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Summary

Dense genetic linkage maps have been constructed for
the human and mouse genomes, with average densities
of 2.9 cM and 0.35 cM, respectively. These genetic maps
are crucial for mapping both Mendelian and complex
traits and are useful in clinical genetic diagnosis. Current
maps are largely comprised of abundant, easily assayed,
and highly polymorphic PCR-based microsatellite mark-
ers, primarily dinucleotide (CA), repeats. One key limi-
tation of these length polymorphisms is the PCR stutter
(or slippage) artifact that introduces additional stutter
bands. With two (or more) closely spaced alleles, the
stutter bands overlap, and it is difficult to accurately
determine the correct alleles; this stutter phenomenon
has all but precluded full automation, since a human
must visually inspect the allele data. We describe here
novel deconvolution methods for accurate genotyping
that mathematically remove PCR stutter artifact from
microsatellite markers. These methods overcome the
manual interpretation bottleneck and thereby enable full
automation of genetic map construction and use. New
functionalities, including the pooling of DNAs and the
pooling of markers, are described that may greatly re-
duce the associated experimentation requirements.

Introduction

Genetic linkage maps are used to map Mendelian or
complex (Ott 1991) traits by first genotyping related
individuals with markers that adequately sample the ge-
nome of interest and then searching for shared chromo-
somal regions that are significant for the hypothesis that
these regions contain causative gene(s). A variety of sta-
tistical methods (Lander and Schork 1994) and com-
puter programs (Lathrop and Lalouel 1988) are used to
carry out these genetic localizations. Genetic maps are
also used in conjunction with physical maps for the posi-
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tional cloning of genes (Kerem et al. 1989; Riordan et
al. 1989), for diagnosing genetic disease (Schwartz et al.
1992) and assessing tumor progression, and for forensic
applications (Jeffreys et al. 1985).

Modern genetic linkage maps (Lander and Botstein
1989) comprising dense informative markers were en-
abled by the development of recombinant DNA technol-
ogy. The early RFLP markers demonstrated the power
of these maps for genetically localizing Mendelian disor-
ders but entailed Southern hybridization assays requir-
ing substantial laboratory effort. With the advent of
PCR (Mullis et al. 1986), short tandem repeat (STR
or “microsatellite’’) marker polymorphisms (Weber and
May 1989) replaced RFLPs as the marker of choice.
Microsatellite markers are extremely abundant
(>100,000 CA-repeat loci), readily identified, highly
polymorphic (hence informative), easily shared (as PCR
sequence information, rather than as laboratory re-
agents), and straightforward to assay via PCR amplifi-
cation and subsequent size (not sequence) determination
with gel electrophoresis. Microsatellite-based genetic
maps have been constructed for the human and mouse
genomes, with average densities of 2.9 cM and 0.35 cM,
respectively (Ott 1991; Dietrich et al. 1994; Gyapay et
al. 1994; Matise et al. 1994).

The original assays for microsatellite genotyping in-
corporated radiolabeled dNTPs into DNA sequences
during PCR amplification and determined fragment
lengths by using standard denaturating sequencing gels
(Weber and May 1989). More recently, fluorescent end-
labeling of one PCR primer (Clemens et al. 1991;
Schwartz et al. 1992) with electrophoresis on automated
DNA sequencers has been used to type larger numbers
of markers simultaneously and to generate quantitative
machine-readable gel files (Schwengel et al. 1994). Some
machine-specific software has been applied to these files
to assist human operators in determining genotypes
(GeneScan/Genotyper for the ABI/373A [Ziegle et al.
1992], ALP for the Pharmacia ALF [Mansfield et al.
1994], and the DuPont Genesis 2000 sequencer [Perlin
et al. 1994]). Newer technologies for DNA size separa-
tion are being developed that are applicable to micro-
satellite genotyping, including ultrathin gel slabs (Kos-
tichka et al. 1992), capillary arrays (Mathies and Huang
1992), and mass spectrometry (Wu et al. 1993).
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Figure | PCR stutter bands arising at microsatellite STR-45 in

the DMD region on chromosome X. a, from a single allele of size 171
bp (homozygote); b, from two closely spaced alleles of sizes 171 and
173 bp (heterozygote) (Perlin et al. 1994). The X axis shows the allele
size (in bp), and the Y axis shows the relative DNA concentrations
produced by the alleles’ stutter bands.

PCR amplification of an STR allele produces a stutter
(or “slippage”) artifact, which generates additional (gen-
erally shorter) DNA fragments. This may be due to
slipped strand mispairing (Hauge and Litt 1993) or
polymerase molecule slippage during replication within
the repeat region of the DNA sequence. Thus, for exam-
ple, a CA-repeat allele of total length 150 bp with a
(CA), internal repeat sequence would generate frag-
ments of size 150 bp, 148 bp, 146 bp, . . ., correspond-
ing to replicated (CA), repeat units of n = 20, 19, 18,

., respectively. The relative concentration of each
stutter fragment generally (though not invariably) de-
creases with fragment size (fig. 1a). When two alleles
are close in size, their stutter bands on the gel overlap
and it becomes more difficult to determine the correct
alleles (fig. 1b). Mild stutter artifact shows a sharp stut-
ter pattern, with most of the PCR product concentrated
in the main allele band, whereas severe artifact shows a
flat stutter pattern, with PCR products distributed
across multiple bands. In general, a larger number of
repetitive units (larger n for (CA), markers) leads to an
increase in both the PIC (i.e., the utility) of the marker
and the severity of the stutter artifact.

