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Geneticdata are not necessarily fully informative, leading to uncertainty in an inferred genotype. The
posterior genotype probability distribution incorporates the identification information present in the
data. To compare uncertain genotypes, we introduce here a match likelihood ratio (MLR), a simple
generalization of the likelihood ratio standardly used to understand the import of genetic evidence
in forensic applications. The MLR gives the relative probability of a match between questioned
evidence and a suspect, with respect to a match between the evidence and a relevant population.
Coancestry can be naturally incorporated. We present illustrative examples and provide a detailed
analysis and comparison for a two-person DNA mixture. We describe MLR’s computation efficien-
cies when making multiple genotype comparisons and show how MLR was used to explain evidence
in court. As statistical computing of forensic DNA inferences becomes more commonplace, the MLR
may help in quantifying match identification information.
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1. Introduction

specimens are collected as crime scene evidence. Scientists generate short tandem repeat (STR)
laboratory data (Edwardset al.,1991) from these specimens and then infer DNA genotypes from the
observed STR data peaks. By comparing these evidence genotypes against the genotypes of possible
suspects (including DNA databases), matches between genotypes can help identify individuals who
contributed their DNA to the evidence.

The observed genetic data do not always specify a genotype with certainty. Computer systems
have been developed that infer uncertain genotypes from kinship (Hilden,1970;Heuch and Li,1972)
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DNA is a powerful identifification methodology that helps solve crimes (Butler,2005). Biological
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andDNA mixture (Morteraet al.,2003;Perlin,2003;Bill et al.,2005;Wanget al.,2006) data. These
systems may produce multiple genotype values at a locus and assign probabilities or likelihoods to
the possible values.

When comparing an uncertain DNA mixture genotype with a reference, many approaches use
only the most likely genotype values. Some just select a single genotype value having a maximum
likelihood for reference comparison (Perlin and Szabady, 2001; Wanget al., 2006; Cowell et al.,
2007). Other approaches select a subset of highly likely genotype values (SWGDAM, 2000; Bill
et al., 2005;Curran,2008). An alternative DNA mixture approach is to use a likelihood ratio (LR)
of a joint likelihood for the mixture data relative to the marginal likelihoods (Evett et al., 1998),
integrating over all feasible genotype values. A LR method (Good,1950;Roeder,1994) is attractive
because it uses effectively the match information present in the data (Gillet al., 2006).

Some computer systems use Bayesian inference to obtain a posterior genotype probability mass
function (pmf ) that summarizes the data identification information (Perlin, 2003; Curran,2008).
The posterior genotype pmf generally contains more information than a single maximum likelihood
genotype value or a subset of highly likely values (O’Hagan and Forster, 2004). A LR formulation
based on the posterior genotype would not need to revisit the original data. This paper introduces a
match likelihood ratio(MLR) that directly compares uncertain genotypes to provide a match rarity
statistic.

We begin by describing the uncertain genotypes that will be used in the MLR. We then show
how genotype match can be represented as a probability of genotype equality, and how to compute
that probability, touching briefly on coancestry considerations. We next define the MLR as a ratio
of two genotype match probabilities and show that the MLR is indeed a LR. We briefly describe
some illustrative examples to show how MLR works. We then analyse one DNA mixture example
in some detail, computing a MLR for a published posterior distribution genotype and comparing
that result with a less informative genotype. We consider how MLR accelerates LR computation
with investigative DNA databases. We also report on how we used MLR to help explain DNA mix-
ture evidence in court. We conclude with a discussion of how the MLR can be used in forensic
practice.

2. Uncertain genotypes

A single source DNA reference sample usually yields an unambiguous genotype at each genetic
locus. However, crime scene evidence is often more complex. Evidence can have low levels of
DNA, damaged DNA or contain mixtures of DNA from multiple contributors. The result is that there
may be considerable uncertainty in the genotypes inferred from the data. The genetic uncertainty at
a locus can be described by associating a probability with each genotype value. The genotype’s
probability distribution characterizes the information learned from examining the DNA data using a
particular interpretation method.

