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Currently, the main limitation in high-throughput microsatellite genotyping is the required manual editing of
allele calls. Even though programs for automated allele calling have been available for several years, they have
limited capability because accurate data could only be assured by manual inspection of the electropherograms
for confirmation. Here we describe the development of a parametric approach to allele call quality control that
eliminates much of the time required for manual editing of the data. This approach was implemented in an
editing tool, Decode-GT, that works downstream of the allele calling program, TrueAllele (TA). Decode-GT
reads the output data from TA, displays the underlying electropherograms for the genotypes, and sorts the
allele calls into three categories: good, bad, and ambiguous. It discards the bad calls, accepts the good calls, and
suggests that the user inspect the ambiguous calls, thereby reducing dependence on manual editing. For the
categorization we use the following parameters: (1) the quality value for each allele call from TrueAllele; (2) the
peak height of the alleles; and (3) the size of the peak shift needed to move peaks into the nearest bin. Here we
report how we optimized the parameters such that the size of the ambiguous category was minimized, and both
the number of miscalled genotypes in the good category and the useable genotypes in the bad category were
negligible. This approach reduces the manual editing time and results in <1% miscalls.

Dissection of the major and minor genetic factors im-
portant in complex genetic diseases requires the ability
to generate an enormous amount of genotypic infor-
mation. Because these diseases tend to skip one or
more generations, one can choose for study either
many large extended families with multiple patients
separated by many meiotic events or an even greater
number of sib-pairs (Lander and Schork 1994). Regard-
less of the approach used, at least a half million mic-
rosatellite genotypes may be necessary for any given
project. For example, when using 1000 microsatellite
markers to type 1000 DNA samples, a total of 1 million
genotypes must be determined.

SNP (single nucleotide polymorphism) genotyping
may be used in the future for such studies, but higher
density SNP maps and cheaper genotyping platforms
are prerequisites. In addition, because the heterozygos-
ity rates of SNPs are so low compared with microsatel-
lites, at least 2 to 5 times more SNPs will be required to
achieve the same power as microsatellites in pedigree
based studies (Kruglyak 1997). Another disadvantage is
that the accuracy of SNP genotyping is less easily de-
termined through inheritance checking than microsat-
ellites. Furthermore, this higher density of markers will
also require a very high resolution physical map to
assure proper order of markers and will probably need

to await the full sequence of the human genome. Al-
though some have hoped that genome-wide SNP asso-
ciation studies may replace family-based linkage stud-
ies, the required number of SNP markers has been es-
timated to be about 500,000 (Kruglyak 1999). For these
reasons, microsatellite genotyping will probably con-
tinue to be the method of choice for genome-wide
linkage studies in the near future. To achieve this
scale of genotyping within a reasonable time, a high-
throughput approach is needed at every step (Hall et al.
1996).

As robot technology and more sophisticated se-
quencers have increased the throughput in microsatel-
lite genotyping dramatically, the editing of the data
has become a bottleneck, limiting throughput. The
software used for allele calling has not evolved at the
same pace as the robotic and sequencing technologies,
and manual editing of the data is both costly and time
consuming. The main limitation of software that is
currently available has been the lack of quality mea-
sures for the allele calls made by the automated pro-
grams, which could help sort out accurate calls from
inaccurate ones. Hence, if accurate allele calling is de-
sired, a human eye must check all the automated calls
by inspecting the electropherograms. Furthermore,
many programs have not been tailored for high-
throughput genotyping, lacking features such as batch
processing of gel files.

We hypothesized that there must be a set of pa-
rameters that could be used to fractionate the allele
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calls from an allele-calling program according to qual-
ity in a manner that decreases the user’s editing time
without compromising accuracy. The use of such qual-
ity measures in genotyping would perhaps be analo-
gous to their use in sequencing (Ewing and Green
1998; Ewing et al. 1998). Here we describe a set of pa-
rameters that we optimized according to efficiency and
accuracy of allele calls.

TrueAllele
We chose to work with an allele-calling program called
TrueAllele (TA), commercially available from Cyberge-
netics, Inc. It uses quantitation and deconvolution al-
gorithms for allele calling. TA is written in Matlab and
currently runs under MacOS, Windows NT/95/98, and
Unix-based systems (Perlin et al. 1994, 1995). At de-
CODE genetics we run TA 1.02b.1 on 400 MHz Pen-
tium II work stations, running the Linux operating sys-
tem accessed via ReflectionX from PC/NT computers.