Large-scale PCR-based microsatellite genotyping has
been successfully used to map complex genetic traits
(Davies et al. 1994). However, this technology has only
been “semi-automated” (Davies et al. 1994; Reed et al.
1994). The key remaining bottleneck is the allele calling
of microsatellite data: because of PCR stutter artifact,
considerable uncertainty exists when calling either
closely spaced alleles of heterozygote individuals or the
alleles of pooled individuals from a population. Thus,
nearly all laboratories require a human technician to
visually inspect the microsatellite data, with associated
increases in error, cost, time, and tedium.

Several strategies have been applied to overcome PCR
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stutter artifact for genotyping applications. These in-
clude the following: (1) Using microsatellite markers
with fewer repeating units in the alleles (i.e., using (CA),
markers with # small). This approach reduces stutter
artifact by sharpening the stutter but also reduces the
polymorphism and utility of the marker. (2) Modifying
the PCR conditions. This approach works to a point but
generally does not remove the artifact, since the stutter
is intrinsic to the PCR amplification of a repetitive unit.
(3) Shifting from dinucleotide repeat markers to tri- and
tetranucleotide repeat markers. Increasing the repeat
unit size does reduce stutter but requires the develop-
ment of more complex, sparser, and less informative
microsatellite markers. Further, the larger repeat sizes
consume larger size windows (relative to their polymor-
phism) on the gel. (4) Calling the alleles on the basis of
only the highest peaks (Ziegle et al. 1992; Mansfield et
al. 1994) and ignoring the others. This approach suc-
ceeds when the alleles are widely separated. However,
with closely spaced alleles, flat stutter patterns, or uncer-
tain signal measurements, there is too much ambiguity
for accurate allele calling. Moreover, this approach can-
not work when more than two alleles are present, e.g.,
when using template DNA pooled from multiple indi-
viduals.

We have recently developed a novel approach to elimi-
nating PCR stutter artifact. Rather than trying to sup-
press or ignore the artifactual bands, we exploit these
stutter bands to mathematically eliminate PCR stutter
artifact and thus determine the correct alleles (Perlin et
al. 1994). Our approach enables the correct and fully
automated recovery of alleles, both for individual and
pooled DNAs, and can work with any DNA size—based
separation technology. In the present article, we present
our convolution model and deconvolution methods.
Computational results are given for the conventional
single-genotype situation, for more than two alleles (e.g.,
pooled individual experiments), and for a novel “stutter-
based encoding” approach to pooling microsatellite
markers that may significantly reduce experimental re-
quirements. We conclude that the allele-calling bottle-
neck can be overcome using genotyping microsatellites
by deconvolution (GMBD) methods; GMBD may enable
fully automated computer-based application of genetic
linkage maps.

Convolution Model of PCR Stutter

Convolution Model

For a given microsatellite marker assayed under fixed
PCR conditions (including enzyme, cycle times, number
of cycles, template and primer concentrations, and buff-
ers), PCR amplification generates reproducible stutter
patterns for each allele, even when different template
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Figure 2  Action of the allele stutter pattern matrix A against

one allele. The allele is encoded as a 1 in the genotype vector x, and
the convolving matrix A acts to predict the observed PCR amplifier
pattern at that allele by selecting the appropriate column. The response
is a data vector y, which would be observed on gel electrophoresis as
a series of bands. The numbers indicate illustrative allele sizes (in bp).

DNA samples are used (Perlin et al. 1994). Thus, PCR
may literally be thought of as an amplifier. With perfect
fidelity, the DNA fragment corresponding to an allele
would be perfectly reproduced as a single band on a gel.
However, when the PCR amplifier is imperfect (as with
microsatellite markers), a distortion response is intro-
duced, and an allele generates the multiple bands ob-
served on a gel that correspond to the marker allele’s
(reproducible) stutter pattern. It is well known from
electronic signal processing (Papoulis 1977) that the re-
producible responses of an amplifier can be accurately
modeled as a convolution.

The marker’s PCR amplifier responses (i.e., stutter
patterns) of the alleles can be written down in a matrix
A, where each column corresponds to one allele, and
the row entries in each column give the response (i.e.,
stutter pattern) of the PCR amplifier to that allele (fig.
2). A genotype x can be represented by a vector whose
components correspond to allele sizes. If the actual geno-
type x of a haploid DNA sample has one allele, this
allele can then be written as a vector having a 1 entered
in the allele’s size component, and having 0 entered in
all other size components. When the PCR amplifier
(modeled by the matrix A) acts on this allele (modeled
by the vector x), and the DNA products are size sepa-
rated on an electrophoretic gel, the response is a com-
plex stutter pattern modeled by the matrix-vector prod-
uct

y = Ax.

This vector y predicts the relative DNA concentrations
that are present in the PCR product, and observed on
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the gel. (Note that this convolution model is not linear
shift-invariant, since different alleles may contribute dif-
ferent stutter patterns; that is, the columns of A may
differ.)

When the actual genotype x of a diploid DNA sample
is the two alleles x; and x,, the PCR amplifier matrix A
acts on these alleles’ vectors to generate the two response
vectors (stutter patterns) A - x; and A-x; (fig. 3). When
these DNA products are size separated by gel electro-
phoresis, the allele stutter patterns A-x; and A-x, are
combined, and the observed DNA concentrations at
each band is the sum of the contributions from each of
A-x; and A x,. That is, the observed response pattern
is

y=(A"x1) + (A-x3)
= A'(x1 +x2)
=A-x,

where x is the vector sum of the allele vectors x; + x,.