Starting from questioned sample datadQ, a forensic scientist can apply a DNA interpretation
method and infer a questioned genotypeQ (Table1). A population allele data setdR canbe used to
infer a relevant population genotypeR that gives relative frequencies of genotype occurrence based
on population proportions. From a possible suspect’s datadS, a known suspect genotypeS can be
inferred. We assume that all of these data are independent of each other.

An individual’s genotype at a genetic locus has some allele pair value. LetX be a fixed finite set
of all such allele pair possibilities. When there is uncertainty in an inferred genotype, the genotypes
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TABLE 1 For each of three genotype classes (questioned
evidence, relevant population and suspect profile), the nota-
tion for its associated data, genotype and pmf isshown

Data Genotype pmf
Questionedevidence dQ Q q(x)
Relevant population dR R r (x)
Suspect profile dS S s(x)

Q, R andS becomerandom variables on setX. These genotypes have respective pmfsq(x), r (x)
ands(x), wherex is a genotype value inX (Table1).

Uncertain genotypes regularly appear in forensic DNA practice, although their description may
be intertwined with some specific match statistic. For example, the probability of inclusion (PI)
statistic1 (SWGDAM, 2000; Budowleet al., 2009c) can be viewed as a method of inferring genotype
Q from DNA mixture data as a list of allele pairs and then matching its uniform genotype pmf with a
unique suspect genotypeS (see Section5). Observed genotype frequencies represent a sample from
a relevant population described in random variableR. The relevant population may be an ethnic
subgroup (National Research Council, 1996) or one that does not contain the suspect (Balding,
2005). GenotypeR may also describe a distribution for some other alternative hypothesis.

3. Genotype match

A match event between the two genotypesQ andS occurs whenQ = S. We are interested in the
probability of this match event, or Pr{Q = S}. We observe that the probability of two genotypes
sharing a common value is the sum of joint probability events over all the disjoint genotype values
x in the value setX

Pr{Q = S} =
∑

x∈X

Pr{Q = x & S = x}.

Eachjoint probability term can be factored using conditional probability to form the sum of products

Pr{Q = S} =
∑

x∈X

Pr{Q = x|S = x} ∙ Pr{S = x}.

To avoid examiner bias (National Research Council, 2009), we assume that an objective analyst
inferred the questioned genotypeQ without any knowledge of the suspect’s genotypeS. Therefore,
the probability of the questioned genotype at any value is independent of the suspect’s genotype, or,
Pr{Q = x|S = x} = Pr{Q = x}, and so

Pr{Q = S} =
∑

x∈X

Pr{Q = x} ∙ Pr{S = x}.

The analyst’s genotype inferences forQ andS included their respective pmfsq(x) ands(x). There-
fore, the match probability between the questioned genotype and the suspect is the sum of genotype

1 This inclusion statistic goes by several names, including “combined probability of inclusion” (CPI) and “random man
not excluded” (RMNE).



292 M. W. PERLINET AL.

probabilityproducts

Pr{Q = S} =
∑

x∈X

q(x) ∙ s(x). (1)

By similar reasoning with genotypesQ and R, we also conclude that the match probability
between the questioned genotype and some relevant population is the sum of genotype probability
products

Pr{Q = R} =
∑

x∈X

q(x) ∙ r (x). (2)

DNA samples having identical genotypes may share a common ancestry (Balding and Nichols,
1994) and so are not necessarily independent. Thecoancestry coefficientθ is the probability that a
randomly selected allele shared by two genotypes is identical by descent. We can write the theta-
dependent genotype match probability betweenQ andS (and similarly forQ andR) as the sum of
products

∑

x∈X

q(x) ∙ s(x) ∙ μQS(θ, x). (3)

We define thecoancestry measureμQS(θ, x) as the ratio of the joint posterior genotype probability
to the product of the marginal posterior genotype probabilities. We can calculate this measure by
rearranging the posterior probabilities with Bayes theorem (Feller,1968) and then substituting in the
standard Dirichlet representation of population allele frequencies (Evett and Weir, 1998).

4. Match likelihood ratio

We define the MLR as the probability of a match between genotypesQ and S relative to the
probability of a match betweenQ andR.

