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Abstract

Forensic DNA databases are becoming an increasingly valuable law enforcement tool
for convicting repeat offenders and exonerating the innocent.  However, constructing
such databases is quite laborious.  After generating STR profiles in the lab, people
expend even greater effort visually reviewing the data before it enters the database.  All
artifacts must be detected, and no error can be tolerated.  With millions of forensic
samples to be analyzed, this bottleneck has become a formidable task.

We have developed software analysis methods that can automate this data review and
potentially eliminate 90% of the work.  Our fully automated TrueAllele™ system inputs
raw fluorescent DNA sequencer (gel or capillary) files, processes the gel image
(separating colors, tracking and sizing lanes), and analyzes the STR experiments
(quantitating and sizing peaks, comparing with ladder peaks, calling alleles).  For each
allele call, TrueAllele assigns a quality score and applies artifact detection rules.  These
quality checks enable a user to focus on just the 10% of suspect data, thereby
eliminating most of the review effort.

TrueAllele models every step of the STR data generation process.  By computing
hundreds of variables for each genotype, the system can compare the observed data
against expected behavior.  Large deviations between expected and observed enable
the software to flag potentially problematic data for human review.

TrueAllele automatically extracts the information it needs from the raw data (e.g.,
ABI/377 collection files).  After automated image processing, the software provides a
user quality assurance review for assessing data runs (lane tracking, gel quality, control
lanes, etc.).  Automated data processing continues with peak quantitation, allele
designation, and quality scoring.  In the allele-based quality assurance review, the user
focuses on those designations which TrueAllele has flagged as having specific
problems.  After reviewing (and possibly editing) this small subset of data, TrueAllele
then generates files for submission to the DNA database (e.g., CODIS).

TrueAllele operates independently of DNA sequencer manufacturer or technology, and
runs on all major computer platforms (Macintosh, Windows, and UNIX).  The program
can analyze any panel of STR loci, allelic ladders, or internal size standards.  Evaluation
software is available from “www.cybgen.com”.

The TrueAllele expert system is designed to provide an automated computer-based
“second scorer” for STR database profiles.  The British Forensic Science Service (FSS)
has selected TrueAllele automated scoring for scaling up the UK National DNA
Database.  We anticipate that TrueAllele will have a role in significantly reducing the
human review of forensic STR data, assessing the quality of STR data and providing
laboratory feedback, and fully automating the forensic STR data scoring process.
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Introduction

Convicted offender DNA databases are being developed by governments for forensic
applications (1, 2).  Much like fingerprints, these databases permit the police to link
crime scene evidence to a likely candidate offender.  Such "cold hits" can identify
perpetrators who have no other apparent connection to the crime scene.  In this way,
rapists and other violent criminals can be revealed and convicted, even when their
earlier profiled offenses were less violent (3, 4).

DNA databases are effective because of the long-term stability of the deoxyribonucleic
acid ("DNA") molecule, nature's way of storing and transmitting genetic information (5).
Like computer information, genes are encoded as linear text in an alphabet, formed
from four DNA letters.  Most cells in the human body contain two complete copies
(maternal and paternal) of the human genome in DNA form.  Sampling from the three
billion letter human genome, forensic scientists typically examine about a dozen sites
("loci"), examining a few hundred DNA letters at each locus.

For human identity, scientists use short tandem repeat ("STR") loci (6).  Each STR
locus exhibits variation in DNA molecule length.  One person will inherit two specific
lengths from their parents, which is likely to be different from the pair of lengths of
another person.  These likelihoods multiply.  Therefore, when (for example) ten loci are
used, it is extremely improbable that the 20 numbers (i.e., 10 length pairs) from one
individual will identically match the 20 numbers of an unrelated individual.  This
uniqueness serves as a "fingerprint" of genetic identity.

To form a DNA profile, scientists generate and analyze STR data.  For DNA databasing,
such data is derived from a blood (or other) sample taken from the convicted offender.
Since no error can be tolerated, the quality assurance ("Q/A") must be extremely high.
This leads to a bottleneck in the review and scoring of STR data.  After first elaborating
on the labor-intensive data scoring problem, this paper will describe our computer-
based expert system solution.  Before concluding, we will touch on some new
approaches to automated DNA analysis in casework applications.