Once the PCR amplification responses (under fixed
PCR conditions) of every allele for a microsatellite
marker are determined, these stutter patterns can be re-
corded as the column vectors of the matrix A. Then,
given any collection of DNA allele concentrations, the
components can be represented by a vector x. (For ex-
ample, the two allele entries of a heterozyogote genotype
would be 1, and all other entries would be 0.) To predict
the observed PCR stutter pattern of DNA concentra-
tions for this marker A with the heterozygote alleles x,
one can apply our convolution model by computing the
matrix-vector product

y = Ax,
INPUT x
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OUTPUT X1 X2
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Figure 3 Action of the allele stutter pattern matrix A against

two alleles. These alleles are encoded as 1s in the genotype vector x,
and the convolving matrix A acts to additively superimpose the se-
lected PCR amplifier patterns of those two alleles. The response pre-
dicts the observed gel data vector y.
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Figure 4 One deconvolution procedure. The stutter pattern ma-
trix A is divided by the observed (input) data vector y to compute a
“best” (output) genotype vector % that fits the data.

where the vector y contains the sum of the different
allele contributions, thereby providing an estimate of
the relative concentrations of DNA that would appear
in the bands on the gel.

GMBD

To mathematically remove PCR stutter artifact from a
genotyping experiment, one wants to compute the actual
alleles x, given the observed gel data y (i.e., DNA sizes
and concentrations) and the predetermined PCR ampli-
fication response matrix A of the marker (fig. 4). This
is done using our convolution model by deconvolving,
i.e., solving the inverse matrix-vector division problem:

x=A\y.

This matrix division can be computed by any number
of common numerical procedures, the most general and
robust being a least-square’s fit, such as a matrix singu-
lar value decomposition (SVD) (Press et al. 1988). These
numerical procedures can be implemented by entering
the unanalyzed stutter data y and the predetermined
stutter responses A into computer files and then using
numerical analysis tools (MatLab, The Mathworks) or
programs written in a general purpose language (Com-
mon LISP, C) to perform the deconvolution. Less general
deconvolution procedures for resolving closely spaced
alleles in related individuals have been described by us
(Perlin et al. 1994).

Deconvolution Methods

Deconvolution algorithms for three types of genotyp-
ing problems are described below.
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The Single-Genotype Problem

Most current microsatellite genotyping centers on the
determination of a single genotype, i.e., the (up to) two
alleles present in one individual’s DNA at one marker.
The first deconvolution algorithm described (Perlin et
al. 1994) for this problem was a statistical moment-
based approach tailored for molecular diagnostics on
the X chromosome rather than a general genotyping
algorithm for use on any chromosome. We developed
and evaluated six algorithms specifically designed for
general genotyping, in the following two categories:

i) Three (linear shift-invariant) algorithms that use a
single PCR stutter pattern vector a that is independent
of allele size

* POLY.—Polynomial divides the stutter vector a by
the data vector y in order to estimate the genotype vec-
tor x.

e FFT.—Fast Fourier transformation deconvolves
the data vector y with the stutter vector a to recover the
genotype vector x. This is done by dividing the FFT of
y by the FFT of a and then recovering the deconvolved
vector x by an inverse FFT.

e WIENER.—FFT method with additional Wiener
filtering (Press et al. 1988) filters out possible noise from
the observed data. A data-derived noise filter is used,
assuming that noise arises from low-power inteference
and does not exceed 15% of the observed data. (|®(f)|
= min(s,, .15-S,), where s, and S, are, respectively,
the minimum and maximum values of the data’s power
spectrum.)

ii) Three algorithms that use a marker’s allele size—de-
pendent PCR stutter patterns, recorded in a matrix A

e SVD.—SVD inverts the stutter matrix A and ap-
plies this matrix inverse to the data vector y, thereby
recovering the genotype vector x.

e GAUSS.—A Gaussian elimination procedure start-
ing from the rightmost peak (largest allele size) succes-
sively subtracts off each allele’s stutter pattern. This pro-
cedure provides a robust mechanism for inverting the
allele stutter matrix A and applying it to the data vec-
tor y.

e ENUM.—Direct enumeration (exhaustive search)
of all feasible genotypes x looks for the least error be-
tween the observed data vector y and the estimated vec-
tor Ax.

The three algorithms SVD, GAUSS, and ENUM are
specifically designed to accommodate stutter patterns
that vary with allele size and would be expected to per-
form best on actual data. The algorithms POLY, FFT,
and WIENER are more conventional signal-processing
algorithms that assume (usually incorrectly) that the
stutter pattern does not vary with allele size. The algo-
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rithms currently used in commercial genotyping soft-
ware make no constructive use of stutter information.