MLR =
Pr{Q = S}

Pr{Q = R}
. (4)

Thismatch rarity statistic can be reported by reading from formula (4) the statement:

a match between the genotypes of the evidence and the suspect is (some number) times
more probable than a match between those of the evidence and a random person,

or, more colloquially,

a match between the evidence and the suspect is (some number) times more likely than
a match between the evidence and a random person.

We need to show that the MLR is actually a LR. Bayes theorem tells us that the evidence infor-
mation can be summarized in a LR (Lindley, 2006). The LR compares the probability of the evidence
(E), conditioned on a hypothesis (H ) and background knowledge (K ) to the evidence probability
conditioned on the negation ofH (∼H ), along withK . The genotypesQ, R andS, along with their
pmfs, provide the background informationK . By ignoring the prior odds ratio, the LR focuses on
how well the hypothesis explains the evidence (Aitken and Taroni, 2004).

The symbolsE, H andK denote propositions, where ‘a proposition is defined to be a statement
where it is meaningful to assert that it is true or that it is false’ (Good,1950, p. 1). Forensic DNA
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interpretationhas customarily used the symbolE to denote an evidence proposition about some
function of the observed STR data peaks (Evett and Weir, 1998), thereby forming a data likelihood
ratio (DLR). However, a valid LR construction (Good,1950, chapter 6) need not adhere to this
particular DLR convention. Since our approach compares genotypes (whose inference has already
summarized the STR data), it is more natural in this situation to have the evidence propositionE
describe a (true or false) match event between two genotypes.

The evidence propositionE that we are concerned with here is an observed eventQ = U
that there is a match between the inferred questioned genotypeQ and a genotypeU belonging
to an unknown person. The standard prosecutor’s hypothesisH is that the unknown person is the
suspect; hence, genotypeU is the genotypeS. The alternative hypothesis∼H (e.g. propounded
by the defense) is that the unknown is not the suspect, but instead some other person in a relevant
population, and so genotypeU is the population genotypeR. Therefore, the standard LR based on
this genotype match evidence compares the alternative hypotheses as follows:

LR =
Pr{Q = U |H, K }

Pr{Q = U | ∼ H, K }

=
Pr{Q = U |U is S}

Pr{Q = U |U is R}
.

After substituting in the appropriate conditioned genotypes, we obtain the MLR defined in (4)

=
Pr{Q = S}

Pr{Q = R}
= MLR,

whichestablishes that the MLR is the standard forensic identity LR.
Combining the MLR probability ratio of (4), together with the sum of product formulas (1) and

(2), we obtain the MLR sum of products ratio evaluation form

MLR =

∑
x∈X q(x) ∙ s(x)

∑
x∈X q(x) ∙ r (x)

. (5)

Accountingfor coancestry using (3) would give a theta-adjusted MLR as

MLR(θ) =

∑
x∈X q(x) ∙ s(x) ∙ μQS(x, θ)

∑
x∈X q(x) ∙ r (x) ∙ μQR(x, θ)

. (6)

5. Illustrative examples

We illustrate the application of the MLR by using the sum of probability products ratio (5) to com-
pute some useful DNA match statistics.

1. Single source. When the questioned evidence and the suspect both come from clean single
source DNA, their respective independent genotypesQ andS each have a unique allele pair
value. Therefore, pmfsq(x) ands(x) both have a probability of 1 at their respective genotype
values and are equal to 0 at all other values. WhenQ andSagree on the same genotype value
x0, the MLR numerator is 1 and the denominator reduces to the population genotype frequency
r (x0). The MLR statistic (5) thus reproduces the simple random match probability estimate

1
r (x0)

. This overestimate can be corrected to account for coancestry (Balding and Nichols,
1994) using the theta-adjusted MLR of (6).
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2. Kinship.Suppose that the questioned evidence has a unique genotypeQ but that the suspect
genotypeS is inferred genetically from his or her mother and father. Then,S has a proba-
bility distribution s(x), with possible Mendelian values of 1/4, 1/2 or 1 at each locus. (More
informative, and commensurately more complex,Sgenotype pmfs would also incorporate the
likelihood of offspring [Sisson,2007], but these are not introduced here.) Unique genotype
Q can be compared with this uncertain genotypeS to find a match probability Pr{Q = S}.
The computed MLR from (5) normalizes this factor by a match probability Pr{Q = R} be-
tweenQ and the relevant population genotypeR to determine the match rarity. Accounting
for coancestry using (6) sharpens this approximation to produce the exact LR.