Compared to Genotyper 2.0 (GT) for Applied
Biosystems (1994), TA has three main advantages. It
provides a quality measure for every allele call; it allows
for batch processing of gel files; and it performs an
efficient tracking of the gel files. The main limitation
of the program is that the interface is not as user
friendly as GT, and the manual editing of the allele
calls can be as time consuming for a high throughput
project.

To streamline the process of genotype analysis and
to make it as user friendly as possible, we developed
two programs that handle the preparation and man-
agement of the batch runs. One program gathers all
files that are required for a given batch run on TA into
a single folder. The other program extracts and pre-
pares the files after each batch run, preparing the re-
sults and quality measures for allele calls, as well as the
electropherograms for our editing program called De-
code-GT.

Decode-GT
Next, we created a program, Decode-GT 1.0, that in-
corporates a set of parameters that can be optimized for
the most efficient and accurate allele calls. It is a PC
program that runs under Windows NT and has three
main functions. First, it sorts the allele calls according
to quality measures and can display the electrophero-
grams on which they are based. Second, it checks the
allele calls of CEPH control samples to ensure that the
gel is properly calibrated. Third, it performs an inher-
itance check on the results using pedigree information.
Decode-GT reads the combined results file from TA and
sorts the data into three categories—bad allele calls,
good allele calls, and ambiguous allele calls—sorting is
based on a TA quality measure, the peak heights, and
the peak shifts. The aim is that only calls in the am-
biguous category need be inspected by the user.

Defining Criteria for Categorization
Our goal was to set the criteria used by Decode-GT such
that the ambiguous category would include relatively
few allele calls, without discarding too many useable
allele calls in the bad category or including false calls in
the good category. To find the optimal settings, we per-
formed a study in which we compared TA results with
results of manual editing using GT. We systematically
examined how various settings affected: (1) the num-
ber of miscalls that were captured into the ambiguous
category and (2) the size of the ambiguous category.
We then incorporated the criteria found to be optimal
in Decode-GT and tested them on a new data set ex-
amining (1) the number of miscalls in the good cat-
egory prior to editing (i.e., prior to inspection of the
CEPH control and ambiguous genotypes and the in-
heritance check); (2) the remaining miscalls after edit-
ing; and (3) the average size of the ambiguous category.

We independently processed 7595 genotypes from
80 markers using both TA and GT in our first study. Of
those, there were 719 discrepancies between the two
methods; these we refer to as miscalls by TA, since all
genotypes from GT had been manually inspected and
edited as necessary. The main reasons for miscalls were
the following: (1) The signal (peak height) was very
low; (2) there was contamination or PCR artifacts that
gave additional peaks; (3) TA had shifted the size cali-
bration to fit the peaks into the binning library; (4)
heterozygous genotypes were called as homozygous
due to insufficient amplification of the larger allele,
and therefore low peak height; (5) TA called a stutter
peak as an allele; and (6) TA called a homozygous geno-
type as heterozygous by assigning an allele to a small
peak in the electropherogram noise.

Bad Calls
Allele calls that fall under this category are discarded
and electropherograms for the alleles are not in-
spected. We used the peak height of allele 1 (the
smaller fragment by molecular weight) to find a
threshold value that would discard as many unusable
allele calls as possible, without discarding a large frac-
tion of allele calls that were useable (that is, were used
when inspected by a user in GT). The peak height value
is assigned by TA on a similar scale as the value given
in GT.

Figure 1 shows the effect of increasing the height
threshold from 0 to 100 on the total number of dis-
carded genotypes, and for the discarded genotypes the
fraction that is usable (were called by a user in GT). The
number of discarded genotypes increases rapidly as the
height threshold rises from 0 to 45. After that, the rate
of increase lessens. The number of potentially usable
genotypes that are discarded starts rising at height ∼35
and rises steadily thereafter. Therefore, at a height
threshold <40, the discarded allele calls are primarily
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unreadable calls and at a threshold of 50, only 0.3% of
the potentially usable data are discarded whereas 403
discrepancies are moved to the bad category. There-
fore, using a height threshold of 50 is optimal.