Pooled DNAs for Population Studies

For some applications, it can be useful to pool to-
gether individual DNAs for PCR and/or gel readout. For
example, the allele frequencies for each marker of the
population under study are often valuable in linkage
analysis (Kruglyak et al. 1995). As another example,
when a founder effect is present in an ethnically homoge-
neous population, individuals expressing a genetic trait
may be presumed (with high confidence) to share by
descent a common chromosomal region containing the
causative gene. Since meiotic events tend to retain flank-
ing chromosomal regions in direct relation to the prox-
imity of the gene (Feingold et al. 1993; Kobayashi et
al. 1995), a loss of allelic heterozygosity (or linkage
disequilibrium) in the gene region can localize the trait
on a genetic map. Sufficiently dense chromosomewide
or genomewide genotyping with microsatellites on pools
of affected individuals can gather data for performing
this localization. It is significant that the required num-
ber of laboratory experiments can be reduced in direct
proportion to the size of the pools (e.g., 100-fold, with
pools of 100 individuals). However, PCR stutter artifact
has thus far precluded such quantitative pooled popula-
tion PCR-based genotyping studies.

When our matrix convolution model is applied, the
problem is modeled as

y=2A'xi)

where each individual’s genotype vector contributes a
partial stutter vector A + x;,. When rewritten as

-afg)

one can combine the data vector y with the stutter ma-
trix A to recover the pooled allele frequency vector
Zi Xi.

We have developed six deconvolution algorithms that
can solve this genotyping problem. The first five algo-
rithms (SVD, GAUSS, POLY, FFT, and WIENER) were
described above and exploit the linearity property of
convolution models that allows integer combinations of
alleles. When no use is made of PCR stutter information,
genotyping of dinucleotide repeat markers is not feasible
on pooled data by either visual inspection or computer
analysis. Direct enumeration (ENUM) is too computa-
tionally prohibitive for practical use with large pools.
A sixth algorithm is SEARCH. An initial solution is
computed using the allele size-dependent SVD or
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GAUSS algorithms. A local hill-climbing search proce-
dure (Rich and Knight 1991) is then applied to find a
better solution using a statistical model, such as least-
squared deviation between predicted and observed allele
distributions.

Pooled Markers Using Stutter-Based Encoding

To increase laboratory throughput, PCR products
from different microsatellite markers can be pooled to-
gether prior to the rate-limiting gel readout step (Reed
et al. 1994). With current genotyping analysis methods,
at most one marker may appear in any detectable allele
size range. This is because a polymorphic STR marker
can take on a wide range of possible allele size values,
the artifactual PCR stutter bands further extend this
range, and the marker pooling organization must ensure
that the bands of one marker do not overlap greatly
with the bands of another. This requirement for disjoint
size ranges imposes several interacting constraints on
size-based microsatellite pooling strategies (Reed et al.
1994):

Limited pooling—To ensure nonoverlapping allele sizes,
only a limited number of markers can be pooled in any
lane on the gel. The pooling is reduced even further
when tri- or tetranucleotide repeat markers are used.

Reduced informativeness.—To allow as many markers as
possible in one lane, the size range allocated to each
marker should be as small as possible. But since PIC is
directly related to the number of possible alleles, select-
ing microsatellites with small allele size ranges is (by
definition) reducing the informativeness of each marker.

Reduced modularity—A given microsatellite generally
does not easily replace another marker in a preexisting
pooled set, since its allele size characteristics are fairly
unique. Thus, it is not practical to design modular sets
that allow diverse markers, particularly microsatellites
customized to particular applications.

It is interesting that our deconvolution approach can
exploit PCR stutter patterns to eliminate these con-
straints entirely, overcome the current limitations on mi-
crosatellite pooling, and thereby increase throughput.

A microsatellite’s PCR stutter pattern is generally
viewed as an artifact that needs to be eliminated or
suppressed. The alternative view taken here is that stut-
ter provides a useful encoding of the marker. The idea
is that if the stutter patterns from two or more microsa-
tellite markers are superimposed, then they can be sepa-
rated into their component markers on the basis of their
unique stutter pattern signatures. In the decoding pro-
cess, the alleles are determined. The effect is to enable
the pooling of markers whose allele size ranges overlap,
and thus eliminate the usual constraints on nonoverlap-
ping allele size ranges.
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With our matrix convolution model, each microsatel-
lite marker j contributes a stutter matrix A;. The cumula-
tive effect of each marker’s genotype vector x; is the data
vector

y=2 Ajx;. (1)
]
By combining the observed data vector y together with
the predetermined stutter matrices A;, one can decon-
volve to recover the marker allele vectors x;.

Enumerating all combinations of candidate allele so-
lutions {x;} and calculating each candidate’s deviation
(e.g., least squared) from the measured data vector y
determines the correct alleles for multiple markers. This
is computationally tractable. For a microsatellite with #
candidate alleles, the number of candidate diploid solu-
tions is #%. Since # is generally <20 (even for extremely
informative CA-repeat markers), #* is <400. With k-
fold pooling of size-overlapping markers, the total num-
ber of integer candidate vectors to explore is #**. For
example, with » = 20 and k& = 3, this set has size
64,000,000. Such sets are amenable to direct enumera-
tive search.

For practical k-fold pooling of size-overlapping mark-
ers when k = 3, we developed dynamic programming
methods using branch-and-bound techniques (Papadi-
mitriou and Steiglitz 1983) that considerably reduce the
required search effort. The key idea is that virtually all
the “feasible,” but incorrect, solutions have (least
squared) error deviation values that eliminate them as
candidates in a branch-and-bound search. Thus, rapid
pruning of the search space is possible, and a set of best
candidate solutions can be maintained.