The Data Scoring Problem

In nature, an STR locus of an individual has two "alleles," each corresponding to a true
DNA fragment length.  During laboratory data generation, the forensic scientist conducts
experiments to transform these unknown DNA lengths into observable data.  Later on,
during data analysis, the scientist must somehow reliably transform these data back into
the actual alleles.

The data transformation process is shown in Figure 1 (left-hand column).  In summary:
1. Perform polymerase chain reaction ("PCR") amplification on the DNA sample to

transform the STR lengths into PCR products.  PCR makes millions of DNA copies
of each fragment allele.

2. Size separate the amplified PCR products on a DNA sequencer to form
electrophoretic bands.  The locations of these bands are related to their size.

3. Detect the bands to acquire data as pixels in an electronic data image.  This
detection generally measures fluorescently labeled DNA fragments.
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This laboratory process is not perfect.  As shown in Figure 1 (right-hand column), data
artifacts can be introduced at every step of the data generation process.  There are
dozens of potential artifacts.  Some include:

• The PCR process can introduce PCR stutter or pref amp (also called relative
amplification, or heterozygote imbalance), or amplify low-level contaminating DNA
material.

• The size separation introduces peak spread, and crosstalk from neighboring lanes
can produce unwanted peaks.  There are no guarantees that the STR allele
molecules will migrate reproducibly relative to internal size standards.

• The data acquisition may exhibit shifts in the baseline, color bleedthrough from other
dyes, and other size distortions.

The human data analysis reverses the laboratory processes.  Starting from the
observed data pixels, the scientist tries to infer the lengths of the STR alleles (Figure 2,
left-hand side).  In summary:

1. First the operator recovers DNA signals from the observed data pixels in order to
identify electrophoretic bands (i.e., peaks).

2. Then, these bands are sized and quantitated to estimate the relative amount of
DNA present in each PCR product fragment.

3. From these quantitative measurements, the scientist designates the alleles of the
PCR products, thereby inferring the lengths of the true alleles.

Each analysis step serves to invert its corresponding data generation step.  The
potential data imperfections (or, "artifacts") are well known.  Therefore, in each step the
analyst scrutinizes the data, checking for these artifacts.  Human data analysts perform
these quality assurance steps when reviewing the data and editing the results (Figure 2,
right-hand side).

Such high-quality STR data scoring can be quite labor intensive (Figure 3).  Following
current quality assurance guidelines, two skilled analysts independently score the data.
After that, the discrepancies are reviewed in order to reach concordance.  This review
may be done together with more experienced supervisory personnel.  This process
assures the quality of the data prior to submission to a DNA database.

It is expensive to have so many people involved in the data analysis process.  One can
develop a spreadsheet to compute these costs (Figure 4); the Excel file shown is
downloadable from "www.cybgen.com".  The right side of the spreadsheet determines
the number of people needed, based on the required throughput and other
assumptions:

• There are roughly fifteen million felony arrests in America every year.  To upload this
one year of DNA profiles onto the US database over a five year period would
require processing three million samples each year.  Using the current CODIS loci,
sixteen STR experiments must be performed and analyzed.  This entails scoring
about 48,000,000 genotypes each year.

• Suppose that one person can completely review one STR locus experiment every
minute (i.e., about 500 calls/person).  With double scoring, over 750 people would
be needed.  Note that it is not easy to recruit, train, or retain such highly skilled
forensic analysts.

The left side of the spreadsheet looks at the labor costs:
• Assume a low estimate of $25,000 as an analyst's annual salary.
• Accounting for overhead, training, supervision, benefits, equipment, and other

personnel costs, this figure is increased by 100% to 200%.  With the assumptions
shown, the actual annual cost becomes $64,000.
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• Multiplying the actual personnel cost times the number of personnel required, we
arrive at an annual cost of about $50,000,000 for scoring the data.

• Adding up over the five year project, the total cost of scoring one year of US felony
arrests is one quarter of a billion dollars.

