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Abstract 

An important everyday task for geneticists and molecular biologists is that of isolating and 

analyzing some particular DNA regions (markers), each drawn from a limited and known set of 

possible values (alleles). This procedure is called genotyping and is based on DNA amplification 

and size separation. In order to increase the throughput of genotyping, recently a new experiment 

has been proposed which tries to analyze many different markers of similar size at once. We study 
the mathematical problem corresponding to this model and give a branch-and-bound algorithm 

for its solution. We show that by using the techniques described in this paper, genotyping of 

pooled markers can be computed effectively, thus potentially achieving a considerable reduction 
in time and expense. 1998 Published by Elsevier Science B.V. All rights reserved. 

1. Introduction 

In this paper we investigate the possibility of using combinatorial optimization tech- 

niques to increase the rate at which genotyping is currently performed on individuals. 

A brief simplified description of the situation is as follows. 

1. I. Genetic markers 

Human DNA is organized into 23 chromosome pairs, with one chromosome copy 

inherited from each parent. Along the chromosomal DNA sequences there are many 

sites that are highly polymorphic - i.e. there is tremendous variability in the DNA 

content at the site. Such sites can be used as genetic markers, and the different DNA 

sentences appearing at the site are known as the alleles of that marker. While useful 

to geneticists, highly polymorphic marker sequences typically do not code for proteins. 

Genetic polymorphism finds use in: 
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l Genetic jingerprinting: Forensic science exploits the allelic differences between in- 

dividuals at multiple polymorphic markers to form a unique DNA signature for an 

individual [9]. 

a Localization of genetic disease: Genetics researchers use genetic markers to trace 

the pattern of inheritance of chromosomal DNA. These data can help determine 

shared chromosomal regions in related individuals affected by a disease, which in 

turn can roughly localize the causative gene on a chromosome [l]. There are robust 

statistical methods [12, 15, 20, 261 that are routinely used to rigorously implement 

this genetic localization. 

l Diagnosis of genetic disease: Clinical geneticists use genetic markers to trace the 

pattern of inheritance in particular affected families. This analysis can help assess 

the probability of transmission of the disease gene to a given family member [22]. 

1.2. Genetic maps 

Sampling an individual’s genome with many highly polymorphic genetic markers can 

provide a high-resolution genotype “snapshot” in a digital form that can be compared 

with the genotypes of other relatives. With the advent of dense genetic maps having 

close to 1 Mb resolution [3, 6, 131, such genetic marker snapshots have become the 

mainstay of both regional and genome-wide (3000Mb) searches for genes [2, 111. See 

[24] for a general introduction to the construction and use of genetic maps, and [lo] 

for some of the associated combinatorial problems. 

1.3. Microsatellite markers 

Genetic maps are largely comprised of microsatellite markers [25], which are abun- 

dant in the human genome, highly polymorphic, and based on the polymerase chain 

reaction (PCR). The older genetic markers (e.g., restriction fragment length polymor- 

phisms, or RFLPs) are now rarely used. The microsatellite family includes di-, tri-, 

and tetranucleotide repeats that are DNA words of the form “PR,s”, where P is a 

fixed prefix string, S is a fixed suffix string, R is the nucleotide unit of the repetitive 

sequence R, with the length of R small (e.g., 2, 3, or 4), and n is the number of 

tandem copies of R. 

A key advantage of microsatellites is that an allele corresponds to the number of 

repeated units (n, in PR,S), and therefore the length of the PR,S DNA sequence. Thus, 

genotyping can be performed by simply determining the size (i.e., not the sequence) 

of the amplified PCR products. Such size determinations are done by physically sep- 

arating DNA fragments using gel electrophoresis. The number of repetitions varies 

widely among individuals, and for this reason microsatellites are also called length 
polymorphism markers. 

With R=“CA”, the CA-repeat unit forms a dinucleotide repeat microsatellite marker. 

There are believed to be over 100 000 CA-repeats present in the human genome. These 

dinucleotide repeat markers have sequences of alternating C and A nucleotides, denoted 
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as (CA),, where n is the number of repeats. Due to their high polymorphism, these 

markers can be used for the identification of Mendelian disorders [ 17, 191. For sim- 

plicity, in the remainder of this paper we will primarily use CA-repeats as the markers 

of choice; however, our results hold for other length-polymorphic markers as well. 

1.4. PCR amphfication 

The PCR amplification process [ 141 creates millions of copies of each CA-repeat tem- 

plate DNA sequence. This amplification process is not completely error-free, and some 

of the copies will have different length than the original (almost invariably shorter). 

However, most of the copies will have the correct length, and the number of wrong 

copies of size I will rapidly go to zero as I decreases. This stutter artifact may be due 

to slipped strand mispairing [8] during replication within the DNA sequence’s repeat 

region. When alleles are closely spaced, or individuals are pooled together, this stut- 

ter artifact obscures the data and precludes automated scoring by simple inspection. 

Interestingly, the stutter artifact indicates where the true data lies, and, without stutter 

artifact, spurious peaks are readily mistaken for alleles [21]. 

The PCR fragments must be labeled so that they can be detected later on. Originally, 

radioactively labeled nucleotide precursors were used. With the advent of fluorescently 

labeled nucleotide precursors and automated fluorescent DNA sequencers, nonradioac- 

tive fluorescent labeling is now the common practice [28]. 

For the sake of simplicity consider the following example: by PCR amplification, 

copies of a (CA)20 repeat are made; of these, 54% have length 40 base pairs (bp), 

37.6% have length 38 bp (i.e. a CA pair was skipped by the PCR process), 6.4% have 

length 36 bp, 2% have length 34 bp and no copy has any of the other possible lengths. If 

we plot this distribution of lengths in a graph, the resulting curve is generally similar to 

an exponential decay with the peak corresponding to the correct length (Fig. 1). We call 

this distribution the stutter pattern for the allele. As described in [ 17, 181, under known 

fixed PCR conditions (e.g. enzyme, cycle times, number of cycles, template and primer 

concentrations, and buffers), PCR amplification of a given allele will, typically, result 

in the same stutter pattern (modulo some unavoidable measurement error). Therefore, 

a stutter pattern can be regarded as the signature of the corresponding allele, and we 

can build and store a library of the stutters for all the alleles of a given marker. 

1.5. DNA size separation 

The alleles of a marker (and their stutter patterns) are observed by size separation 

of the PCR products on an electorphoretic gel. Gel electrophoresis is an experiment in 

which all the DNA copies are put in a gel and subjected to an electric field. Under 

the influence of the field, the DNA molecules migrate in the gel, moving with speed 

inversely proportional to their size. DNA fragments of the same size, moving at equal 

speed, will form a band on the gel, of intensity proportional to the number of fragments. 

By comparing the position of a band to that of some sample molecules of known size, 
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54 -- 

37.6-- 

34 36 38 40 

Fig. 1. Example of stutter pattern for a (CA)20 repeat. 

we can infer the length of all the molecules in that band. New technologies for DNA 

size separation, such as mass spectroscopy [27], are also being developed. 

