 100 91
39 25–50 100 100
25 50–100 100 100
140
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These trends are quantified in Table 6a. The mean identifica-
tion information for 1 ng mixtures decreased steadily from
14.084 ban with two contributors to 4.732 ban with five contrib-
utors. This decrease reflects the reduced amount of DNA in each
contributor, as well as the uncertainty in separating their geno-
types. The maximum values show that major contributors can
produce definite genotypes that preserve all match strength, even
with four other contributors present. The minimum values show
more exclusion of known contributors with increasing contribu-
tor number. With a lower 200 pg template, the trends are simi-
lar, but start at a lower log(LR) level.
False exclusions increased with contributor number (Table 6b,

Figs 4 and 5). The table rows stratify the false exclusion events
by ban value. With 1 ng DNA, false exclusions with 2 or 3 con-
tributors were rare (2%), but became more common (20%) with
4 or 5 contributors. There were more false exclusions when there
was less DNA (200 pg), consistently increasing from 10% for
two contributors to 38% with five contributors. There were a
total of 59 false exclusions, of 280 observations (21%).
The true inclusion rate (i.e., 1 – false exclusion rate) was esti-

mated as a function of mixture weight for common ranges used
in forensic practice (Table 7). For full DNA amounts of 1 ng,
mixture weights above 10% always gave a positive match result
(no false exclusions), regardless of the number of contributors.
This success rate fell to 82% in the 5–10% range, and down to
40% in the 1–5% range. With low-template amounts (200 pg), a
positive identification was always made with a mixture weight

over 25%. While the inclusion rate was 91% in the 10–25%
mixtures, it dropped to 24% with 5–10% mixtures, and no
matches were found below 5%. There were no inclusions when
the mixture weight was under 1% (N = 4 + 4, for 1 ng and
200 pg).

Exclusion Distribution

Specificity measures the extent to which a mixture interpreta-
tion method excludes a noncontributor. The log(LR) measures
the degree of exclusion (relative to a population) through the
magnitude of a negative match value. A mismatch can occur
between two genotypes, one inferred from an evidence item, and
another from an individual who may have not contributed their
DNA to that item. Previous studies have shown that such mis-
matches generally produce negative log(LR) numbers, with occa-
sional positive values near zero (16).
To assess specificity, each inferred evidence genotype (using

the first replicate) was compared with 10,000 genotypes that
were randomly generated from an ethnic allele frequency distri-
bution. This comparison was performed three times, once for
each ethnic population.
Specificity was determined for each of the eight mixture sub-

groups. Figure 6 shows the empirical log(LR) distribution for
mismatch with high DNA levels (1 ng) for each contributor
number (2, 3, 4, or 5). Similarly, Fig. 7 shows the mismatch
distribution for low DNA levels (200 pg). The figures show

FIG. 6––Specificity (1 ng). The log(LR) specificity distribution for mixtures having (a) 2, (b) 3, (c) 4, and (d) 5 contributors. The LRs were computed relative
to 10,000 randomly generated profiles across the FBI African American (BLK, red), Caucasian (CAU, green), and Hispanic (HIS, blue) populations.
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shrinkage toward zero information, as contributor number
increases, for both high and low DNA amounts (1 ng and
200 pg).

These trends are quantified in Table 8. The mean values
showed roughly equal specificity across the three different ethnic
groups (Tables S1 and S2). At 1 ng (Table 8a), there was

FIG. 7––Specificity (200 pg). The log(LR) specificity distribution for mixtures having (a) 2, (b) 3, (c) 4, and (d) 5 contributors. The LRs were computed rela-
tive to 10,000 randomly generated profiles across the FBI African American (BLK, red), Caucasian (CAU, green), and Hispanic (HIS, blue) populations.

TABLE 8––Specificity. Specificity statistics were calculated for the eight groups (quantity and contributor number). (a) The minimum, mean, maximum, and
standard deviation log(LR) values were averaged across three ethnic populations. (b) The total number of false inclusions is shown for each group, binned by

log(LR) value (rows).

ncon

1 ng 200 pg

2 3 4 5 2 3 4 5

(a) Summary statistics
N= 600,000 900,000 1,200,000 1,500,000 600,000 900,000 1,200,000 1,500,000
Min �30.000 �30.000 �30.000 �30.000 �30.000 �30.000 �30.000 �20.143
Mean �23.904 �18.339 �13.878 �9.429 �20.247 �13.507 �9.517 �7.636
SD 4.608 5.990 7.183 4.536 6.821 5.986 4.048 2.218
Max �1.514 1.511 2.140 3.202 0.410 1.878 2.006 1.671

log(LR)

1 ng 200 pg

2 3 4 5 2 3 4 5

(b) False inclusions
0 0 18 142 1071 0 36 152 123
1 0 6 37 200 0 16 22 18
2 0 1 7 24 2 1 3 4
3 0 0 0 6 0 0 0 0