Thus, one STR locus experiment costs about a dollar for data generation, and an equal
dollar for quality assurance in the data scoring.  Using about fifteen loci per DNA profile,
that $30 cost, added to another $15 in administrative costs, gives the current
commercial rate of $50 per sample for DNA database processing.

It would be desirable to reduce this cost, speed up the process, obtain more accurate
results, and achieve a completely objective, impartial data review.  This can be done by
building a computer-based expert system that replicates the quality assurance
procedures of a human STR review expert (Figure 5).  Once validated, such an expert
system could replace the tedium of the human scorer with a tireless computer program.
We have developed an intelligent automated system for this task, as described in the
next section.

An Expert System Solution

TrueAllele™ is a flexible, automated DNA analysis technology (Figure 6).  The
TrueAllele computer program performs exquisitely accurate sizing and quantitation of
DNA fragment data.  It does this by mathematically modeling every step of the data
generation process, and then performing the analysis via a succession of computational
inversion operations (7).  At each step, the models know what to expect from the data.
Therefore, automated comparison of the expected results with the observed data
provides an explicit quality assurance mechanism for assessing results and pinpointing
potential data artifacts.  Although TrueAllele is used for diverse genetic analyses, this
paper focuses solely on automated STR analysis for human identity.

TrueAllele can read data in from any gel or capillary DNA sequencing instrument
(Figure 6).  It performs all necessary image and signal processing on the data for
quantitative analysis.  Further downstream, the program designates the alleles, and
assigns quality measures to every designation.  In forensic analysis, the software
applies dozens of rules, each of which checks for a particular quality assurance
problem.  TrueAllele can run on any standard high-end computer, including the
Macintosh, Windows, and UNIX platforms.

The result of all this fully automated analysis is that the computer determines which data
are good, and which are not.  A human analyst can then focus on just the 10% of
problematic data.  There is no need to waste time on the remaining 90% – these good
data have already passed dozens of highly quantitative quality assurance tests.  By
focusing the user on just the small fraction of problematic data, TrueAllele can reduce
the human scoring effort by an order of magnitude.

TrueAllele processing is conducted in four phases:
1. Input.  A set of run data is read from its native sequencer file format, and

automatically prepared for TrueAllele processing.
2. Run processing & Q/A.  Each gel or capillary run is automatically processed (color

separation, tracking, sizing, etc.).  The user can then review the results in order to
accept, reject, or edit a run.
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3. Allelic processing & Q/A.  Each experiment (one individual at one locus) is
automatically analyzed (peak quantitation, allele designation, rule application, etc.).
The problematic allele calls are presented to the human analyst for more careful
review.

4. Output.  The final high-quality allele designations are automatically formatted for
export to a DNA database.

We describe each phase in turn.

1. Input

A site can set their preferences for the AutoSetup initialization phase (Figure 7).  These
preferences include a DataDisk template that records STR panel properties, DNA
sequencer instrument, size standards, user preferences, and other run-independent
information.

To analyze data, a set of runs (e.g., about 10 gel or 96-capillary runs) is placed in a
designated input folder. TrueAllele automatically extracts all necessary STR data,
calibrations, and sample information from the run files, and creates a DataDisk.  This
DataDisk is suitable for TrueAllele processing on any computer platform.

2. Run processing and Q/A

TrueAllele automatically processes gel and capillary runs in six steps (Figure 8):
• Acquire data.  TrueAllele reads in the data from the native file format.  These data

are in "pixel" coordinates: the scan lines of the actual data acquisition.
• Process signal.  Basic signal processing is done, such as baseline removal or any

necessary smoothing.
• Separate colors.  To analyze the multiplexed STR data, spectral color separation is

required. TrueAllele can compute (in under a second) the separation matrix directly
from the observed data.  This feature lets the program customize color separation
to the actual data in the capillary or on the gel.

• Remove primers.  The primer peaks are stripped off the signal.
• Track sizes.  TrueAllele spends most of its time at this stage carefully analyzing the

internal lane size standards.  The goal is to ensure the best possible automated
lane tracking (gel data) or alignment of the expected sizes to the observed data
peaks (capillary data).