Gel electrophoresis is a key bottleneck in CA-repeat marker genetic analysis. To 

increase throughput, therefore, the PCR products from multiple experiments are loaded 

onto a single gel. Current multiplexing dimensions include: 

Lane: There are typically 24-64 lanes on one gel. 

Size: Since a given genetic marker produces its DNA bands within some limited 

size range, multiple CA-repeat genetic markers (typically 3-6) having disjoint size 

ranges can be loaded together within one lane. 

Color: On fluorescent DNA sequencers, multiple fluorescent dyes (typically 2-8) 

can be used to produce virtually independent data images. Using commercially avail- 

able CA-repeat marker panels (e.g., for the applied biosystems automated four-color 

DNA sequencers), each lane usually combines 15 different CA-repeat markers by 

using five different size windows per color, and three different fluorescent colors. 

A fourth fluorescent color is used for size standards, rather than for marker data. 

This multiplexing reads out roughly 500 CA-repeat marker experiments per gel (15 

markers/lane x 34 lanes/gel) [ 191. 

Automation is feasible for virtually every step in the genotyping pipeline: robotic 

sample preparation, PCR amplification, electrophoretic sizing on automated DNA se- 

quencers, allele determination, and computer data entry [7]. However, the allele deter- 

mination step has thus far remained the key bottleneck eluding full automation. The 

reason is that although one might expect to observe two data bands on the gel from 

one marker’s typing of an individual (i.e., in correspondence with the marker’s two 

alleles, one from each of the two inherited chromosomes), the intrinsic PCR stutter 

artifact produces more complex signals. 



G. L.anciu, M. Perlin I Discrete Applied Mathrmutiu 88 11998) 291-314 295 

32 34 36 

Fig. 2. In this example, calling the alleles for the higher peaks would result in error. Left: stutters for (CA)18 

and (CA)20 repeats. Right: stutter for pooled markers. 

1.6. PCR stutter encoding 

Ideally, without PCR stutter, the two alleles of an individual’s genetic marker would 

produce (up to) two distinct bands within the marker’s size window on the gel. Note 

that using 30-50bp as the size window for each marker in order to observe just two 

bands is not an optimal information use of valuable gel territory. It would be far bet- 

ter if somehow multiple (say 5-10) different markers were tagged as distinct, pooled 

within one size window, and the tagged readout measurements then mathematically 

demultiplexed into the allele data for all the markers within the window. This multi- 

plexing of similarly-sized tagged markers might then produce considerable improvement 

in throughput, to say 2500-5000 experiments per gel. 

PCR stutter artifact is an intrinsic property of microsatellite markers that may pro- 

vide the requisite tagging, and allow of multiplexing markers that have similar sizes. 

It was suggested in [ 17, 181 that appropriate computer deconvolution algorithms might 

exploit the intrinsic PCR “artifact” as a useful tagging mechanism. This is not a triv- 

ial task, since numerous factors (e.g. differential PCR amplification, stutter variation, 

measurement noise) can confound the analysis. None the less, given the potential order 

of magnitude improvement in genetic marker throughput, this computational method 

warrants further study. 

When running a gel on many markers at once whose stutters overlap, the result can 

be a complex pattern of bands, given by the sum of the bands for all the markers 

(Fig. 2). The goal of this paper is to study a mathematical model of superimposed 

PCR stutters from multiple length-polymorphic (e.g. CA-repeat) markers, and to devise 

efficient algorithms to deconvolve these data, thereby determining the alleles for all the 

superimposed markers. Our model will also account for the unavoidable presence of 

measurement errors in the readings. 

The main biological assumption underlying the technique of pooling microsatellite 

markers is that when the stutter patterns for all the alleles are known and the PCR 
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conditions are kept fixed, the stutter resulting from pooling many markers in the same 

gel will simply be the sum of the individual stutters for each single marker (modulo 

experimental error and noise) [18]. Under this assumption we show an efficient algo- 

rithm which can solve exactly the deconvolution problem for as many as seven pooled 
markers in a matter of 3-5 min. Considering that there are n14 possible solutions when 
each marker has n alleles (and in real cases n can be, for instance, as large as 20) we 

see that the running times are more than acceptable when compared to the size of the 

search space. 

1.7. Organization 

The remainder of the paper is organized as follows. Section 2 introduces the mathe- 
matical model for the problem. In Section 3 we address the computational complexity 

of the problem and transform it into an equivalent problem. Section 4 describes a 

fast global search procedure based on branch and bound. In Section 5 we focus on 
the monodimensional version of the problem, for which we give a pseudopolynomial 

dynamic programming and a branch and bound algorithm. Section 6 reports the com- 
putational results. A few conclusions are drawn in Section 7. 

2. The mathematical model 

The following parameters characterize the pooled genotyping problem: 

l k: the number of markers to be pooled 
l Hi: the number of alleles for marker i = 1,. . . , k 

l Di: the domain of the stutter for allele j = 1,. . . , ni, marker i = I,. . . , k. By domain 

we denote the set of sizes, in bp, of the copies created by PCR amplification of 
the allele j for marker i. Let 0~;. : = min Dj be the smallest detectable size for which 

the PCR produces some copy of the allele, and $ : = max Di be the largest size 
(normally, corresponding to the correct value for the allele). Ideal PCR conditions 
would amount to 01;. = /3;, i.e. IDjl = 1. More generally, IDi1 > 1, and the interval 

[c$ . . . ) pi] corresponds to a “window” on the gel where the stutter will be localized. 
However, typically not all the positions within this window will be achieved by some 
bands of a stutter. For example, generally an allele of a d-nucleotide repeat will have 
a domain equal to Df: = {LX;, a: + d, . . . , /?j -d, /I$}. Therefore, by defining the domain 
as a subset of the size window, we can reduce the dimensional&y of the problem 
without losing any information. 
For actual data, these assumptions are reasonable [ 17, 231: 

Fact 1. $ # /$j whenever j # h, as the correct allele values are localized in correspon- 
dence to the rightmost extreme of the stutters range. 
Fact 2. IOf: 1 N IDi 1 (i.e. the ranges covered are roughly the same for each allele) and 
this value is generally quite small ( d 10). 
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l m: the number of DNA sizes, at which any allele, of any marker, can produce 

a detectable band, i.e. m = IDI where D= U icl,.,,,k Dj is the global domain. If 

CI = min D and fl= max D, then the window of DNA sizes on the gel where bands 

may appear is the range [c1,. . ,/I]. However, within this window of length /3 - a, 

only m positions are actually possible, and therefore we look only at those m. 