3. Mixtures. Now suppose that suspect genotypeS is unique but that questioned genotypeQ is
from a DNA mixture withn visible allele peaks. There areN = n(n+1)

2 unorderedpairings
of then alleles. Thus, one might infer a list of theseN possible genotype valuesx, assigning
each one the same uniform probabilityq(x) = 1

N , and all other values probability 0. Sup-
pose that there is a matching suspect genotypeS (having a known allele pair) at one of these
genotype values. With allele frequenciesp1, p2, . . . , pn, the genotypeR has probabilityp2

i
for homozygote values and 2pi pj for heterozygote values. By substituting the genotype pmfs
q(x), r (x) ands(x) into the MLR expression (5), we derive the standard PI match statistic
(CPI and RMNE) that many workers use to interpret DNA mixtures (SWGDAM, 2000).

MLR =

∑
x∈X q(x) ∙ s(x)

∑
x∈X q(x) ∙ r (x)

=
1
N ∙ 1

1
N ∙ (p2

1 + 2p1 p2 + ∙ ∙ ∙ + p2
n)

=
1

(p1 + p2 + ∙ ∙ ∙ + pn)2
.

4. Missingpersons. We can compare an evidence genotypeQ (mixture example 3) with an in-
ferred Mendelian reference genotypeS (kinship example 2). Substituting their genotype pmfs,
along with the pmf of relevant population genotypeR, into the MLR equation (5) determines
match rarity as a LR. This approach is useful in mass disasters, where damaged DNA remains
produce an uncertain questioned genotypeQ (Perlin,2007) that can be compared with a miss-
ing person genotypeS reconstructed from family genotypes (Heuch and Li,1972).

Note that for the single source (Example 1) and the inclusion probability distributions ap-
pearing in simple kinship and DNA mixture analysis (Examples 2 and 3), the MLR sum of
products ratio reduces to a familiar reciprocal of a sum of population genotype probabilities.
This symmetrical form may not occur with uncertain genotype comparisons (Example 4) that
have unequal genotype probabilities. With such nonuniform genotype pmfs, the MLR is cal-
culated using formula (5).

6. Mixture example

It would be instructive to see how MLR is used with a posterior genotype pmf for a two-person
DNA mixture and then compare the genotype match information with that obtained using a maxi-
mization approach. In this mixture example, questioned major contributor genotypeQ was in-
ferred in a Markov chain Monte Carlo (MCMC) computation from a hierarchical Bayesian model
(Curran,2008, figure 3, blue bars) using quantitative STR peak height mixture data (Wanget al.,
2006, table 10). We constructed a relevant population genotypeR using a standard Caucasian allele
frequency database (Budowleet al.,1999). The suspect genotypeS was known (Wanget al.,2006,
table 10).
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TABLE 2 (a) The genotype probabilities and MLR calculation are shown for the
posterior distribution genotype Q inferred by Curran at locus D13S317 that has un-
equal q(x) probabilities.(b) The MLR calculation is shown for a uniform genotype Q′

inferred as a subset of D13S317 allele pair values that have equal q′(x) probabilities

(a)

Genotypeprobability distributions Matchprobabilities
Allele pair Q R S Pr(Q = S) Pr(Q = R)

x q(x) r (x) s(x) q(x) ∙ s(x) q(x) ∙ r (x)

11 11 0.300 0.102 0.031
11 12 0.670 0.197 1 0.670 0.132
12 12 0.030 0.095 0.003

Pr(Q = S) 0.670
Pr(Q = R) 0.165

LR 4.054

(b)