• Extract profiles.  Using the tracked size standards, TrueAllele transforms the signals
from the initial pixel coordinates into a "size" (in bp) coordinate system.  This size
coordinate system is better suited for comparisons between lanes.  The resulting
set of color separated, sized profiles – one profile for each lane or capillary – is
independent of sequencer type, and is suitable for downstream allelic processing.

After TrueAllele's automated run processing, the user can perform a visual quality
assurance check.  Figure 9 shows the size standard color plane of a TrueAllele-
analyzed Applied Biosystems ABI/377 gel (from the UK Forensic Science Service
(FSS)) in the ImageView interface.  This Q/A review user interface shows the data in the
context of the program's analysis (here, the automated lane/size tracking grid).  The
user can optionally view TrueAllele's rule firings on the run quality.  Typical gel run rules
check the negative and positive control lanes, the ladder lanes, and look for particular
data artifacts.
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Other visual user interfaces are also available to the reviewer during the gel/capillary
run quality assurance check.  Ideally, the user should spend no more than a minute per
run in their review.  However, some of these less frequently used interfaces can help
when exploring particular data artifacts.

• It is sometimes helpful to view the STR data planes.  Figure 10 is an ImageView of
STR data and allelic ladders from a TrueAllele-analyzed Hitachi/FMBIO2 gel (from
Dr. Cecelia Crouse's lab in the Palm Beach County Sheriff's Office (PBSO) in
Florida).

• With capillary data, one may need to review the relative alignment of the sized, color
separated one dimensional (1D) capillary traces.  Figure 11 is a view of STR data
and ladders from a TrueAllele-processed ABI/3700 capillary run (from the UK FSS).

• To check cross-capillary ladder sizing consistency, an overlay view of the ladder
traces can be helpful.  Figure 12 shows an allelic ladder overlay (blue) and size
standards (red) from a TrueAllele-processed Amersham/Molecular Dynamics
MegaBACE 96-capillary sequencer run (from the FSS).

• One dimensional signal views can show possible bleedthrough problems from other
dyes, lanes, or loci.  Figures 8 and 13 show such 1D views from TrueAllele-
processed SpectruMedix SCE/9600 96-capillary data.

3. Allelic Processing and Q/A

Once the run Q/A has been completed, TrueAllele then starts its overnight allelic
processing of the DataDisk containing multiple gel/capillary runs.  The automated allelic
analysis is done in several steps (Figure 13):

• Derive allelic ladder.  The program carefully matches the expected allele sizes to the
observed allelic ladder data peaks.  This matching can transform each allele's
fractional size (based on internal lane molecular weight standards) into its true
integer-valued DNA fragment length.

• Transform coordinates.  Using the derived allelic ladder, the STR data is transformed
from artificial size coordinates into (the more natural) length coordinates.  In length
coordinates, the fractional part denotes experimental deviation from the true allele
length.

• Quantitate trace.  TrueAllele then performs a computationally intensive least-squared
fit on every STR trace to accurately estimate the relative DNA concentration in each
peak.  This process is described more fully in the next paragraph.

• Call alleles.  Applying multiple algorithms, TrueAllele uses the STR peak
quantitations and sizes to designate the alleles.

When estimating the relative concentration of a DNA band, most analysis software
simply records the observed peak height or the area immediately under the curve.  For
truly quantitative genetic analysis, though, this simple approach is inadequate.  The best
estimate models the data curve as a sum of model peak functions, each having their
own location, height and widths.  This approach accounts for band overlap, and other
electrophoretic signal distortions.  Minimizing the deviation between the model and the
data provides reliably accurate estimates of the actual DNA amount for each DNA
fragment (8).  By expending this computational effort, TrueAllele can determine
reproducible DNA quantities.  Accurate numerical estimates are essential for robust
downstream comparisons.

After calling the alleles, TrueAllele prepares for the user's quality assurance data
review.  To do this, for each STR locus experiment, TrueAllele:
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• Applies several dozen rules to check for possible data artifacts.
• Computes a quality measure on the genotype (0 is bad, 1 is great).