l A’: the m x ni stutter-matrix for marker i= 1 , . . . , k. Each column describes the stut- 

ter of an allele for the marker and each row corresponds to a DNA size, decreasing 

from the largest (first row) to the smallest (last row). For actual data, entries can 

be assumed to be nonnegative integers, in the range 1,. . . , 1000, representing the 

fraction of segments amplified for each size, as a multiple of l/1000. Clearly, this 

value depends on the instruments resolution, which is seldom more accurate than 

one part in a thousand. Referring to our previous example, let us assume that an- 

other allele for the marker in question is (CA) 23, with the following stutter: 68.5% 

at 46 bp, 24.6% at 44 bp, 11.2% at 42 bp, 5.6% at 40 bp. The domains for the stut- 

ters are Dt = {34,36,38,40} and 0: = {40,42,44,46}. Further, assume that there 

are some other markers with alleles whose domain contains the sizes 32 and 48 bp, 

and that the global domain is D = {32,34,36,38,40,42,44,46,48}. Then m = 9, and 

the stutter matrix for this marker will be 

Ai= 

0 0 

685 0 

246 0 

112 0 

56 540 

0 376 

0 64 

0 20 

0 0 

In this matrix the top row corresponds to molecules of size 48 bases, and the bottom 

to molecules of size 32. In this example, passing from a row to the next, the size 

is decreased by 2, since we are looking at dinucleotide repeats. By our definitions, it 

should be clear, however, that it is not necessarily true that consecutive rows correspond 

to DNA sizes which are even and/or whose difference is a multiple of some fixed 

number. In fact, the mapping of matrix rows to DNA sizes will depend on the particular 

markers and alleles in the pooling. Of course, it will be possible to pool dinucleotide 

repeats with trinucleotide repeats. Actually, our model does not rely on the markers 

being repeats at all, but only on being length-polymorphic. 

Remark 1. Note that because of Fact 1, possibly after reordering the columns, each 

A’ can be assumed to be lower triangular (i.e. the entries above the main diagonal are 

zero); this property will be exploited in the algorithm to be described later. 

Let us define A = (A1A2. . . Ak). 
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l 6: the m x 1 vector representing the outcome of the gel measurement, i.e. the sum 

of the stutters for the k pooled markers. 

l x: the solution. x= (x1,x2,...,xk) where each xi E {0,1,2}n1 is a vector of Q 

components. In our model, xi represents how many copies of the allele j for marker i 

are present in the pooling. For each marker there would normally be two alleles (one 

per chromosome) either equal (homozygous) or different (heterozygous). However, 

PCR may in some occasions fail to amplify one or both alleles for several reasons. 

In order to account for this possibility, we will expect the amplification of at most 

2 alleles per marker, i.e. xjEl ,,,,, n, , , xi. < 2. Note that a solution to the problem can be 

seen as a selection of either 0, 1 or 2 columns from each matrix A’. 

2.1. The noiseless version of the problem 

Assume that the reading of the gel is done without measurement error. In this purely 

theoretical situation, because of the very nature of the experiment, there must exist 

(although not necessarily unique) x as above satisfying Ax = b. 

We then define the noiseless genotyping problem (NGP) as the following: 

(NGP): Given A = (A’ . . .Ak) E Zmx(nL+...fnk), b E Z”, find x=(x1,x2,. . . ,xk) E 
z”,+-.+“” 

> 
0. 

(i) Ax=b, 
n, 

(ii) Cx;<2, i= l,...,k, 
J=I 

(iii) xj~{O,l,2}, i=l,..., k, j=l,..., IZ~. 

2.2. Accounting for experimental error 

More realistically, we will have to consider experimental error and accept the case 

in which no solution is feasible for Ax = b, and we are interested in the solution that 

better fits the data at hand. This would be achieved by removing the constraint (i) and 

introducing the objective min [IAx - bll. 
Note that if we know the error rates and the error behaviour of the instrument, 

we can improve our model by helping it with additional constraints. In particular, we 

may assume that an error function ’ E(V) : Z H [0, l] exists such that for each value v 

representing the reading of an unknown amount of DNA, E(V) is the maximum relative 

error that we may have encountered. Therefore, if z is the underlying noiseless result 

of the experiment, from the observed one b we may compute lower (b-) and upper 

(b+) bounds on the possible values of g. Then, knowing that b- <g< b+, we may 

impose the additional constraints b- <Ax d b+ to the model. 

To exploit the knowledge of the error, we could decide what the error function 

is, fix it once and for all and make it part of the model. Or, as we do here, we 

’ Typically, given in the form of a table, describing the instrument accuracy at different resolutions 
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could assume that the error function is known, possibly, by a separate module, which 

prepares the input for our problem. This module will derive 6- and 6’ from b. If no 

knowledge of the error is assumed, the module will simply set bi = 0 and b: = +CG. In 

Section 6 on computational results, we will describe the model for the error adopted 

in our simulations. Note that by considering b- and b’ to be input parameters of 

the problem, we are able to make the problem independent from the particular error 

function used. 

We therefore add the following parameters to the model: 

l b-, b+: The values b- and b+, depending on b and on the error rate of the exper- 

iment, are such that b- <g< bf with high probability. 

Summarizing, in the presence of errors, the problem of determining the genotyping 

for a pooled set of markers can be stated as an optimization problem with the objective 

of minimizing the euclidean distance of the solution from the observed value b, 

further requirement that the solution must lie within a known m-dimensional 

Formally, we define the genotyping problem (GP) as: 

(GP): Given A = (A’ . . Ak) E Zmx(nl+.“+nr), b, bE, b+ E Z”, find x = (x1,x2, 
zn, t~~~t111 1 

s.t. 

(i) b- <Ax<b+, 

(ii) 5~;<2, i= l,...,k, 
j-l 

(iii) xi E {0,1,2} i=l,..., k, ,j=l,..., ni. 

and IlAx - 611 is minimum. 

with the 

interval. 

“3 Xk)E 

The noiseless genotyping problem is a special case of (GP) occurring when b- = b+ 

= b. Note that in the presence of errors it is not necessarily true that the solution 

minimizing the Euclidean distance is the correct one. In fact, for a significantly large 

error that solution will very likely be wrong. This problem is inherent to this situation 

and no algorithm can evade it: if the error rate is too large, the data are meaningless 

and the experiment must be redone. However, for error rates usually encountered in 

experiments (e.g. *20%) our algorithm has proved very robust. We also suggest the 

possibility of finding not just the best solution, but a set of good candidate solutions. 

3. The complexity of the problem 

In this section we address the computational complexity of the problems [5]. Since 

(GP) is clearly at least as difficult as (NGP), each negative complexity result for the 

latter translates automatically to the former. 

Theorem 2. The problem (NGP) is strongly NP-complete. 

Proof. We will describe a reduction from the satisfiability problem (SAT) to (NGP). 
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Let Cl A Cz A ’ ’ . A C, be an instance of (SAT) of p clauses over r boolean variables 

Zl,..., &-. 

We construct k = r + p matrices of m = r + 2p rows each. We label the rows as 

“selector constraints” (rows 1,. . . , r + p) and “clause satisfiers” (rows Y + p + 1,. . . , 

Y + 2~). We also name the matrices as “truth assignments” (matrices 1, . . . , r ) and 

“fillers” (matrices Y + 1,. . . , r + p). 

Each truth assignments matrix A’, i = 1,. . . , r has two columns, one corresponding 

to setting Zi = TRUE and the other for Zi = TRUE. In the column for Zi there is a 1 in 

row i and in all the clause satisfiers rows corresponding to clauses where the literal zi 

appears. Analogously, in the column for Zi there is a 1 in row i and in all the clause 

satisfiers rows corresponding to clauses where the literal Zi appears. 