Ambiguous Calls
As the peak height of allele 1
decreases, the risk of a miscall
tends to increase. To determine
the optimum height threshold
for the ambiguous category, we
inspected the effect of increas-
ing the peak height threshold
from 50 to 150 on the total
number of genotypes placed in
the ambiguous category and
the number of miscalls in-
cluded in the good category
(Fig. 2). As the peak height
threshold reaches 100, the de-
crease in miscalls in the good
category levels off. The size of
the ambiguous category reaches
10% at that value, which is ac-
ceptable. Therefore, genotypes
with peak heights between 50
and 100 are placed in the am-
biguous category. Using just
this criterion, the fraction of
miscalled genotypes that re-
mains in the good category is
∼2.75%.

The quality value assigned by TA ranges between
0.0 and 1.0. It reflects the peak height, the shape, and
stutter pattern for each marker. Because peak height
has an effect on the quality value, the majority of allele

calls with a low-quality value
are already included in the am-
biguous category by our peak-
height threshold criteria or
have been discarded into the
bad category. PCR artifacts can
produce a strong signal, but
those peaks usually lack the
shape and stutter pattern stored
by TA in its library and so usu-
ally result in a very low quality
value. Figure 3 shows how the
ambiguous category expands
and how the portion of mis-
called genotypes in the good
category decreases, as the qual-
ity threshold increases from 0.7
to 1.0. As the quality threshold
reaches 0.8, the reduction in
the number of miscalled geno-
types in the good category, due
to classification into the am-
biguous category, levels off.
However, miscalls are rapidly
removed again after the quality

Figure 1 The peak height of allele 1 (smaller fragment) is used to categorize allele calls as bad
calls that are automatically discarded. The graph shows percent increase in the total number of
discarded genotypes (red line) and the number of usable genotypes that are discarded (black
line) increases as the height threshold goes from 0 to 100. Based on this graph the height
threshold for the bad category was set at 50, where the number of discarded genotypes de-
creases and the fraction of usable genotypes that are discarded is ∼0.3% of the total number of
genotypes.

Figure 2 The peak height of allele 1 (smaller fragment) is used to categorize allele calls as
ambiguous. The graph shows how the size of the ambiguous category (red line) increases and
how the number of miscalls (black line) that are not listed as ambiguous, decreases as the peak
height threshold for the ambiguous category goes from 50 to 150. At peak height threshold
100, the ambiguous category is ∼10% of the total number of genotypes, and the decrease in
miscalls in the good category levels off. We therefore use peak height threshold 100 for the
ambiguous category.
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threshold reaches 0.9. When the quality threshold
reaches 0.8, the ambiguous category contains ∼13% of
the total number of genotypes, but it expands rapidly

after that. It is therefore opti-
mal to use 0.8 as quality thresh-
old.

When peaks do not fit into
a bin defined by the binning li-
brary that TA has made from
past experience, TA shifts the
peak to the nearest defined bin.
In some cases, it is correct, but
sometimes peaks are miscalled
by incorrect shifting. Because
TA records the size of the shift
for each allele call, we could
study the effect of the degree of
shifting on the ambiguous cat-
egory and number of miscalls.
Figure 4 shows how the am-
biguous category increases and
how the portion of remaining
miscalled genotypes not in-
cluded in the ambiguous cat-
egory decreases as the shift
threshold goes from 1.0 to 0.0
bp. When the shift value for an
allele call equals or exceeds the
shift threshold, the allele is as-

signed to the ambiguous category. For example, at a
shift threshold of zero all genotypes would be included
in the ambiguous category. By setting the shift thresh-

old at 0.3, the miscalled genotypes
that are still in the good category
are down to 1.05% of total geno-
types. The ambiguous category is
then up to 15%. By using a higher
threshold value, the percent of mis-
calls increases rapidly, but the num-
ber of genotypes in the ambiguous
category does not decrease signifi-
cantly. By lowering the threshold
value, the number of miscalls does
not decrease significantly, but the
ambiguous category expands
steadily. Therefore, we use 0.3 and
higher as the peak shift criteria for
the ambiguous category.

As described previously, TA
tends to call heterozygote geno-
types as homozygous when the
larger allele is poorly amplified with
respect to the smaller allele. To cap-
ture those miscalled alleles in the
ambiguous category, a function was
incorporated in Decode-GT that de-
tects homozygous allele calls, reads
the height of the signal upstream
(higher molecular weight) from the

Figure 3 The quality value provided by TA is used to categorize genotypes in the ambiguous
category. The graph shows how the size of the ambiguous category (red line) increases and how
the number of miscalls (black line) that are not listed as ambiguous decreases as the quality
threshold value changes from 0.7 to 1. At quality threshold value 0.8, the decrease in miscalls
in the ambiguous category levels off and the ambiguous category does not rise significantly. At
quality threshold >0.9, the number of miscalls starts to decrease rapidly but the ambiguous
category expands just as rapidly. On this basis, the quality threshold value was set at 0.8.

