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Summary Introduction

Human genetic maps have made quantum leaps in the past
few years, because of the characterization of >2,000 CA
dinucleotide repeat loci: these PCR-based markers offer
extraordinarily high PIC, and within the next year their
density is expected to reach intervals of a few centimor-
gans per marker. These new genetic maps open new ave-
nues for disease gene research, including large-scale geno-
typing for both simple and complex disease loci. How-
ever, the allele patterns of many dinucleotide repeat loci
can be complex and difficult to interpret, with genotyping
errors a recognized problem. Furthermore, the possibility
of genotyping individuals at hundreds or thousands of
polymorphic loci requires improvements in data handling
and analysis. The automation of genotyping and analysis
of computer-derived haplotypes would remove many of
the barriers preventing optimal use of dense and informa-
tive dinucleotide genetic maps. Toward this end, we have
automated the allele identification, genotyping, phase de-
terminations, and inheritance consistency checks gener-
ated by four CA repeats within the 2.5-Mbp, 10-cM X-
linked dystrophin gene, using fluorescein-labeled multi-
plexed PCR products analyzed on automated sequencers.
The described algorithms can deconvolute and resolve
closely spaced alleles, despite interfering stutter noise; set
phase in females; propagate the phase through the family;
and identify recombination events. We show the imple-
mentation of these algorithms for the completely auto-
mated interpretation of allele data and risk assessment for
five Duchenne/Becker muscular dystrophy families. The
described approach can be scaled up to perform genome-
based analyses with hundreds or thousands of CA-repeat
loci, using multiple fluorophors on automated sequencers.
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A primary goal of the NIH/DOE Human Genome Project
during its initial 5-year phase of operation was to develop
a genetic map of humans, with markers spaced 2-5 cM
apart (Hoffman 1994). This task has already been largely
accomplished in half the time anticipated, with markers
that are far more informative than originally hoped for
(Weissenbach et al. 1992). In these new genetic maps,
RFLP loci have been entirely replaced by CA-repeat loci
(dinucleotide repeats) (Weber and May 1989). One of the
advantages of CA-repeat loci is their high density in the
genome, with approximately 1 informative CA repeat ev-
ery 50,000 bp: this permits a theoretical density of '20/
cM. Another advantage of CA-repeat polymorphisms is
their informativeness, with most loci in common use hav-
ing PIC values of >.70 (Weissenbach et al. 1992). Finally,
these markers are PCR based, permitting rapid genotyping
using minute quantities of input genomic DNA. Taken to-
gether, these advantages have facilitated linkage studies by
orders of magnitude: a single full-time scientist can cover
the entire genome at a 10-cM resolution and can map a
disease gene in an autosomal dominant disease family in

1 year (Stephan et al., in press).
The CA-repeat-based genetic maps are not without dis-

advantages. First, alleles are detected by size differences in
PCR products, which often differ by as little as 2 bp in a
300-bp PCR product. Thus, these alleles must be distin-
guished using high-resolution sequencing gels, which are
more labor intensive and technically demanding to use
than most other electrophoresis systems. Second, CA-re-
peat loci often show secondary "stutter"' or "shadow"
bands in addition to the band corresponding to the pri-
mary allele, thereby complicating allele interpretation (fig.
1). These stutter bands may be due either to errors in Taq
polymerase replication during PCR or to secondary struc-
ture in PCR products. Allele interpretation is further com-
plicated by the differential mobility of the two comple-
mentary DNA strands of the PCR products when both are
labeled. Finally, sequencing gels often show inconsisten-
cies in mobility of DNA fragments, making it difficult to
compare alleles of individuals, between gels and often
within a single gel. The most common experimental ap-
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Figure I PMT voltage-vs.-time data used for input into automated genotyping. Shown is a BMD family (top), with representative lane data
from the automated sequencer (bottom). Multiplex fluorescent CA-repeat analysis was done as described elsewhere (Schwartz et al. 1992). The time
windows corresponding to each of four dinucleotide repeat loci are shown above the data traces. The four dystrophin gene CA-repeat loci show the
full range of different patterns observed with most CA repeats: 3YCA shows very clean, distinct alleles but is not very informative, whereas STR-49 and
STR-45 show complex patterns of six or seven peaks for each allele. (Reprinted from Schwartz et al. 1992, with permission)

proach used for typing CA-repeat alleles involves incorpo-

ration of radioactive nucleotide precursors into both
strands of the PCR product. The combined consequence

of stutter peaks and visualization of both strands of alleles
differing by 2 bp often leads to considerable noise on the

resulting autoradiograph signals, which then requires care-

ful subjective interpretation by an experienced scientist, in
order to determine the true underlying two alleles. Tri-
and tetranucleotide repeat loci show substantially cleaner
signals; however, they do not occur as frequently in the
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genome, and maps based on these markers have not
reached the density of dinucleotide repeats.
A corollary of highly dense and informative genetic