Genotypeprobability distributions Matchprobabilities

Allele pair Q′ R S Pr(Q′ = S) Pr(Q′ = R)
x q′(x) r (x) s(x) q′(x) ∙ s(x) q′(x) ∙ r (x)

11 11 0.333 0.102 0.034
11 12 0.333 0.197 1 0.333 0.066
12 12 0.333 0.095 0.032

Pr(Q′ = S) 0.333
Pr(Q′ = R) 0.131

LR 2.539

Currandiscussed the genotype ambiguity of STR locus D13S317 on this data set, so we illustrate
the MLR approach on his inferred genotypeQ at this locus. Proceeding from left to right (Table2a),
the first table column gives the allele pair genotype values that appear in the posterior distribution.
Columnq(x) shows the posterior probability values of genotypeQ at D13S317, columnr (x) shows
the population probabilities of genotypeR and columns(x) shows the unambiguous suspect geno-
typeSwith allele pair [11, 12]. Each term in the numerator match probability Pr{Q = S} appears in
columnq(x)∙s(x), which sums to 0.670. The terms in the denominator match probability Pr{Q = R}
appear in columnq(x) ∙ r (x); these add up to 0.165. The LR is the ratio of these two match prob-
abilities, which equals 4.054. The weight of evidence (base 10 logarithm of the LR) information at
D13S317 with genotypeQ is therefore 0.608.

Alternatively, a maximizing approach can produce a genotypeQ′ from the list of allele pairs
contained in D13S317’s 99% highest posterior probability set.2 By considering each allele pair in
this unordered set to be equally likely, we form a new genotypeQ′ thathas the uniform probabilities
shown in columnq′(x) (Table2b). Columnsr (x) ands(x) are unchanged from Table2a. Assessing
the MLR of Q′ relative to that of genotypeQ, the numerator match probability Pr{Q′ = S} is halved

2 One might instead consider using a single maximum probability allele pair value. However, making such a definite
genotype value assignment risks producing an entirely uninformative joint LR of zero when a misclassification occurs (Cowell
et al.,2007).
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TABLE 3 The LR and log(LR) values are shown at every locus for
inferred genotypes Q and Q′. The joint weight of evidence is the sum of
the locus log(LR)values

Locus LR Log (LR)

Q Q′ Q Q′

CSF1PO 3.089 1.658 0.490 0.220
D13S317 4.054 2.539 0.608 0.405
D16S539 10.962 5.006 1.040 0.699
D18S51 30.640 5.310 1.486 0.725
D21S11 11.951 4.485 1.077 0.685
D3S1358 11.901 3.712 1.076 0.570
D5S818 7.668 4.000 0.885 0.602
D7S820 10.172 3.603 1.007 0.557
D8S1179 111.981 4.034 2.049 0.606
FGA 14.732 5.553 1.168 0.745
TH01 68.311 17.566 1.834 1.245
TPOX 21.507 2.984 1.333 0.475
vWA 50.046 14.552 1.699 1.163

Joint log (LR) 15.753 8.695

to 0.333, and the denominator match probability Pr{Q′ = R} is the slightly smaller 0.131. The LR
for uniform genotypeQ′ is reduced to 2.539, with a lower logarithmic information value of 0.405.

We compared the LRs and log10(LR)sof inferred genotypesQ andQ′ (Table3). At every locus,
the posterior distribution genotypeQ (unequal inferredq(x) probabilities) has a more informative
LR than the uniform genotypeQ′ (equalq′(x) probabilities).By the product rule (i.e. locus inde-
pendence), the joint LR forQ is 1015.75, whereas the joint LR forQ′ is 108.70. The reason for this
seven order of magnitude LR improvement is that the full posterior genotype pmf inferred from the
quantitative data is more informative than a set of equally probable allele pairs.

7. Computational considerations

The MLR approach decomposes the LR computation into two steps (Figure1a). The first step sums
over every genotype possibilityx in the context of the evidence data (and other parameters) us-
ing Bayes theorem to infer a posterior probability distributionq(x) for genotypeQ. Then, MLR
combines the three genotypesQ, R andS by summing over the products of their probability distri-
butions to form the LR. The conventional DLR instead computes the LR in a single step (for both
numerator and denominator) that sums over genotype values (Evettet al., 1998) (Figure1b). That
is, the MLR uses an explicit genotype representationQ that has been partially evaluated (Futamura,
1971) from these data, whereas the DLR does not preserve a genotype object in an intermediate
step.