The filler matrices A’, i = r + 1, . . . , r + p have r columns each, labeled 0, 1, . . . , r - 1. 

In each column j there are only two nonzero entries, namely a 1 in row i and a j in 

the clause satisfier row corresponding to clause Ci_,. 

Finally, we set bi = 1 for all selector constraints components and bi = r for all clause 

satisfier components. This completes the reduction. An example follows: 

c, AC,ACs:=(z, vZ~vz~)A(z*vz~)~(z~v~) 

becomes 

Zl 21 z2 22 z3 z3 

1 1‘ 

C1 1 

c2 

c3 1, 

1 1 

1 

1 

\/ \f \ f \ 

1 1 = 

1 1 1 

1 1 1 x = 

111 = 

1 012 

1 012 

1 \ \ 012 = 

Now, we claim that the derived (NGP) is feasible if and only if the boolean formula 

is satisfiable. In fact, since b, = 1 for each selector constraint row, a solution to the 

(NGP) will have to pick one and only one column from each matrix. In particular, 

restricted to the first r matrices, this pick can be seen as setting the truth value for 

all the r Boolean variables. Also, since bi = r for each clause satisfier row but a filler 

column can account only for at most r - 1 in that row, it must be that one of the 

columns picked in A’ , . . . ,A’ has a 1 corresponding to row Ci, i.e. the truth assignment 

for a variable satisfies clause Ci. Since this is true for all clauses, the solution identifies 

a satisfying truth assignment. 

Conversely, given a satisfying truth assignment, a solution to (NGP) is obtained 

as follows. For each matrix i pick column zi if zi is true, and column Zi otherwise. 

Further, for each clause Ci let 

si= I{zj: zj EC~,Z~=TRUE}U{Z~: Zj E Ci,zj=FALSE}I. 
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Since C, is true it must be si 3 1; then pick from the ith filler the column corre- 

sponding to r - si. 

This completes the proof. Note that since the largest number we built in the reduction 

was r, and r cm, this shows that (NGP) is strongly NP-complete. 0 

The (NGP) bears many similarities with the (SUBSET-SUM) problem [5]. 

In (SUBSET-SUM) we are given a set of integers J and a target t, and we look for 

a subset J’ s.t. xjEJ, j = t. Although NP-complete, (SUBSET-SUM) admits a pseu- 

dopolynomial algorithm, so that we could have expected a similar algorithm exists for 

solving (NGP). Theorem 2 rules out the possibility of such an algorithm for the general 

case, but we will show that in the monodimensional case (m = 1) there is an efficient 

pseudopolynomial dynamic programming solution. Note that in the monodimensional 

case the matrices A’ can be thought of as (multi)sets of integers, and b is an integer; 

the problem is then to pick either 0, 1 or 2 integers from each set so that their sum 

is 6. 

Theorem 3. The monodimensional version of’ (NGP) is NP-complete. 

Proof. The proof is very similar to that for Theorem 2, so we will omit the details. 

Referring to the previous example, now think of each column as a single number, 

written in base 2r. The base is large enough so that there can be no carry in any digits 

of the sum. Then the proof goes exactly as in Theorem 2. q 

Even if the monodimensional (NGP) is NP-complete, now the existence of a pseu- 

dopolynomial algorithm cannot be ruled out, since the numbers built in the proof are 

exponentially large in the length of the input. In fact, such an algorithm exists and will 

be described in Section 5. 

It should also be pointed out that some (NGP) instances have exponentially many so- 

lutions; as a simple example, take a monodimensional problem with A’ = {0}, i = 1,. . , k 

and b = 0. This problem has 3k solutions, since we can pick 0 either never, once or 

twice from each set and still get 0 in the sum. However, these artificial examples are 

of little or no interest when it comes to real data, for which the set of feasible solutions 

is generally empty for the (NGP) and rather small for the (GP). 

Although the problem in which k is variable is NP-complete, in practical applications 

it would be impossible to pool together more than a relatively small number of markers, 

because of technical (maximum capacity of instruments) and biological (the markers 

would interfere with each other and the assumption of independence would fail) limita- 

tions. Therefore, we are more interested in the case where k is fixed, say 2 <k < 10. Of 

course, when k is fixed the problem becomes polynomial; if IZ = maxi,i,...,k ni, there are 

only O(n*) ways to choose two columns in a submatrix and 0(n2k) possible solutions 

to the overall problem. However, for cases of interest to us, n can be as large as 20 

and we see that even for k = 5, a solution space of 20” points is far too large to be 

explored by complete enumeration. 
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3.1. A simple transformation 

For simplicity in the following analysis of the problem, we will reduce it to an 

equivalent one in which we pick just one column from each submatrix. This can be 

easily achieved. First, add a zero column to each A’. Then, compute matrices ai, 

i= l,... , k, where each 2 is rn x iii, with n^i = ni(ni + 1)/2, and each column of ai is 

the sum of two (not necessarily distinct) columns of A’. 2 will be called the extended 

stutter-matrix for marker i. Note that each column of 2 corresponds to one of the 

four possibilities for the genotyping restricted to marker i, i.e. 

l zero column: no alleles were amplified. 

l sum of the zero and a nonzero columns of A’: only one allele was amplified. 

a sum of two difSerent nonzero columns of A’: the individual is heterozygus. 

l sum of two equal nonzero columns of A’: the individual is homozygous. 

The pre-processing of the data can be done in time O(krnn2)=O(mn2) when k is 

fixed. We therefore may assume that pre-processing is always performed. For the sake 

of notational simplicity, we will drop the hat on the variables, and restate the problem 

in its final form as 

(GPl): We are given k extended stutter-matrices A’, . . . ,Ak E Zmx(nl+“‘fni), and vectors 

b,b-,b+ l Zm. Find x=(x’,...,~~)~Z~l~“~+~~, 

s.t. 

(i’) b-<Ax<b+, 

(ii’) pxj=l, i=l,..,, k, 
j=l 

(iii’) xi E (0, l}, i= l,..., k, i=l,..., ni 

and (IAx - bll 2 is minimum. 

In the following, we will always refer to the problems in this latter form. Note that 

in order to deal only with integer quantities, we have squared the objective function. 

This is done without loss of generality, since u<v H I,I%< 4. 

4. A divide and conquer strategy 

In this section, we first describe a search strategy that finds all the feasible solutions 

(see Fig. 3) for (i’), (ii’) and (iii’); then we turn this strategy into a branch and bound 

[ 161 algorithm which solves the problem (GPl ). 

To solve the multidimensional problem, we will reduce it to a sequence of mono- 

dimensional ones, starting from row 1 up to row m. Let y = Ax; the idea is to first 

find all the solutions such that b; d yl d bf, then, within these, keep those for which 

b,<yZ<b;, and so forth. This approach turns out to be practical because of the 

particular structure of the problem. In fact, we claim that all the monodimensional 
problems solved will be instances in which there are only either 1,2 or 3 numbers per 
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PROCEDURE DAC(Jlr, r) 

/* finds all the feasible solutions to the genotyping problem */ 

if r=rn then print all solutions in F’(.,t’) x .. . x Fk(_tr) and return, else 
for each i- l,...,k do 

Restrict the submatrix A’ to the columns in F’(.A‘) 

Let the set of different entries in the rth row be S’ = {a;, ai, u\} 

Partition the columns as F’(,1”) = FL, (A”) U Fd2(N’) U Fil(,,V) accordingly. 