Figure 4 When TA shifts peaks to fit them into its binning library for a given marker, it
tends to make mistakes. Because the size of the shifting is documented, we looked at how
incorporating a peak shift threshold (listing genotypes that have a peak shift above the peak
shift threshold value as ambiguous) affects the number of miscalls (black line) in the good
category as well as the size of the ambiguous category (red line). At peak shift threshold 0.3,
the number of miscalls incorporated into the ambiguous category levels off and the am-
biguous category expands only moderately. Therefore, peak shift threshold for the am-
biguous category was set at 0.3.
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called allele, and lists the genotype as ambiguous if the
maximum height of the signal is above a defined
threshold value. To avoid including broad homozy-
gous peaks into the ambiguous category, the reading of
the signal starts 4 bp upstream from the called allele
(and ends at the upper boundaries of the marker win-
dow). Figure 5 shows how the ambiguous category ex-
pands and how the number of miscalled genotypes in
the good category decreases as the threshold for the
maximum height of the upstream signal is changed
from 0% to 50% of the height of the called allele (allele
1). Based on this graph, we decided to use 10% as the
threshold criteria for the highest upstream signal. At
that point, the ambiguous category is ∼17% and the
miscalled genotypes are down to 0.8%. By going lower,
the ambiguous category rises rapidly as does the num-
ber of captured miscalls.

As described, some miscalls are due to TA identi-
fying a homozygous sample as heterozygous by assign-
ing an allele to a small peak in the electropherogram
noise. By including those allele calls in which the
height of peak 2 (the fragment of higher molecular
weight) lower than 40 in the ambiguous category, we
added 10 genotypes to the ambiguous category or
∼0.1% (that had peak height 1 larger than 100). Of
those, two genotypes were miscalls. When the height
threshold for peak 2 was increased to 50, 31 calls were
added to the ambiguous cat-
egory, but there was no de-
crease of miscalls in the good
category. Therefore, we use 40
as the height threshold for
peak 2.

To catch the miscalls
caused when TA calls a stutter
peak, we defined as ambigu-
ous allele calls in which the
peak height of the smaller al-
lele (in molecular weight) is
smaller than the peak height
of the larger fragment. As a
rule, the larger fragment is
amplified to a lesser degree,
so a large proportion of the
allele calls that fulfill this cri-
terion are miscalls. In our
study we caught seven mis-
calls by imposing this crite-
ria, and 59 genotypes were
added to the ambiguous cat-
egory.

In summary, we used
these six criteria for the am-
biguous category: (1) peak
height of allele 1 lower than
100; (2) quality value <0.8;

(3) shift value equal or higher than 0.3 bp; (4) the high-
est peak upstream from homozygous allele higher than
10% of the height of the called allele; (5) peak height of
allele 2 lower than 40; and (6) peak height of allele 1
smaller than the peak height of allele 2. By using these
six criteria simultaneously to define the ambiguous
category, the number of the ambiguous genotypes was
1357, or 17.9%. The number of miscalled genotypes
that had not been captured into the ambiguous cat-
egory was 46, or 0.6%. Of those 46, 7 were from a
marker that had alleles with only 1 bp difference
(mononucleotide alleles). That marker has now been
eliminated from our marker set, as well as other mark-
ers that have mononucleotide repeats. Of the remain-
ing 39, 28 (including both control samples) belong to
the same marker. All of those samples were called ho-
mozygous but were heterozygous with the second peak
being very small and differing by only 2 or 4 bp from
the first allele. These peaks were not detected in the
highest signal function because they were so close to
the called allele. To avoid incorporating broad homo-
zygous allele peaks in the ambiguous category, the
reading of the signal starts 4 bp upstream from the
detected peak. Of the 11 remaining miscalls, 10 had
more than two peaks due to spectral overlap or leakage
between lanes and had been discarded when edited
with GT. The only remaining genotype was actually

Figure 5 To capture genotypes that are erroneously called homozygous, but have an undetected
peak upstream in the electropherogram, a function was incorporated in Decode-GT that detects
homozygous allele calls, reads the intensity of the signal upstream from the called allele, and lists
the genotype as ambiguous if the maximum value of the signal is above a defined value. The graph
shows how the ambiguous category expands, and how the proportion of miscalled genotypes that
are not included in the ambiguous category decreases as the threshold for the maximum height of
the upstream signal is changed from zero to 50% of the height of the called allele. Based on this
graph we decided to use 10% as the criteria for the highest signal. At that point, the ambiguous
category is ∼17% and the miscalled genotypes are down to 0.8%. By going lower, the ambiguous
category rises rapidly as does the number of captured miscalls.
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Figure 6 The main view of Decode-GT.