Following these determinations, TrueAllele can sort the experiments by quality.  Low
quality results (a rule firing, or a low quality measure score) will be ranked for earlier
review.  This prioritization focuses the user on the problematic data calls.

Once the computer has called the alleles, TrueAllele can present the processed STR
results to the user in an AlleleView interface (Figure 14).  The purpose of this interface
is to minimize the time spent visually inspecting data.  While there are many data views
available from this interface (e.g., by clicking on any subwindow), each has a
specialized role for a particular situation.  (Spending time looking at all possible
visualizations would be highly inefficient.)  Key AlleleView interface elements (Figure
14) are kept visible:

• A navigator for selecting which data to view (gel, sample, locus, etc.).
• An editor for making changes (e.g., via popup menus) to designations.
• Several visualizations for checking the data signal, its quantitation, and the genotype

call.  To make size shifts immediately evident, the allelic ladder is displayed in the
background.

• A list of fired rules.  If a rule fires, then the STR experiment has failed some user-
defined criterion and should be examined.  The fired rules also set the context for
further inspection of the data.

In AlleleView, the user reviews all interesting experiments at one locus (across all the
gels) before moving on to the next locus.  This ordering establishes a user context for
carefully examining one locus, keeping the locus-specific patterns of the allelic ladder
and other issues fixed in mind.  Moreover, since all scorable gel/capillary runs in the
DataDisk have passed quality assurance, one rarely needs to view the run again.

Interestingly, one could review all the data (not just the computer-identified problematic
calls) with very little extra effort.  The reviewer has tremendous prior knowledge about
the "good" experiments: each has passed 20+ quantitative rules, without triggering a
low quality score.  Thus, by rapidly skimming through pages of profiles (say, ten per
page in the LaneView interface), and looking only for weird patterns, the AlleleView
analyst can review all 90% of good data even faster than the bad subset.

4. Output

When the Q/A has been completed, TrueAllele can then automatically export the data
for database upload.  Different databases have different requirements.  TrueAllele
supports the CODIS standard, including the new XML Common Message Format
(Figure 15).

The TrueAllele™ Technology

The TrueAllele software is written in the MATLAB programming language (The
MathWorks, Natick, MA), and we develop it in a reasonably automated way (Figure 16).
Based on the program design plan, and feedback from testing, the software modules
are extended and updated.  Building the software entails code compilation, file
assembly, electronic packaging, and electronic distribution across all supported
computer platforms (Macintosh, Windows, and UNIX).  Done manually, this task would
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occupy several error-ridden person-months.  Therefore, we automated the build process.
Over several hours, four computers coordinate their efforts to compile, assemble,
package, and e-distribute the software for all the computer platforms.  This automation
frees up programmer time for more constructive software development, and permits us
to generate new (and reliable) versions over very short time periods.

The Cybergenetics web site (www.cybgen.com) provides considerable support for the
TrueAllele technology and software (Figure 17).  Considering each frame:

• Company.  These web pages describe Cybergenetics.
• Technology.  This section provides the downloadable "LaborCost" spreadsheet, and

lists recent publications.  It also enumerates our patent claims on TrueAllele.  The
technology is protected by broad and deep claims covering all aspects of
automated STR analysis, including automated scoring, lane tracking, PCR artifact
removal, quality measures, forensic applications, and high-throughput (e.g., 96-
capillary) analysis.

• Software.  Software updates are downloadable from this section.  Visitors can also
download PDF user documentation, and request additional information.

• Support.  On these pages, users can report bugs, provide feedback, and obtain other
useful information.

• News.  Recent software and press releases are reproduced in these pages.
• Contact.  This page gives instructions for contacting Cybergenetics.

TrueAllele is currently in use by the FSS in the UK.  The UK National DNA Database will
soon exceed one million DNA profiles, and is expected to be augmented with several
million additional profiles.  The model (Figure 18) is to virtually eliminate the human STR
review.  Using diverse DNA sequencers (both gel and capillary), the TrueAllele system
will process the generated data, designating alleles and assessing data quality.  For
extra assurance, the computer will check its results against the FSS's own STRess
expert system (9).  In the near-term, a human forensic reviewer will check the 10% of
computer-identified problematic calls.  Longer-term, human intervention will be
eliminated entirely.  The automatically processed STR calls will then be uploaded to the
UK National DNA Database.