Solve a feasibility monodimensional problem with data S’, .1. ,S’, by, h,f . 

Let XC (0, l}l”I+‘~~+~‘“~ be the set of all the solutions to this problem. 

if X = 0 return, else 
for each solution .x=(x’,...,x~)EX do 

for i= 1 . . . . , k, let a, = S’x’ /* ai is the value picked from the set S’ */ 

Create a new node ,.V’ with F(>$ “) = Fl, (. V) x x F:L (~,,‘“). 

DAC(.J”‘,r + 1) /* depth-first recursive call */ 

Fig. 3. A divide and conquer (DAC) search strategy for (GPI). 

set. This will be accomplished by removing all the multiple occurrences of a number 

in each set. 

Before making this statement formal, let us look at an example. A submatrix relative 

to a marker is lower triangular (by Fact 1, Section 2) and ends with a zero column, 

e.g. 

L’I c2 c3 c4 c5 

1 0 0 0 0 

2 5 0 0 0 

3 6 8 0 0 

4 7 9 10 0. 

After the transformation described in Section 3.1, this submatrix becomes 

(‘1 I Cl2 Cl3 Cl4 Cl5 c22 c23 c24 c25 c33 c34 c3.5 a4 c45 c55 

2 1 1110 0 0 0 0 0 0 0 0 0 

4 7 2 2 2 10 5 5 5 0 0 0 0 0 0 

6 9 11 3 3 12 14 6 6 16 8 8 0 0 0 

8 11 13 14 4 14 16 17 7 18 19 9 20 10 0. 

Looking at the first row, we note that the columns are divided into 3 groups. The 

monodimensional problem corresponding to the first row has for this marker data set 

{2,1,. . . , l,O,. . . ,O} which we can then contract into (2, l,O}. Now, if the solution to 

this problem picks a 0 from this set, this corresponds implicitly to picking any of the 

columns in (~22,. . . , ~55) and discarding those in {cr 1,. . . , cl s}. Analogously, choosing 

the 1 will select the columns (~12,. , ~15) and discard {cr 1, ~22,. . . , ~55). The best case 

is when the solution picks ~11, so that we can discard all but one column. 
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Further, once the selection is made, we may restrict our attention to the selected 

columns and look at the second row. Again, this row has only a few noncoinci- 

dent entries. For instance, if we are restricted to columns in (~2,. . . ,CSS} then the 

monodimensional problem for the second row has for this marker data set { 10,5,0}. 

Analogously, if we are looking at columns in (~12,. . . , ~15) the new set has only two 

values in it, namely {7,2}. Finally, for column ci 1 the new data set is (4). This way 

of grouping columns permits to consider (and discard) many solutions at once, and 

yields a very efficient search algorithm. 

Because of constraint (ii’), a solution x can be seen as the incidence vector of a set 

of columns (alleles) one from each A’ (marker). If N’ := { 1 , . . . , ni}, the set of feasible 

solutions to (GPl ) is a subset 9 of N1 x . . x Nk. We will denote as F,. the set of 

solutions feasible for (i’) restricted to rows 1,. . . ,Y, so that 9 = p,,,. The algorithm 

can be best described as a depth-first visit of a search tree of m levels. Each node M 

of level r corresponds to a set S(M) = 8” (JV”) x . . . x Fk(A”) C Fr_l, where each 

F’(N) C N’. At the root node 9Z we have 9(.%?) = N’ x . . . x Nk, while the nodes at 

level m will represent complete solutions to (GPl ). When visiting a node JV at level 

r, we will partition the candidate solutions at ~6’” by splitting each F’(M) into at most 

three sets, as F’(JV”)=F~(JV)UF~(JV)UF~(J~~) (where some of the q(X) can be 

empty) so that 

WJO=(F,‘(JQUF~(JUUF~(J~~)) x ... x (F/(J~~)uF,~(J”)uF:(J-)). 

Then for each rc E { 1,2, 3}k and nonempty set F,,!, (M) x . . x F&(N) which is con- 

tained in & (i.e. feasible for (i’) also at row r) we will create, and visit, a new node 

JV’ at level r + 1, with F’(Jlr’)=Fi,(Jlr) for i= l,...,k. If otherwise Y(M)9 9,., 

the node Jf will be killed and the search resumed from its parent. 

The algorithm can be implemented recursively as sketched in Fig. 3. 

To start the search we will create a root node %J with 9(W) = N’ x . x Nk and 

call DAC(W, 1). The fact that in the algorithm each S’ has at most three elements is 

justified by the following analysis. 

Definition 1. We say that a matrix is ternary if 
_ in the first row there are (at most) three different entries, {al,az,a3}; partition the 

set of columns accordingly in C,, , C,, , C,, . 
_ each nonempty submatrix obtained by keeping the columns in Co, and rows 2,, . . , m 

is ternary. 

Some results are immediate: a column vector is a ternary matrix; a lower triangular 

matrix is ternary; adding the same constant vector to each column of a matrix does 

not change it being ternary or not. 

Let M’, m x n stutter-matrix for a marker and A’ the extended stutter-matrix obtained 

after transformation 3.1. Then we have 
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PROCEDURE BAB(N, r, lb) 
I* finds the optimal solution to the genotyping problem. lb is the lower bound for node 

JVl 

begin 
if lb>c then return, else 
if r=m then 

for all x~F’(&“)x ... xFk(M) do 

if ([Ax - b(12 <ii then I* update the optimum *I 

ii:= llAx - b[l* 

2:=x 

return 
else 

for each i= I,...,k do: 
Restrict the submatrix A’ to the columns in F’(M). 

Let the set of different entries in the rth row be 5” = {u{,a~,a~}. 

Partition the columns as F’(N) = Fi, (-4) U F&(N) U FL,(,Y) accordingly. 

Solve a feasibility monodimensional problem with data S’,. . . ,Sk, b;, b:. 

Let X C (0, 1 }IS’l+“‘+ISkI be the set of all the solutions to this problem. 

if X = 0 return, else 
Sort X by nondecreasing JSx - b,.]. 

for each solution x=(x’,...,x~)EX do 
for i = 1,. . , k, let a; = S’x’ /* a, is the value picked from the set S’ */. 

Create a new node .,V’ with 9-(< V’) = Fb, (.k‘) x . . x Fjk (A “). 

BAB _4”. r + 1, Zb + (cf=, a, - br)‘) /* depth-first recursive call */ 

end 
Fig. 4. The branch-and-bound procedure for (GPl). 

Theorem 4. A’ is ternary. 