Figure 7 Decode-GT shows the electopherograms for the CEPH controls and also lists the known reference genotype for the selected
marker.
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not miscalled by TA but had been called incorrectly
when edited in GT.

In the second part of the study we set the optimal
criteria described above, to categorize the data in De-
code-GT and inspected 6912 genotypes from 72 new
markers and 96 new samples (including 2 CEPH con-
trol samples). Of those 6912, 1011 (14.0%) were listed
as ambiguous, 95 (1.4%) were automatically discarded,
and the remaining 5806 genotypes were in the good
category. All of the allele calls in the good categorywere
inspected and revealed 78 miscalled alleles or 1.12%.

A different person then edited the same data fol-
lowing the step-by-step procedure described below: se-
quential inspection of (1) control samples, (2) ambigu-
ous genotypes, (3) allele ladder plots of the genotypes
in the good category, and (4) inheritance errors. When
this inspection revealed miscalled alleles that had not
been placed into the ambiguous category, all allele
calls for that particular marker were subsequently in-
spected. After editing, only 27 of the 78 miscalls that
were in the good category prior to the editing had not
been captured, or 0.4% of the total number of geno-
types.

Using Decode-GT

To assist the user in editing and evaluating the quality
of data, Decode-GT has six view modes: main-view,
CEPH-view, inheritance check, ladder plots, allele his-
tograms, and report. Figure 6 shows the Decode-GT
main window and explains some features.

In the main view, the called genotypes are listed
and the electropherogram for each selected genotype
is shown. That graph can be expanded to allow the
user to check for alleles outside the defined marker
size window. The user can select to have all geno-
types, the ambiguous genotypes, or homozygous
genotypes displayed in the list box. In a separate
graph the user can select to view the electrophero-
grams of all colors for the selected genotype to detect
spectral overlap, or have some or all electropherograms
for that marker plotted simultaneously in one graph
for inspection of the allelic ladder. There is also a win-
dow that allows the user to type in comments that will
be incorporated into the report. The user can edit the
selected genotype, discard it, or discard a whole
marker.

Figure 8 The inheritance check view lists the families that had inheritance errors and shows the electropherogram of the selected
sample for comparison.
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CEPH View
In CEPH-view, the electropherograms for the CEPH-
control samples are shown simultaneously in separate
graphs (Fig. 7). The user can select a marker for which
the electropherograms are to be inspected. The known
genotypes for the selected marker are also shown. The
user can then shift the alleles for the entire gel or
marker to normalize according to the CEPH reference
genotypes.

Inheritance Check View
This view shows the results from the inheritance check
(Fig. 8). There are two list boxes—one that shows the
families who had inheritance errors and the other that
lists the members of the selected family. Each family
member can be successively selected and each corre-
sponding electropherogram can be immediately in-
spected to resolve discrepancies. As in the main view,
the user can edit the selected genotype, view the allelic
ladder, and check for spectral overlap.

Ladder Plot View
The ladder plot view shows the superposition of the
electropherograms from all samples genotyped with
the selected marker (Fig. 9). When more than one gel

file is loaded in to the program, this view allows com-
parison of allelic ladders if the same marker is on both
gels.

Allele Histogram View
The allele histogram view shows the number of occur-
rences for each allele for a selected marker (Fig. 10).
This can be useful to compare allele frequencies for
markers between gel files or sets of individuals.

Report View
The report view shows the name of the user, the date,
and the name of the gel file (Fig. 11). It also presents
statistical information about the data, such as the
number and percentage of discarded genotypes, am-
biguous genotypes, and edited genotypes along with
heterozygosity rate and inheritance errors for each
marker.