Total 0 25 186 1301 2 53 177 145
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shrinkage toward zero information when proceeding from two
contributors (�24 ban) to five (�9 ban). The lower DNA
amount (200 pg) showed the same progression, but the reduced
genotype information was already closer to zero: �20 ban for
two contributors, increasing to �7 with five contributors.
For two contributors, false inclusions were rarely seen

(Table 8b, Figs 6 and 7), with none occurring at 1 ng and just 2
events at 200 pg (N = 600,000). The table rows stratify the false
inclusion events by ban value. The false inclusion level
increased with contributor number, reaching a maximum rate of
0.0867% with five contributors in 1 ng of DNA (1301 events of
1,500,000 comparisons). The other seven subgroups had appre-
ciably lower error rates (Table 8b). There were few false
matches beyond an LR of 10, and essentially none (six events in
8,400,000) with an LR > 1000.

Reproducibility Comparison

The reproducibility of a DNA interpretation method describes
how well a match statistic is independently replicated on the
same data. Once two (or more) interpretations have been made
on the same data group, an interpretation method’s reproducibil-
ity can be quantified using a within-group standard deviation.
This statistic measures the log(LR) variation (about the average

interpretation result) for each mixture contributor within the
group.
There is expected interpretation variation arising from the

MCMC statistical sampling. Scatterplots show that when geno-
types are concordant, so too are the DNA match statistics
(Figs 8 and 9). Each point gives the pair of log(LR) values from
two concordant computer runs, independently run using the same
parameter settings. As these points line up along the 45 degree
equi-information line, TrueAllele’s reproducibility is visually
evident.
Table 9 gives the within-group standard deviation (rw) values

for each group. Small rw values were found in all eight sub-
groups, never exceeding half a ban. These small rw values
quantitatively confirm TrueAllele’s reproducibility. In forensic
practice, two independent computer runs on an evidence item
can provide reporting confidence.

Conclusions

The computer interpretation of DNA evidence is a 21st cen-
tury necessity. With ever-increasing numbers of STR loci, DNA
mixtures having three or more contributors, low-level or
degraded samples, and the potential for subjective examination
bias (22,30), human analysts cannot be expected to fully process

FIG. 8––Reproducibility (1 ng). Scatterplots of paired log(LR) values for duplicate computer runs on the same mixture sample. The mixtures had (a) 2, (b) 3,
(c) 4, and (d) 5 contributors. Each point shows the first (LR1) and second (LR2) replicates.
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all the data. Such thorough and objective mathematical DNA
mixture interpretation is the province of machines (31).
To be forensically useful, interpretation methods must be fully

tested on realistic data. When software programs cannot robustly
resolve challenging mixtures, their casework applicability
becomes limited (e.g., DNAMIX, I-3, LoComatioN, LSD, PEN-
DULUM). For over 10 years, TrueAllele has been extensively
assessed in validation studies performed by crime laboratories
and Cybergenetics, with publication in peer-reviewed journals
(15–19).
This TrueAllele validation study used randomly generated

DNA mixtures of known composition that were representative of
actual casework. The samples contained up to five contributors,
for both high- and low-template amounts. The study assessed the

efficacy of the computer’s genotype modeling, as quantified by
LR.
The computer’s mixture weight values were found to be reli-

able. The computed match information varied with DNA quan-
tity in a predictable way that did not significantly depend on
contributor number or template amount. Excess assumed contrib-
utors did not materially affect the conclusions.
The match statistic determination of inclusion and exclusion

gave reproducible match values. The system was highly sensi-
tive, preserving considerable identification information. It was
also extremely specific, providing large exclusionary match sta-
tistics. Error rates were determined for false inclusions and
exclusions. Inclusion accuracy was tabulated as a function of
mixture weight.
This in-depth experimental study and statistical analysis estab-

lish the reliability of TrueAllele for the interpretation of DNA
mixture evidence over a broad range of forensic casework condi-
tions.
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FIG. 9––Reproducibility (200 pg). Scatterplots of paired log(LR) values for duplicate computer runs on the same mixture sample. The mixtures had (a) 2, (b)
3, (c) 4, and (d) 5 contributors. Each point shows the first (LR1) and second (LR2) replicates.

TABLE 9––Reproducibility. The table shows the within-group standard devi-
ation rw (ban) for each of the eight test groups, at both 1 ng and 200 pg

DNA template amounts.

ncon 1 ng 200 pg

2 0.189 0.171
3 0.281 0.205
4 0.430 0.255
5 0.287 0.254
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agency that provides expert DNA testimony in criminal cases and
uses the TrueAllele Casework system.
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Additional Supporting Information may be found in the online
version of this article:
Table S1 Specificity (1 ng). The statistics for specificity were

calculated for each contributor group across all three FBI ethnic
populations.
Table S2 Specificity (200 pg). The statistics for specificity

were calculated for each contributor group across all three FBI
ethnic populations.
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