Specifically, each node in the branch-and-bound
search either fixes an allele or excludes some alleles, and
makes these decisions for multiple markers simultane-
ously. Starting from the largest allele size observed in
the pooled marker data, the first component of vector
equation (1) is solved to determine which markers could
contribute combined alleles that account for the data,
within some error tolerance. This monodimensional
subproblem is computationally hard but is solved effec-
tively with a dynamic programming approach that ex-
ploits the finite width of stutter patterns. Successive
monodimensional subproblems are solved for decreas-
ing allele sizes, each subproblem constrained by the re-
sults of the preceding subproblems. These combinatorial
algorithms were implemented in the C++ programming
language on a UNIX workstation.

Additional Material and Methods
Data Sources

Fluorescently labeled microsatellite marker data that
can accurately quantitate DNA fragment sizes and con-
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centrations were collected from automated DNA se-
quencers for testing the deconvolution algorithms. Gel
data on dinucleotide-repeat markers was provided by
Pharmacia Biotech as detected on their ALF system
(Alastair Brown, personal communication) in electro-
pherogram file format and as bands quantitated by their
Fragment Manager software for DNA size and concen-
tration. Millennium Pharmaceuticals provided ABV
373A gel image collection files (Jeffrey Thomas, per-
sonal communication) that we analyzed for DNA frag-
ment size and concentration. These data were used in
the testing, evaluation, and refinement of the algorithms.

Stutter Library Construction

To apply the deconvolution methods to an actual mi-
crosatellite marker of interest, the stutter pattern over
a range of allele sizes must first be determined. This
determination is redone whenever the marker’s PCR
conditions (hence, stutter patterns) are changed. The
allele-size dependent PCR stutter patterns correspond to
the columns of matrix A; the task is to determine this
matrix A. Since y = Ax, from a known set of (column)
reference genotype vectors X used to probe A, a corre-
sponding set of experimentally observed data (column)
vectors Y can be generated. Note that each set of column
vectors (i.e., X and Y) is a matrix. This extends the
stutter pattern matrix relation to

Y = AX,

where Y, A, and X are matrices. By matrix division (i.e.,
numerical solution using least-square minimization) of
the under- or overdetermined linear system, the relation

A=Y/X

allows the determination of the stutter pattern matrix
A. Each probing column vector in X can be constructed
from one individual (i.e., a known allele pair), or, more
efficiently, from a pool of previously genotyped DNAs.
The matrix division can be performed in MatLab.

Data Simulator

We constructed a software program in Common LISP
for generating simulated microsatellite markers and
data. Each simulated marker was a dinucleotide repeat
with fragment sizes ranging from 100 bp to 200 bp,
having from 10 to 25 normally distributed alleles and
an associated simulated stutter matrix A. The number
of stutter bands in each allele’s pattern was a variable
that could be preset for any marker and was typically
varied from 3 to 12 bands. Each column of A corres-
ponded to an allele’s real-valued stutter pattern vector,
with an approximate exponential decay rate inversely
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proportional to allele size; columns were normalized to
sum to unity. The simulator was used to generate a
library of 150 simulated microsatellite markers, includ-
ing each marker’s stutter matrix and allele distribution.

For a given simulated marker, random observed data
vectors were constructed from the marker’s stutter ma-
trix A and allele frequencies. This was done by randomly
generating a genotype vector x with alleles drawn from a
marker’s allele frequencies, and then setting the random
observed data vector y equal to the convolution product
Ax plus an additional noise component (see Noise Mod-
els, below).

Noise Models

Our model of noise consisted of two components: (1)
N, for random background noise, and (2) N, for scaled
normally distributed measurement error. Given a clean
measured value x and a preset noise level of k%, the
total simulated noise reading was the sum Ny, + Np(x).

The first component N, was modeled as a uniformly
distributed random variable with support on the interval
[=Xmins +Xminl, Where xmi, was the minimum measured
value in the simulation. The second component N,,, was
modeled as a function of the clean measured value x,
where N,(x) was normally distributed, with zero mean
and the variance scaled relative to x such that

Prob(—k < N,,(x)/x < +k) > 0.99,

where k was the given percentage noise level. This scal-
ing provided a measurement error that was normally
distributed and that was within the preset noise level
with high probability.

Gel Image Analysis

To quantitatively analyze ABI gel image files, we devel-
oped software in MatLab that accurately determines
DNA sizes and concentrations of the bands on the gel.
Closely spaced molecular weight (MW) markers (20 bp
ladder, Bioventures) fluorescently labeled with TAMRA
were loaded in each lane together with the PCR products
of the microsatellite markers. The fully automated image
analysis of the resulting ABI gel image file began by using
these MW size markers to construct a mapping between
the expected (lane,bp) coordinates and the observed gel
image coordinates. The MW marker data was also used
to model the peak shape of bands on the gel. For every
lane found by the coordinate mapping function, a one-
dimensional electropherogram trace was constructed. At
every expected base pair location in the lane, the DNA
concentration of a detectable band was determined by
applying the model peak shape to the electropherogram
data. These quantitated (lane,bp) events were recorded
for subsequent deconvolution analysis.
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Results

Genotyping by Deconvolution: Pharmacia Sequencer Data

PCR fragment products of microsatellite marker
D11S527 for 39 individuals from 10 families were size
separated and detected in separate lanes of a Pharmacia
A.L.F. DNA sequencer. From this data, 23 lanes were
identified for which the Fragment Manager quantitation
was moderately reliable, showing at least one stutter
band per allele and no detector saturation (or other)
artifacts. Of these 23 moderately reliable lanes, a subset
of 13 highly reliable lanes was identified, showing ade-
quate signal heights, with little or no baseline error.
Lane, fragment size (bp), and peak area (DNA concen-
tration) information from the data table produced by
Fragment Manager analysis was used, with size (bp)
adjusted to evenly spaced integer values. The true geno-
types (evident by human visual analysis on this data set)
were recorded.