Proof. By induction on m. 
Since M’ is lower triangular it has only one nonzero entry in its first row, say a; then 

the entries in the first row of A i are { 24 a, 0). So, if m = 1, A’ is ternary. Otherwise, 

let us assume that if M’ has m - 1 rows it generates a ternary A’. For a general m > 1, 

partition the columns into C,,, C,, CO. Refer to the figure in the previous example: CZa 

is a column vector and henceforth ternary. Subtracting the first column of M’ from C, 

leaves a triangular matrix, again ternary. Finally, the submatrix in columns CO, rows 

2,. ,m is the transformation of M’ restricted to columns 2,. . ,a, rows 2,. . ,m and 

hence, by induction, is ternary. 0 

Corollary 5. Each time the algorithm DAC is entered, the matrices A’ restricted to 
columns F’( %~I;‘), rows r, . . , m, are ternary. 
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The main consequence of this analysis is that each monodimensional problem solved 

in step 3 of the algorithm is relatively easy, and the resulting search is very fast. This 

is also because on average there are only a few solutions to each monodimensional 

problem. This follows again from the nature of the PCR stutter data, which has very 

different entries in each set that are not easily interchangable in different solutions. This 

relative uniqueness of PCR stutter patterns can be increased by using different PCR 

experimental conditions that accentuate each marker’s stuttem pattern. In our test runs, 

most of the time we found only one or no solution to each monodimensional problem, 

and never more than 5. The resulting search tree has therefore a low-bounded degree, 

and depth m, so that we can say that algorithm DAC, satisfactorily solves the problem. 

It is straightforward to turn this search algorithm into a branch-and-bound, by adding 

the computation of a lower bound at each node Jf of level Y E { 1,. , . , m}. Let y = Ax, 

where x is the incidence vector of any solution in 8(,1/‘). Then for all x E S(N), 

yi,. . . , y,,-_~ are fixed, and C’,L:( yh - bh)2 is a lower bound to the value at the node. 

If B’ are the matrices resulting from A’ restricted to the columns in F’(N), the optimal 

value at the node is Cl,:; (yh - bh)2 + min Et=‘=, (Bhx - bh)*, where the min is taken 

over all x E 9(N) and Bh denotes the hth row of B. So the node corresponds to a 

problem similar to the original but restricted to rows Y,. . . ,m. We then branch as in 

DAC, but now we first order the subproblems of JC“ by nonincreasing (y,. - b,)2 in 

order to explore the most promising subproblems first. 

Let E be the best solution found at any point of the search and i;= j]Ax - bj12 be 

its value. The branch-and-bound algorithm is described in Fig. 4. The main program 

will set i;:= +EJ and call BAB(9?,1,0). Finally, we note that the branch-and-bound 

algorithm can be easily modified so that it returns not just one solution but the p best 

solutions, where p is a user input parameter. From our experiments it turns out that 

~65 is usually enough to retrieve the correct solution among the p best. Retrieving p 

solutions instead of just one may be preferable when the noise is high or in particularly 

crucial experiments. In such situations, the algorithm may be used as a tool for an 

expert to finally decide on the correct genotype (possibly by a consensus method) or 

re-execute the experiment to reduce the noise. 

5. The monodimensional problem 

We will be interested in the following form of the monodimensional genotyping 

problem: 

(MGP): Given k sets (row vectors) A’ , . . , Ak, where [A’( = nir and two bounds b- 

<b+EZ, find all x=(x’,x~,...,x~)EZ~~+.“+“~ 

s.t. 

(i) b- dAx<b+, 

(ii) C;:,~j=l, i=l,..., k, 

(iii) ~jc{O,l}, i=l,..., k, j=l,..., ni. 
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As shown in the previous section, each time we solve an (MGP) there are at most 

three numbers per set; the solution space has at most 3k points, so that even an 

exaustive search may be conceivable when k is small. However, for k 37 exaustive 

search starts to be impractical, also because the subroutine for the monodimensional 

problem is called several times within the algorithm DAC. 

Therefore, in this section we describe two efficient algorithms for (MGP). The first 

has mainly theoretical interest and it is based on a dynamic programming approach 

[4]. The second is faster (expecially when the entries of A and b are large), and is 

based on a branch-and-bound approach. 

5.1. A pseudopolynomial dynamic programming algorithm 

In order to solve (MGP) we can build a table T(r,s) with Y = 1,. . . , k, s = 1,. . . , b+. 

Each entry T(r,s) is a boolean variable representing the event “there is a partial solution 

x’, . . . ,x’ such that CiY ,,,.,, r A’x’ =s”. Recursively, this can be written as 

1 

TRUE if v=l and SEA’, 

T(r, s) = 
FALSE if r=l and s@A’, 

V T(r-l,s-aj) if r>l. 

a, EA’ 

In parallel with the construction of table T, we keep a table B of backpointers that 

allow us to recover all the solutions that yield a certain sum. The final solution will 

be obtained by looking at all the entries j d b + that are TRUE. The algorithm has 

complexity O(kb+) i.e. pseudopolynomial. It can be further speeded up by avoiding to 

compute all those entries of T which beforehand we know are going to be FALSE. 

Let m; = min A’, Mi = max A’; then the only possible TRUE entries in the (1. + 1)th 

row of T are within columns c, + m,+t and C, + MT+, where c,. (C,.) is the minimum 

(maximum) TRUE entry of row r (clearly cl = ml and Cl = MI ). 

5.2. A branch-and-bound algorithm 

In this section we describe a simple branch-and-bound strategy to explore the search 

space for the monodimensional genotyping problem. 

As in section 4, let N’ := (1 , . . . ,ni}. The problem amounts to finding all 

k-tuples (jt,...,jk)EN’ x ... x Nk such that b- 6 Cf=, a$, 6b+. We build these 

k-tuples incrementally, starting from component d = 1 up to component d = k. At a 

generic step, if d <k, then CT = Cf=, aj is the partial sum built so far. Therefore, 

g- = o+C~=,+,minA’ and rr+=rr+x!_ I_d+, max A’ are a lower and an upper bound 

on the value of the final solution. If cr+ <b- or (r- > bf we can prune the node. Oth- 

erwise we can branch by trying recursively all the possible values for the (d + 1)th 

component of the k-tuple. 

The search tree has at most k levels. In order to prune as many nodes as possible, we 

can reorder the sets so that i <j + IA’ I< IAjl. Similarly, the computation of maxima 

and minima for all sets can be done in a preliminar step before starting the search. Due 
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to its simplicity and to the fact that k is small and izi < 3 for i = 1,. . . , k, this algorithm 

has proved very fast and was used as a subroutine for the general procedure. 

6. Computational results 

The procedures were coded in C++ and run on a Sun Workstation. To test the algo- 

rithm we have performed different simulations, varying the parameters of the problem, 

the error rates, and the way the data were generated. The test problems are described in 

detail later, but depending on how we generated them, at a top-level, we can classify 

the problems into two main classes: (semi) “real” and “random”. In generating the 

problems, we followed these common steps: 

1. Choice of markers and number of alleles: For the “real” problems we obtained 

information on actual microsatellite markers and corresponding alleles. For the “ran- 

dom” problems, we randomly generated number and size of the alleles for each 

marker. 