There can be conceptual utility in forming and preserving the genotypeQ and its probabil-
ity function q(x). The genotype is a natural representation of genetic identity since it corresponds
directly to an individual’s DNA type. Also, its probability distribution captures our knowledge (and
uncertainty) about unknown allele pair values. Some people find it helpful to visualize genotype
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FIG. 1. (a) The MLR is computed from three genotypes, each of which is inferred independently from their respective data.
(b) The DLR is computed by summing over all genotype possibilities for the questioned evidence and does not use a posterior
genotype pmfQ. While both approaches use a likelihood function to compare genotypes with data, with MLR this comparison
is done when inferring a genotype pmf, while with DLR this is done through genotype summation.

value combinations (e.g. DNA mixtures) and compare these patterns with the observed data. Peda-
gogically, we often use these genotype concepts and pictures when educating students, judges and
juries. Importantly, though, explicit representation of genotypes (as random variables) can confer
significant computational advantages in certain situations.

Genotype inference can be computationally expensive when using a faithful hierarchical Bayesian
model that accurately accounts for quantitative STR peak data. The associated genotype MCMC
summation (and integration over other variables) for DNA mixture problems typically entails hours
or days of computer time (Perlin, 2005; Cowell et al., 2008; Curran,2008). With the DLR, this
genotype summation cost is incurred anew every time a comparison is made with a different suspect
genotypeS. However, the MLR approach exacts this cost only once since the evidence genotypeQ is
preserved. The inferred pmfq(x) can therefore be reused in each subsequent (virtually instantaneous
sum of products) suspect comparison.

DNA databases enable ‘cold hit’ comparisons between crime scene evidence and suspect geno-
types. Providing a LR score for every scene-to-suspect match can quantify database match infor-
mation. The most informative LR is obtained when modelling the original quantitative peak height
evidence (Balding and Buckleton,2009), which can be preserved for thei th case in an MCMC in-
ferred genotypeQi having Bayesian pmfqi (x). Comparing the stored scene genotypeQi with a set
of J suspect genotypes{Sj } is a very fast computation using MLR equation (5). However, the DLR
computation does not preserve any genotypeQi , so its costly MCMC integration must be repeated
J times over the same casei quantitative data, once for each suspectj . While MLR naturally sup-
ports highly informative DNA database LR determination (Perlin,2005), a redundant DLR approach
would be computationally prohibitive for typical database sizes (e.g. whereJ is a million or more
convicted offenders).

When identifying victim remains in a mass disaster, there can be uncertainty in both the victim re-
mains genotypes{Qi } and the missing person genotypes{Sj }. In our work on reanalysing the World
Trade Center (WTC) disaster DNA data (Perlin,2007), each of theI genotypesQi was typically
inferred by a joint Bayesian analysis of datadQi , comprising multiple samples from damaged
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remains. Similarly, a subject genotypeSj could be inferred from datadSj , comprising low-level
DNA or mixture personal effect samples and kinship family references. Whereas a full DLR com-
parison of all victim remains data

{
dQi

}
with all missing person data

{
dSj

}
would entailI ∙ J (multi-

plicative) LR computations, our MLR approach to the WTC reanalysis involved onlyI +J (additive)
genotype inferences that were afterwards compared rapidly using MLR equation (5) to obtain the
LRs. Moreover, the cost of the MCMC inference was reduced since DLR’s joint consideration of
thedQi anddSj data (e.g. by generalizing the quantitative data LR;Evettet al., 1998, equation 5) is
a more computationally expensive integration than MLR’s separate inferences of genotypeQi from
just datadQi and of genotypeSj from just datadSj .