Restricting attention to the 13 highly reliable lanes,
we constructed the two calibration tables X, and Y,
where X, was the 0-1 matrix of true genotype column
vectors and Y, was the matrix of observed DNA concen-
tration column vectors, with each column of Y, renor-
malized to sum to 2 (i.e., two alleles present). We then
computed D115527’s stutter matrix A using X, and Y,
(see Stutter Library Construction above, under Addi-
tional Material and Methods). Missing columns of A
were inferred by linear interpolation from neighboring
columns.

For the entire set of 23 moderately reliable lanes, we
constructed the 0-1 matrix of true genotype column vec-
tors X (a superset of X,), and the matrix of observed
DNA concentration column vectors Y (a superset of Yy).
We performed the MatLab matrix left division opera-
tion “A\Y” on the previously computed stutter matrix
A and the observed data matrix Y to obtain an estimated
genotype matrix X. The columns of X corresponded to
the columns of Y but had the PCR stutter artifact re-
moved by deconvolution. The automated allele calling
was 100% accurate on the data set analyzed. Without
deconvolution, much of the relative distribution of the
bands (28%) is spread out over incorrect alleles; how-
ever, with deconvolution, virtually all the distribution
(>95%) is located in the bands of the two correct alleles
(fig. 5, table 1). This recentering effect relative to the
true genotypes X was shown to hold for all the observed
data Y and the deconvolved genotypes X (table 1) and
can greatly facilitate the unambiguous determination (by
human or machine) of the alleles (fig. 5).

Single-Genotype Deconvolution: Simulated Data

We generated 300 random single genotype (i.e., two
allele) vectors for markers randomly selected from the set



1206

Table |

Twenty-three Lanes of Pharmacia Data Genotyped
by Deconvolution Using MatLab Matrix Division

Without With
Lane Deconvolution®  Deconvolution®  Allele 1 Allele 2
.699 950 148 158
.696 1.000 154 162
671 1.000 148 162
744 967 152 156
731 961 152 156
.764 960 156 158
632 .815 156 156
.761 968 162 164
.669 .876 156 164
665 .885 156 164
.687 1.000 152 162
719 905 156 160
747 992 156 162
751 .786 156 162
.786 .890 152 158
771 .960 148 152
.792 .980 148 152
.798 981 148 152
.668 928 152 162
.660 1.000 152 164
610 .890 152 164
767 1.000 144 156
.784 976 156 158

NOTE.—For every lane, the fraction of band distribution that is
centered on the correct two alleles (X) is shown both with (X) and
without (Y) deconvolution analysis.

* Mean = .7205; and SD = .0551.

®Mean = .9511; and SD = .0509.

of 150 markers in the simulated marker library. The num-
ber of bands produced from the allele and its stutter arti-
fact was set to 5 or 10. From each known genotype x, a
data vector y was developed by adding the stutter convolu-
tion Ax to noise vectors at 0% and 10% noise levels (see
Data Simulator above, under Additional Material and
Methods), since measurement errors for fluorescent data
peaks from single genotypes are generally much less than
10%. Comparisons were then made between our single-
genotype deconvolution algorithms, which estimated x
from these generated data sets. For each individual, we
compared the number of mismatches between the esti-
mated and known genotypes, and then computed the aver-
age number of mismatches per deconvolution for each
algorithm. With moderate stuttering (5 bands per allele)
or severe stuttering (10 bands per allele), all the deconvolu-
tion algorithms showed no mismatches, and all were effec-
tive in removing the stutter artifact and correctly calling
alleles, at all noise levels studied.

All the algorithms were effective in recentering most
of the allele distribution back onto the two correct alleles

Am. |. Hum. Genet. 57:1199-1210, 1995

(table 2). The allele-dependent deconvolution algo-
rithms were more effective than allele-independent sig-
nal processing algorithms, particularly in the presence of
severe stutter. The least effective algorithm was Wiener
filtering, most likely due to inexact modeling of observed
noise. The most effective algorithm was complete enu-
meration, which works by recentering the stutter bands
to the best alleles.

Single-Genotype Deconvolution: ABI Sequencer Data

Separate PCR amplifications were performed for eight
microsatellite markers on each of 32 individuals. For
each individual, the amplified products of these markers
(labeled in the FAM, TET, and HEX fluorescent dyes)
were added to MW markers labeled in the TAMRA
fluorescent dye (20 bp ladder, Bioventures), with size
separation and detection then performed on an ABI/373
sequencer. The starting point for our analysis was the
ABI gel image file (Jeffrey Thomas, personal communi-
cation).