2. Choice of stutter patterns: For both class of problems we used some real stutter 

patterns. Since we did not have many samples of real stutters, we generated new 

ones by addding random perturbations to the known ones. Further, for the “random” 

problems, we created more new stutters by generating random distributions in the 

form of exponential decays. 

3. Choice of genotypes: The problems were finally generated by picking random geno- 

types, i.e. choosing the alleles for each marker. In the “real” problems, we used the 

published frequencies to decide if the individual is heterozygous or homozygous, 

and which alleles are more likely to be chosen. In the “random” problems, these 

choices were made at random. 

4. Model for the error: Once a genotype (called the correct or true solution) had 

been chosen, its noiseless value g was computed. Finally, b was obtained from g 

by introducing some random error in each component. 

In order to do this, we have adopted the following model for the error. Since we 

can expect the error rates to be dependent on the magnitude of the values measured 

(i.e. the relative error in reading a weak signal should be greater than that of reading 

a strong signal), we consider two error parameters: E,, the experimental error when 

reading “small” amounts of DNA (e.g. E, = 5 50%) and EM, the experimental error 

for “large” amounts of DNA (e.g. EM = * 10%). As we mentioned in Section 2.2, 

the error rates are generally given as a table, with entries in the range EM,. . . , E,. 

We obtain this table by interpolating logarithmically between &M and E,,,. Let v,,, 

(us) be the minimum (maximum) over all positive entries of g. For any DNA 

amount v, < v < UM, our error function is given by E(V) = &M + E(e’” - 1) where 

E = (& - &‘))/(e’ - l), u = (uM ~ v)/(v~ - v,) and i, is a parameter that determines 

how smooth the change from one error limit to the other is. 

To generate b from g, we assume that the error has a normal distribution, with 

zero mean. Therefore, we draw each bi from the normal distribution N(Zi,a) where 
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0 = E(si)Zi/4 is chosen SO that the probability P[( 1 -a(Zi))Zi < bi < (I +E(Zi))Xi] > 99%. 

The lower and upper bounds are b,: = (1 - E(Zi))g; and br = (1 + a)&. 

For our tests we have defined three error functions, which we call small-noise, 

medium-noise and large-noise. This classification is based on the error allowed in 

the data. In particular, we have EM = * 3%, E, = & 20% for small-noise problems, 

EM = * 5%, E,, = f 30% for medium-noise problems and EM = i 1 O%, a,,, = !E 50% 

for large-noise problems. We used large-noise error for the “real” problems, while 

the “random” problems were generated for all three classes of error. The reason is 

that the “real” problems had on average fewer alleles per marker than the “random”, 

thereby resulting simpler to solve. 

In the tests that follow, we have set the number of solutions p to be found by the 

algorithm to 5. We consider a problem solved if the correct solution is within the 

p solutions returned by the algorithm. If the least-squares solution is indeed the true 

solution, we say that the problem was unbiased. Note that being biased or not is a 

property of the problem and not of the algorithm. The algorithm will always find the 

correct solution for unbiased problems, while for biased problems, there may be wrong 

solutions which achieve better objective function value than the true one. Clearly, this 

depends on the amount of bias in the data, which in turn depends on the experimental 

error. As we remarked at the end of Section 4, the algorithm could be used as a decision 

support system, and the output be interpreted by an expert. If more solutions have a 

very similar value, it may be the case that too much error was introduced and the 

experiment must be redone. However, when the error rate is small, real-life problems 

are unbiased and the algorithm can be trusted to return always the true solution. 

6. I. “Real” problems from CHLC 

We generated a first set of problems by using as much as possible real data for 

our simulations. In particular, we accessed through the web a data base available from 

CHLC 2 (Cooperative Human Linkage Center), which reports many informations about 

real CA-repeat markers and corresponding allele distributions. We will call this data 

base DBl. A typical entry of DBl is shown in Table 1, and contains for each marker 

the frequency with which an individual is heterozygous, the number of alleles, and for 

each allele its size and relative frequency. The data base contains data for 263 markers, 

whose alleles vary in size from 65 to 333 bp. In Table 2 we show the distribution of 

alleles sizes in the data base. The markers in the data base have a minimum of 2 

alleles and a maximum of 18; the average number of alleles is 7.8. The problems were 

generated for k = 5,6,. . . , 10 markers. For each value of k we generated 10 problems in 

the following way. We randomly pick, in uniform way, k markers in the data base. For 

each marker we randomly decide the genotype (i.e. homozygous or heterozygous) with 

a probability given by the published frequency. Finally, we choose, respectively, one 

or two alleles, where the probability of an allele to be chosen is equal to its published 
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Table 1 
A record of the CHLC data base DBI 

Marker: MFD008 initial typing data 
Locus: D8S84 
Map: 8ql3-q21.2 
Accession: M23608 
Accession2: M23386 
Primerno: 027,028 
Hetero: 0.58 
Noalleles: 8 
Allelel: 195 = 0.01 193 = 0.03 191 = 0.07 
Allele2: 187 = 0.27 185 = 0.54 183 = 0.04 
Repsequenc: ACCTGAGTTT (ACj20.5 GTACAGGGTA 
Genol33101: 193,185 
Geno133102: 185,185 
Reference: AM J HUM GEN 44:388-396, 1989 

Table 2 

Total number of alleles for each size. Data from data base DBI 

189 = 0.02 
181 = 0.01 

Allele size 61 81 101 121 141 161 181 201 221 241 261 281 301 321 

to to to to to to to to to to to to to to 

80 100 120 140 160 180 200 220 240 260 280 300 320 340 

No. alleles 58 235 331 356 314 283 210 115 68 28 28 8 2 2 

relative frequency. As far as the stutters are concerned, we used real stutters from some 

actual markers [ 171. All of these stutters have domains of cardinality between 5 and 

9. Of these stutters we had 21. Extra stutters for our problems were obtained by first 

picking uniformly one of the real stutters, and then changing the entries by adding to 

each a random perturbation. 

The error function used was the most difficult, i.e. large-noise. The results for this 

class of problems are shown in Table 3. All the problems were solved to optimality 

(there were no biased problems). For each set of 10 problems, we report average, 

minimum and maximum value of global domain cardinality, number of alleles per 

marker and running time. Further, we indicate the percentage of solved and biased 

problems. The problems turned out to be relatively easy, since the data base contains 

markers whose alleles sizes range within a window of 280 bp and therefore a random 

choice of markers may result in a problem with little overlap. To test the algorithm 

in a more constrained case, we extracted from the original data base DBl two more 

data bases: DB2 consisting of 162 markers all of whose alleles have sizes within 101 

and 200 bp; and DB3, consisting of 89 markers with allele sizes ranging in 101 and 

160 bp. In Table 4 we report a description of the data bases. We generated 60 + 60 

more problems in the same way as before, only that now we used the information 

contained in DB2 (dense problems) and DB3 (very dense problems) to generate the 

data. The results are reported in Tables 5 and 6. Again, all the problems were solved 

and the average running times are smaller than one minute. There were three biased 
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Table 3 