Using Decode-GT
After the data has been loaded into the program, the
user performs these tasks successively:

1. Inspects the CEPH-control samples to see if they
match each other and the known genotypes.

2. Inspects the genotypes listed as ambiguous.

Figure 9 The allelic ladder view shows all the electropherograms for one marker superimposed in one graph.
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3. Inspects the allelic ladder plots of the good geno-
type category to look for unexpected peaks.

4. Performs an inheritance check and inspects the mis-
matches (if any).

5. Inspects all allele calls for that marker if the inspec-
tion reveals any errors made by TA that were not
included in the ambiguous category.

6. Saves the edited results table and the report file.

DISCUSSION
We have described how an allele-calling program com-
bined with quality measures and empirically derived
criteria results in very accurate genotyping while lim-
iting the users energies to inspection of ambiguous
calls. By discarding allele calls that do not meet the
given criteria for quality value and peak height, some
allele calls that could be used if inspected by eye, are
discarded. However, our tests showed that <0.5% of
automatically discarded genotypes had been used
when edited with GT. Prior to editing, the fraction of
miscalled alleles falling into the good category were
<1%. Using our defined inspection protocol this frac-
tion drops to <0.4% in our study.

The total error rate in genotyping is composed of

calling errors and other processing errors, such as, PCR,
DNA isolation, and electrophoresis. In this paper we
address only the issue of calling errors, and how we
tolerate a slight increase in error rate to increase
throughput. Using this approach, the total error rate in
our genotyping data is <1% and within acceptable lim-
its. We believe that an unacceptable genotyping error
rate for multipoint linkage studies is >4%. A calling
error rate of 0.5% while inspecting <15% of the geno-
types is then quite acceptable. Therefore, the main ad-
vantages of this approach are the batch-run feature and
the dramatically reduced manual editing time. Our ap-
proach is similar to work that has been done to en-
hance the editing of sequences by using quality values
with Phred/Phrap/Consed (Ewing et al. 1998, Ewing
and Green 1998).

The hands-on time in preparing a TA run for a gel
file is 5–15 min and the editing of the results in Decode-
GT is 10–20 min, depending on the quality of the data—
in total 15–35 min per gel file, averaging ∼25 min. When
using Genescan and GT for processing gel files, the
hands-on time averaged 2–3 h. The reduction in hands-
on time compared to the previous method, when all al-
lele calls were confirmed by inspection, is 80%–90%.

Figure 10 The allele histogram view shows the allele distribution for selected markers.
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Another time-saving feature of TA is the automatic
binning for all markers that are processed. When using
GT, the binning information must be typed manually
into a template document when a marker is processed
for the first time. This allows rapid (even daily) alter-
ations in marker panels without having to manually
reset or redefine the expected bins. We routinely cus-
tom design panels to rerun markers that have failed in
the multiplex runs on a particular set of samples.

At deCODE Genetics, we currently process
∼400,000 microsatellite genotypes per week using Per-
kin-Elmer-ABI 877 PCR robots and 377 XL Sequencers
with 96 lane upgrades and are currently doing three- to
fourfold multiplexing with 80%–85% efficiency. For
our initial genome-wide screens we use the ABI Linkage
Marker Set (v. 2) and the ABI intercalating set, for a
total of 870 markers, along with additional sets to fill
in the gaps. These are all dinucleotide markers that
have been PIG–tailed to eliminate the plus A artifact
(Brownstein et al. 1996).

The dream of modern human genetics is that
we will soon be able to solve the common complex
genetic diseases. This may come from the use of the
most informative markers (microsatellites) applied

to the most informative families or populations
with extensive genealogy spanning centuries (Gulcher
and Stefánsson 1998). But because several genes
may together or in part contribute to each disease,
the power to detect linkage must be further in-
creased through the use of higher density marker sets,
larger numbers of patients linked together over gen-
erations within a population, and robust multipoint
identity by reliable statistical methods, (Kruglyak
et al. 1996; Kong and Cox 1997). The use of allele
calling software together with optimized parameters
that fractionate the data according to quality as de-
scribed here, may advance human genetics toward its
destiny.

Availability of Programs
TA is available from Cybergenetics, Inc. (Pittsburgh,
PA; www.cybgen.com). Decode-GT is free of charge
and available to academic groups upon request from
deCODE Genetics. To obtain a copy of the program,
contact Birgir Pálsson, e-mail birgir@decode.is. A dem-
onstration version is available at www.decode.is/
company/index.html.

Figure 11 The program creates a report of the data, including statistical information such as the heterozygosity for each marker, the
number of discarded genotypes, and the average quality.
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