The five markers (d10s186, d11s1347, d16s499,
d17s802, and d22s281) that were free of ABI bleed-
through artifacts and multiple polymorphisms were se-
lected for deconvolution analysis. The bands on the gel
were quantitated for DNA size (in bp) and relative DNA
concentration using our fully automated image analysis
software (see Additional Material and Methods). One

; -
0.8
<
- 0.6
=X
2
< 04
L
0.2
0
fragment size (bp)
Figure 5 Effect of deconvolution in removing PCR stutter arti-

fact for alleles differing by 2 bp, corresponding to lane 15 in the
Pharmacia data for microsatellite marker D11S527. Shown are the
allele distribution of the uncorrected data y without deconvolution
(blackened bars), and the distribution of the corrected data X with
deconvolution (unblackened bars). The allele distributions are normal-
ized to sum to 2, i.e., the number of alleles present. Note that the
distribution corrected by deconvolution is largely (96%) centered on
the correct two alleles x.
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Table 2

The Fraction of Allele Distribution Centered on the Correct
Genotype, Determined for Six Single-Genotype Deconvolution
Algorithms

NOISE
0% 10%
Mean SD Mean SD
Moderate stutter®:

635 .084 635 .086

991 .012 950 .035

990 .013 .948 .036

959 .037 .920 .061
1.000 .000 955 .033
1.000 .000 981 .023
1.000 .000 1.000 .000

468 .093 469 .093

977 .023 921 .042

977 .023 919 .043

.896 102 .852 .110
1.000 .000 938 .034
1.000 .000 979 .026
1.000 .000 1.000 .000

NOTE.—Simulation studies were conducted with 300 genotypes of
closely spaced alleles that were separated by 0-3 (equally weighted
cases) dinucleotide repeat units.

2 Five bands.

® Input data, uncorrected by deconvolution.

¢ Ten bands.

quarter of the data (lanes 25-32) were used to automati-
cally construct the stutter library for each marker (Addi-
tional Material and Methods).

Deconvolution analysis for fully automated allele call-
ing was performed on each of the five microsatellite
markers for all 32 individuals using the marker’s com-
puted stutter library. Our two allele-dependent deconvo-
lution algorithms SVD and ENUM were applied, since
our simulation studies had indicated that these would
be the most effective methods. With both algorithms,
100% of the 320 alleles were correctly called, relative
to manual scoring. SVD was highly effective in recenter-
ing the allele distribution, while ENUM was constrained
to find the two (correct) alleles.

Pooled DNA Genotyping by Deconvolution

We generated 300 pooled genotypes for markers ran-
domly selected from the simulation library. Each pooled
genotype comprised 100 alleles (50 individuals, each with
2 alleles) drawn from the marker’s allele frequency distribu-
tion. Three hundred noiseless data vectors were constructed
by matrix convolution (i.e., ¥ = Ax) of a marker’s stutter
matrix A with its pooled genotype vector x. The number
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of bands produced from the allele and its stutter artifact
ranged from 3 to 12 bands. Noise was then added to these
data vectors at 0%, 5%, 10%, and 15% levels (see Addi-
tional Material and Methods). For each of the 300 pooled
genotypes, we estimated the allele distribution vector x by
using our pooled DNA deconvolution algorithms. The aver-
age mean squared errors between the estimated and known
allele distribution vectors were then determined for our
pooled DNA deconvolution algorithms (table 3).

With both moderate § band stutter (table 3), and se-
vere 10 band stutter (table 3), the deconvolution algo-
rithms that permitted allele-dependent variation in the
stutter pattern (SVD, GAUSS, SEARCH) showed, on
average, less error by a factor of 10 than those deconvo-
lution algorithms that assumed a constant stutter pattern
(POLY, FFT, and WIENER). With an average mean
squared error of <.10 for even severe stutter at the 5%—
15% noise levels, these allele-dependent deconvolution
algorithms could prove acceptable candidates for de-
termining allele frequencies in a population.

Pooled Marker Genotyping by Deconvolution

Simulated pooled marker data were generated for k
= §, 6, and 7 dinucleotide-repeat markers using 15 pos-
sible alleles per marker. For each value of k, three sets
of five problems were generated. Each set corresponded
to the maximum relative error allowed in the simulated
data, with low (N, = .03, N, = .2), medium (N,

Table 3

The Average Mean Squared Errors for Pooled DNA
Deconvolution Algorithms on Simulated Data

NOISE
0% 5% 10% 15%
Moderate stutter?:
.362 .387 374 437
192 203 221 276
192 202 220 274
.000 .029 .058 .093
.000 .031 .065 101
.000 .021 .048 .079
POLY ....ccceennee .650 .662 .688 736
492 518 538 582
492 515 .543 .589
.000 .033 .081 125
.000 .033 .084 .138
.000 .025 071 116

NOTE.—Three hundred simulated pools of 50 genotypes (50 X 2
alleles) were constructed using markers containing from 10 to 25
alleles (normally distributed).

? Five bands.

b Ten bands.



1208

= .05, Ny = 0.3), and high (N,, = .10, N, = .5) errors
introduced (see Noise Models above, under Additional
Material and Methods). For each noise level, microsatel-
lite stutter was generated having six bands per stutter
pattern (see Data Simulator above, under Additional
Material and Methods). The branch-and-bound algo-
rithm was set to retrieve the five best solutions. In 43
of 45 cases, the correct genotype was found; in 36 cases,
this solution minimized the least-squared error. In both
cases where no correct genotype was found, the simu-
lated data had a high maximum relative error. This re-
sult suggests that the pooled marker approach may
prove workable in the more typical (e.g., fluorescently
labeled) situation where the signal-to-noise ratio is ade-
quate.