Problems from data base DBI 

No. markers Pert. Pert. Global domain No. alleles Time (s) 

k solved biased cardinality M per marker 

Avg Min Max Avg Min Max *vg Min Max 

5 IO/IO O/IO 60.6 49 73 8.5 4 I3 3.3 2.6 6.2 

6 IO/IO O/IO 73.4 55 85 8.9 4 I6 5.5 3.1 12.7 

7 IOjlO O/IO 75.4 61 85 8.8 4 I5 6.9 3.9 12.7 

8 IO/IO O/IO 79.6 76 84 9.0 6 I3 7.4 6.3 9.3 

9 IO/IO O/IO 86.4 77 95 9.2 4 16 8.8 6.1 I I.3 

IO IOjlO Oil0 93.0 85 95 8.2 3 13 20.4 10.4 37.0 

Table 4 

The data bases used for tests 

Data 

base 

No. markers Range (bp) Avg no. alleles 

per marker 

Min no. alleles 

per marker 

Max no. alleles 

per marker 

DBI 263 65 -333 7.8 2 I8 

DB2 162 101-200 7.9 3 I8 

DB3 89 lOlLI 7.7 3 14 

Table 5 

Problems from data base DB2 

No. markers Pert. Pert. Global domain No. alleles Time (s) 

k solved biased cardinality m per marker 

*vg Min Max Avg Min Max *vg Min Max 

5 IO/IO O/IO 55.6 42 69 8.2 5 13 3.0 2.1 4.3 

6 IO/IO O/IO 64.3 45 82 9.1 5 I9 4.3 3.4 6.7 

7 IO/IO O/IO 64.6 57 77 8.5 4 12 6.7 4.0 10.2 

8 IO/IO O/IO 61.7 52 77 8.5 4 15 10.4 6.6 12.4 

9 IO/IO O/IO 70.0 58 81 8.6 5 I3 21.7 7.5 40.3 

IO IO/IO O/IO 79.2 70 83 8.8 5 I9 26.1 9.5 72.2 

problems. We remind that for biased problems, the best solution was not the true one, 

but the true solution was still retrieved within the p best. By inspection, we noted that 

the number of wrongly called alleles in the solution which achieved the best objective 

value was never larger than two. 

6.2. “Random” problems 

After solving the “real” problems, we decided to generate some new, more difficult 

ones. In particular, difficult problems are obtained when the markers are very similar 

to each other, each marker has a large number of alleles, and they all span a small 

global domain. We created a set of problems with these features, by fixing the number 

of alleles to 15 for each marker and generating the stutters within a global domain of 
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Table 6 

Problems from data base DB3 

No. markers Pert. Pert. Global domain No. alleles Time (s) 

k solved biased cardinality m per marker 

*vg Min Max *vg Min Max *vg Min Max 

5 IO/l0 O/IO 38.0 29 49 8.6 5 13 6.1 3.8 9.8 

6 IO/l0 o/10 48.0 43 51 9.1 5 13 5.2 4.0 6.7 

I lo/lo l/IO 51.8 46 55 8.3 4 13 11.3 5.5 31.4 

8 lo/lo l/l0 44.8 35 55 8.9 4 15 30.4 6.4 85.9 

9 lo/lo l/l0 56.0 48 65 8.5 4 15 32.5 1.7 61.2 

10 lo/lo o/10 51.2 43 59 8.3 4 15 55.1 17.5 91.4 

Table 7 

Random problems on k = 5,6,7 markers, 15 alleles per marker 

No. markers Noise Pert. Pert. Avg no. Global domain Time 

k solved biased wrong cardinality m (min:s) 

alleles *vg Min Max *vg Min Max 

Small 

Medium 

Large 

Small 

Medium 

Large 

Small 

Medium 

Large 

10/o 

IO/l0 

lo/lo 

lo/lo 

lo/lo 

s/10 

lo/lo 

IO/IO 

s/10 

O/l0 0 26.8 23 28 0:49 0:39 1 :oo 

2/10 0.5 25.8 24 28 0:56 0:49 1:06 

2110 0.4 26.6 24 28 I :03 0:55 1:ll 

l/IO 0.4 25.8 24 28 1:45 1:35 1:55 

l/l0 0.2 25.9 24 28 1:57 1:48 2:lO 

5/10 2.2 26.8 25 28 2:33 2:18 2~52 

o/10 0 21.4 26 28 3:19 3:Ol 3:35 

o/10 0 26.5 25 28 3:40 3:22 4:02 

5/10 1.4 25.9 22 28 4:15 3:44 4144 

small cardinality (25 <m <28 on average). As expected, these problems turned out to 

be quite harder, and we considered only k = $6 or 7 markers. For each value of k we 
generated 3 sets of 10 problems each, one set per each error function (small, medium 

and large noise). The stutters were generated in two ways. Again, some were obtained 

by slightly randomly modifying some stutters coming from real data [ 171. Others were 

generated completely at random, by simulating an exponential decay and normalizing 

the result (i.e. all the columns are scaled so that the sum of the entries is a constant. 

This reflects the fact that in the actual experiment a constant amount of DNA is used 

for each marker). 

The results are reported in Table 7. It should be noted that in g cases the algorithm 

found the correct solution and g times this was actually the best in the least-squares 

sense (i.e. the problems were unbiased). For completeness, we also report the average 

number of alleles that are wrongly called by the best solution (i.e. which are in the 

least square solution but not in the correct solution). In all but three instances the 

correct solution was indeed among the two best and hence a smaller value for p could 

have been used, this way speeding up the search process. The running times are in the 
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order of minutes, showing the procedure is effective and could possibly be adopted in 

actual lab experiments. 

7. Conclusions 

In this paper, we focused on a key bottleneck in current genetic analysis: the gel 

electrophoresis readout step in multiplexed length-polymorphic (e.g. CA-repeat) marker 

studies. The authors’ previous work [18] with deconvolution methods for exploiting 

PCR stutter artifact had suggested a novel solution to this bottleneck. Specifically, by 

using each marker’s PCR stutter artifact as a unique signature for that marker, different 

markers corresponding to the same size window could be loaded together onto the gel, 

and then later deconvolved using a computer program. This paper explored branch- 

and-bound and dynamic programming algorithms that could perform this stutter-based 

deconvolution analysis. Our theoretical analysis and computer simulations suggest that 

an order of magnitude improvement in gel throughput may be computationally feasible. 

The ultimate proof of our computational method will be in its efficacy on laboratory 

data. We are currently working with laboratory-based collaborators to develop quantita- 

tive fluorescent data on an Applied Biosystems automated DNA sequencer for stutter- 

multiplexed markers. A key challenge will be handling differential PCR amplification 

of differently sized alleles. Our recent work on software systems for fully automated 

microsatellite genotyping (see FAST-MAP at http : //www. cs . emu. edu/Ngenome/ 

FAST-MAP. html or TrueAlleleTM at http: //www. cybergenetics-inc. corn) suggests 

that precalibration of these differential amplification ratios may suffice. We expect to 

refine the combinatorial optimization algorithms presented here as these algorithms are 

assessed on actual genetic marker data. 
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