We recently began a Justice Department funded project to validate TrueAllele on
diverse American STR data.  The project will automatically rescore 30,000 previously
analyzed CODIS samples, and assess the quality of TrueAllele's results.

• Florida.  In collaboration with David Coffmann's group at the Florida Department of
Law Enforcement (FDLE) in Tallahassee, we will reanalyze 15,000 samples
generated on ABI/310 and ABI/3700 capillary DNA sequencers using the Applied
Biosystems ProfilerPlus and Cofiler STR panels.

• Virginia.  In collaboration with Dr. Paul Ferrara's group at the Division of Forensic
Science in Richmond, we will reanalyze 15,000 samples generated on an Hitachi
FMBIO2 gel system using the Promega PowerPlex 1.1 and 2.1 STR panels.

The goal is to demonstrate that TrueAllele is a platform-independent solution for
automating the scoring of STR data in forensic DNA databases.

Complex DNA Analysis

The future of DNA databases lies in their application to solving crimes in the casework
laboratory.  Toward this end, we have developed automated methods for resolving data
artifacts.  These include:
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• PCR stutter.  The PCR stutter of an STR locus is reproducible (10).  Therefore, one
can calibrate and mathematically remove the artifact by stutter deconvolution (11).
The deconvolved signal is far easier to interpret than is the original data.

• Relative amplification.  Similarly, one can model and account for preferential
amplification (i.e., heterozygote imbalance) (7).

• Band overlap quantitation.  When quantitating DNA peaks, the overlap of
neighboring bands can be modeled for more precise quantitation (8).  We have
been developing newer mathematical results that may prove far faster than our
current search-based implementations.

• DNA mixtures.  We have developed new methods for resolving DNA mixtures.
These are discussed in the next paragraph.

We solve these problems by mathematically modeling the natural data generation
process.  Then, mathematical inversion lets us apply our computer programs to recover
the true alleles from the artifact-distorted data.

In casework, mixed DNA samples can complicate the analysis, and confuse a jury.
When performing database matches from DNA mixtures, even simple two-person
mixtures can suggest 3 or 4 alleles at many loci, leading to thousands of spurious
matches.  It would be useful to have an entirely objective approach to automatically
resolving DNA mixtures, thereby finding the unique DNA profile.  We have started
developing such techniques.

A representative mixture analysis is shown (Figure 19).  The data were generated in our
laboratory using the ten locus SGMplus panel on a sample we prepared containing 30%
of individual A (say, the victim), and 70% of individual B (say, the perpetrator).  The
problem was to determine the profile of perpetrator B entirely from the given data.

1. The first row shows the quantitative mixture STR profile A+B.  This represents a
mixture of two individuals – a known victim A, and an unknown perpetrator B.  At
each locus, the bar chart displays the relative quantitative data for the relevant
alleles.

2. The second row shows the STR profile of the victim A.
3. The third row shows the computed STR profile for B, the unknown perpetrator. This

was computed automatically in under 0.1 sec from the quantitative data for mixture
A+B, and the known profile A.  A's mixture fraction was estimated to be 29.6%.

These results, and more recent extensions, suggest that automated mixture analysis is
a feasible technology.

Conclusion

Currently, virtually all steps in the STR profiling pipeline are automated.
1. robots prepare DNA samples;
2. thermocyclers enable robust and routine PCR;
3. automated DNA sequencers separate DNA fragments by size;
4. armies of people agonize over the laborious high-quality scoring of STR data; and
5. computers instantly link criminals to crimes via DNA profiles.

The TrueAllele™ expert system addresses step 4.

TrueAllele automates the last remaining manual step in forensic DNA databasing –
scoring the data.  This technological advance enables full automation of the entire STR
process.  We expect that TrueAllele will help reduce the time, cost, and complexity of
building national DNA databases of convicted offender profiles.
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