8. Court case

The likelihood component of a total probability model describes how well the model accounts for
observed data. A more accurate likelihood function can elicit greater identification information from
the data (Gillet al., 2006), hence infer a more informative genotype pmf. In Bayesian inference
(O’Hagan and Forster, 2004), complete modelling of the quantitative data can infer a genotype that
preserves all of the data’s identification information. The MLR provides a mechanism for automati-
cally translating this evidence genotype (probability) representation into a LR, when making a com-
parison with a suspect relative to a population. We recently served as scientific experts in a criminal
trial3 that highlighted several points along the information spectrum of (infinitely many possible)
likelihood functions and demonstrated how MLR can help explain match information in court.

Dentist John Yelenic was murdered in his home in Southwestern Pennsylvania. Pennsylvania
State Trooper Kevin Foley, cohabitating boyfriend of the victim’s estranged wife, was accused of
the homicide. The primary physical evidence was a two-person DNA mixture extracted from the
victim’s fingernails, containing the victim (93% of total DNA) and a second minor unknown contrib-
utor (7%). Interpreting the mixture evidence using an inclusion method to determine PI, the original
Federal Bureau of Investigation laboratory reported a DNA match statistic LRPI of 13 000, consid-
erably less than the million to one level that juries find persuasive (Koehler, 2001). The prosecution
therefore retained independent outside experts (Drs Cotton and Perlin) to perform more informative
interpretations of the DNA mixture evidence.

Dr Cotton’s obligate allele (OA) analysis listed all allele pairs at a locus that contained an
evidence allele other than the victim’s, yielding a LROA of 23 million. Dr Perlin conducted a quanti-
tative modelling (QM) of the mixture data using Cybergenetics TrueAllelecomputer system, find-
ing a LRQM of 189 billion. TrueAllele genotype inference uses MCMC to explore a Bayesian model
(Perlin,2003) with a multivariate normal (peak height) data likelihood function (Perlin and Szabady,
2001) and generally accepted hierarchical mixture weight modelling (Curran,2008) with additional
variables for stutter (Perlinet al.,1995) and relative amplification (Ng, 1998) polymerase chain re-
action (PCR) artifacts. Unlike the original laboratory’s PI approach, the OA and QM methods both
assumed that the victim contributed DNA to his own fingernail sample (observed in the data as a
93% major component). In all three methods, LR comparison was made to suspect Foley, relative to
a Caucasian reference population (Budowleet al.,1999).

The judge admitted the OA and QM methods into evidence after hearing the outside experts
testify on the general acceptance of these LR approaches in the relevant scientific community of

3 Commonwealth of Pennsylvaniav. Kevin J. Foley, Indiana County, No. 1170, Crim 2009.
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forensicinference and statistics. At the trial, the defense cross-examination questions focused on
why there were three different DNA match statistics (LRPI, LROA andLRQM) having very different
magnitudes (104, 107 and 1011) for the same data. The prosecution experts compared genotype
patterns with peak data to educate the jury about DNA mixture interpretation. Each interpretation
method used progressively increasing amounts of the data to infer a genotype pmf:

• PI did not use either the victim profile or the quantitative peak heights;

• OA did use the victim profile, but not peak heights; and

• QM used both the victim profile and the quantitative data.

The experts explained that using more of the data generally produces a more informative genotype.
MLR is a natural way to translate genotype possibilities (relative to a suspect and a population)

into LR match information. We explained to the jury that (the MLR formulation of) the LR is the
probability of a specific match between genotypesQ and S, relative to that of a random match
betweenQ andR. Using a spreadsheet that presented the MLR calculation (similar to Table2), the
jurors saw how multiplying, adding and dividing genotype pmfs would compute a LR at a locus. We
presented the LR contribution at each locus, comparing the three interpretation methods (analogous
to Table3); this bar chart showed how more informative genotypes produced a higher LR at certain
loci. We gave the plain English statement of the LR (see MLR equation (4) paragraph), which does
not mention conditional probabilities and can be applied equally well to all three methods. Although
Trooper Foley testified that he was innocent, the DNA fingernail evidence indicated otherwise. The
jury convicted him of first-degree murder.