With k£ = 5 pooled markers, the size of the solution
space was 5.7 X 10! possible genotypes, and the aver-
age execution time of the combinatorial algorithm was
1 min. With k& = 6 pooled markers, the solution space
size contained 1.3 X 10'* genotypes, and the execution
time averaged 2.5 min. With k& = 7 pooled markers,
solution space contained 3.0 X 10'¢ genotypes, and the
run time averaged 4 min. These results highlight the
practical advantages of combinatorial search procedures
(e.g., branch-and-bound and dynamic programming)
relative to brute force enumeration when computing ge-
notypes with pooled markers.

Discussion

The ability to accurately determine the alleles of mi-
crosatellite markers would overcome the key bottleneck
currently precluding fully automated genotyping. The
presence of PCR stutter artifact in dinucleotide repeat
data has led to alternative approaches such as tri- and
tetranucleotide markers and the use of pedigree informa-
tion for consistency checking. However, the unbiased
use of the very abundant, highly polymorphic, exten-
sively mapped, and easily constructed dinucleotide re-
peat markers remains a highly desirable goal for effective
localization of genetic traits.

Building on our previous work (Perlin et al. 1994), in
this article we developed a convolution model for PCR
stutter artifact and an associated set of deconvolution
methods that can mathematically eliminate this artifact.
The reproducible PCR stutter patterns of each micro-
satellite marker can be measured and then applied as
calibration data to remove stutter from new data. Our
deconvolution methods were extensively compared on
realistic simulation data, and initial testing was entirely
successful on data collected from automated DNA se-
quencers. The most effective algorithms used stutter pat-
terns that depended on each allele of a marker, rather
than assuming an invariant pattern for all alleles. Fur-
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ther improvements to the models, methods, and results
may be possible by applying more refined statistical (e.g.,
mixture) models (Devlin et al. 1991).

We have used our allele-calling methods to eliminate
“4+A” artifact from microsatellite data. This artifact
adds to the usual PCR stutter pattern a companion pat-
tern of variable height that is shifted by 1 bp. Intense
+A artifact can confound simple allele-calling methods
based on peak height, since it produces two peaks of
maximum height spaced 1 bp apart. Our approach was
to use robust gel image quantitation software to deter-
mine highly accurate DNA concentrations at 1 bp inter-
vals. The artifactual +A bands were then mathemati-
cally excised from the electropherogram trace. Our usual
deconvolution analysis could then be performed on this
adjusted data to correctly call alleles.

Our deconvolution methods were applied in three sit-
uations. (1) Single-genotype analysis is the conventional
approach to high-throughput genotyping (Reed et al.
1994), where each unique size region of a gel contains
at most two alleles. Considerable effort is currently ex-
pended in calling closely spaced alleles, even when using
automated fluorescence-based DNA sequencers. We
showed on Pharmacia, ABI, and simulated data how our
deconvolution algorithms would be effective in reducing
this effort. (2) Pooled DNA genotype analysis would be
highly useful for population studies, including determin-
ing allele frequency distributions, and mapping methods
based on allelic variation. We showed on simulated data
how our deconvolution algorithms could be used to de-
termine such frequency distributions. (3) Pooling mark-
ers having overlapping size windows would be highly
desirable for increased throughput but is not possible
with current analysis methods. However, by exploiting
PCR stutter artifact, a set of markers can be selected so
that each marker’s stutter pattern serves as a unique
identifying signature, even when the size windows over-
lap. We showed on simulated data how a demultiplexing
analysis could accurately infer genotypes from such
pooled marker data, and we assessed highly optimized
algorithms for this approach.

Our deconvolution-based genotype studies entail a
change in how gel electrophoresis data is viewed. For
most molecular biology applications, gel fragment data
is understood as discrete all-or-none results that provide
qualitative information. In our genotyping convolution
models, however, the data signals are necessarily viewed
as a sequence of continuous, real-valued quantities. This
new perspective changes the relative importance of cer-
tain experimental parameters. The measured real-valued
quantities (range values of signal) correspond to DNA
concentrations, which are accurately quantitated with
little noise as electropherogram peak areas in fluorescent
detection experiments. However, current automated
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DNA sequencer genotyping protocols are not yet opti-
mized for highly accurate determination of fragment size
(domain values of signal). This determination can be
accomplished by using more closely spaced MW size
standards, including partial DNA sequencing ladders,
genetic markers for individuals of known genotype, en-
zymatic cleavage of reference molecules, or chemical
modification and cleavage of synthesized polymers. Our
results suggest that accurate measurement of DNA sizes
and concentrations as real-valued data signals will en-
able the effective use of our deconvolution methods.

By providing greater accuracy and throughput,
GMBD may improve the application of microsatellite
marker data to genetic localization. For single-genotype
applications, this would result primarily in reduced error
and cost. With pooled DNA genotyping, deconvolution
methods would reduce by one to two orders of magni-
tude the number of experiments required in population
studies. A qualitative change in the resolution and analy-
sis of genetic studies could result from the novel pooled
stutter-encoded marker techniques described here. For
example, with 24 lanes, 4 microsatellites per lane, and
3 fluorescent data planes, a typical ABI gel can assay
roughly 300 microsatellite markers per individual, i.e.,
10 cM genomic resolution. By pooling markers on the
basis of PCR stutter, a fivefold improvement could assay
1,500 markers, thereby obtaining 2 cM resolution in a
single readout experiment.
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