9. Discussion

We have introduced a LR approach for inferring match strength when there are uncertain genotypes.
The key idea is to form a LR that compares the probability of a specific genotype match relative
to that of a nonspecific match. The MLR assesses identification hypotheses for an observed match
event, which works well with posterior genotype probability distributions, and provides information
that is equivalent to the usual data event DLR. The MLR preserves the data’s identification informa-
tion by using the entire posterior genotype probability distribution rather than a limited subset.

Much of the power of DNA evidence comes from making cold hit comparisons to offender
databases (Gill and Werrett, 1990;Niezgoda and Brown, 1995). These databases compare a set of
evidence genotypes{Qi } with a set of likely suspect genotypes{Sj }. In particular, comparisons are
made between genotypes, without any use of the underlying genetic data. The MLR supports this
DNA database paradigm by working directly with (possibly uncertain) genotypes and efficiently
computing a LR weight of evidence for every reported match.

The MLR transforms an inferred questioned evidence genotype (along with suspect and
population genotypes) into a single information measurement number. This summarization is useful
for validating a genotype inference method (or a laboratory procedure) since the observed LR
distribution can characterize the information efficacy (distribution mean) and reproducibility (within-
case variance) (Perlin,2006). Similarly, the information yield of different DNA laboratory and
genotype inference methods can be compared through their LR values on representative specimens.
When reporting a DNA match, the MLR summarizes identification rarity, preserving all of the data
information contained in the posterior genotype pmf.
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To reduce examiner bias, an objective approach is to (i) first infer (and commit to) a questioned
genotype from the evidence data, (ii) only afterwards make any match comparison with a suspect
genotype and (iii) then report a LR rarity statistic with respect to a relevant population (Berry,1991;
Tobin and Thompson, 2006). The MLR supports this inference sequence since (4) can compare
any questioned genotypeQ with any suspect genotypeS and determine the LR with respect to
a population genotypeR. Indeed, the MLR is able to ‘match’ DNA materials only after all the
genotypesQ, R andShave been determined.

There are many genotype inference methods for mixtures and other complex DNA data. The
genotypes that result from applying these diverse methods to the same data can produce LR match
information ranging over 10 orders of magnitude (Butler and Kline, 2005). Statistical computing in-
fers genotypes that tend to preserve more identification information and provide greater consistency.
The MLR can accept genotype input that has been inferred using any of these methods and preserve
all of the match information contained in the genotype pmf.

The MLR accommodates ongoing scientific improvements in genotype inference. Hierarchical
Bayesian modelling can be continuously refined to incorporate more aspects of the STR data process
and its uncertainty (e.g. PCR stutter, relative amplification, degraded DNA, marker balance, many
unknown contributors, low-level DNA). Moreover, a model can combine independent DNA sample
data using a joint likelihood function that multiplies together the separate likelihoods, as we routinely
do in the TrueAllele system with low-level DNA mixtures. Regardless of the model specification,
the inferred output is a genotype pmf that can be easily compared with other genotypes using MLR.

The MLR approach has application beyond DNA evidence. The Bayesian framework of first
inferring a type, and then using the type’s pmf in MLR equation (5) to compute a match rarity
LR, is entirely general. We have mapped this framework onto other forensic subdisciplines, such as
fire debris, firearms/toolmarks, blood spatter and fingerprints. For example, using integrals in place
of sums, one can derive the standard LR formula for glass evidence (Lindley, 1977) as a MLR of
normally distributed types.

Forensic science has been criticized for lacking a sound statistical basis for reporting matches and
their rarity (National Research Council, 2009). While DNA evidence has been relatively unscathed,
the continuing debate over DNA mixture interpretation (Gill et al., 2006; Budowleet al., 2009c)
and low-level DNA (Balding and Buckleton,2009;Budowleet al., 2009b) shows that DNA is not
entirely immune to such challenges. Some have proposed that it is not even possible to give other
non-DNA subdisciplines a rigorous statistical basis (Budowleet al., 2009a). The MLR framework
suggests otherwise. Bayesian inference permits the probabilistic inference of forensic types, and
MLR enables their comparison to ascertain match rarity.
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