maps is the need to accurately acquire, analyze, and store
large volumes of data on each individual or family studied.
For example, a genomewide linkage analysis on a 30-mem-
ber pedigree at 10-cM resolution would generate data for
-30,000 alleles, with many markers showing >5 alleles.
Currently, alleles are visually interpreted and then man-
ually entered into spreadsheets for analysis and storage.
This approach requires a large amount of time and effort
and introduces the high likelihood of human error. More-
over, future studies of complex multifactorial disease loci
will probably require large-scale genotyping on hundreds
or thousands of individuals. Each of these features sug-
gests that automation of genotype data generation, acqui-
sition, interpretation, and storage is required to fully uti-
lize the developing genetic maps. Some effort has been
made to assist in allele identification and data storage (ABI
Genotyper software); however, this software still requires
substantial user interaction to place manually assigned al-
leles into a spreadsheet, and it is unable either to decon-
volve (and hence cannot accurately genotype) closely
spaced alleles or to perform other needed analyses.
The Duchenne/Becker muscular dystrophy (DMD/

BMD) gene locus (dystrophin gene) (Monaco et al. 1986;
Koenig et al. 1987) provides an experimental system in
which to test the feasibility of automation of genetic anal-
ysis. The dystrophin gene can be considered a minige-
nome: it is by far the largest gene (2.5 Mbp) known to date;
it has a high intragenic recombination rate (10 cM, i.e.,
10% recombination between the 5' and 3' ends of the
gene); and it has a considerable spontaneous mutation rate
(10-' meioses). Mutation of the dystrophin gene results in
one of the most common human lethal genetic diseases,
and the lack of therapies for DMD demands that molecu-
lar diagnostics be optimized. The gene is very well charac-
terized, with both precise genetic maps (Oudet et al. 1990)
and physical maps (Burmeister et al. 1988). Finally, approx-
imately one dozen CA-repeat loci distributed throughout
the dystrophin gene have been isolated and characterized
(Beggs and Kunkel 1990; Oudet et al. 1990; Clemens et al.
1991; Feener et al. 1991).
We have recently shown that many of the problems with

interpretation of dystrophin gene CA-repeat allele data
can be overcome by multiplex fluorescent PCR and data
acquisition on automated sequencers (Schwartz et al.
1992). This approach uses fluorescently labeled PCR prim-
ers to simultaneously amplify four CA-repeat loci in a sin-
gle reaction. By visualizing only a single strand of the PCR
product, and by reducing the cycle number, we were able
to eliminate much of the noise associated with these CA-
repeat loci. Moreover, the production of fluorescent
multiplex reaction kits provides a standard source of rea-
gents, which, in our hands, have not deteriorated 3 years
after the fluorescent labeling reactions were performed. In

our previous report, alleles were manually interpreted
from the automated sequencer traces (fig. 1) (Schwartz et
al. 1992).

Here we report successful efforts to automate data ac-
quisition and interpretation. We have designed and imple-
mented computer software that successfully identified
each of the dystrophin gene alleles in pedigree members;
deconvolved complex "stuttered" alleles that differed by
only 2 bp, where signal/noise is a particular problem; re-
constructed the pedigrees from lane assignment informa-
tion; set phase in females; propagated haplotypes through
the pedigree; and identified female carriers and affected
males in the pedigree on the basis of computer derivation
of an at-risk haplotype. We also artificially introduced re-
combination events into this data and then designed and
implemented software that was able to detect each recom-
bination event and localize it to the correct female meiosis
in the pedigree.

Methods

Multiplex CA Repeats
Four CA-repeat markers (3'-CA [Oudet et al. 1990], 5'D-

YSII (Feener et al. 1991), and simple tandem repeats (STRs)
45 and 49 [Clemens et al. 1991]) distributed throughout
the 2.5-Mb dystrophin gene were used. The forward
primer of each pair of PCR amplimers was covalently
linked to fluorescein, and all four loci were amplified in a
single 25-cycle multiplex PCR reaction as described else-
where (Schwartz et al. 1992). The mixed fluorescent prim-
ers have been stored for >3 years, with no loss of label
intensity, obviating the need for relabeling prior to each
experiment. Two fluorescent molecular-weight standards
(dystrophin gene exons 50 [271 bp] and 52 [113 bp] [Beggs
and Kunkel 1990; Schwartz et al. 1992]) were added to
samples prior to electrophoresis.

Allele Data Acquisition
The PCR products of the four CA-repeat loci lie in four

nonoverlapping size windows, and the alleles for all four
loci and the molecular-weight markers can be read out as
a size-multiplexed signal in one lane of a DNA sequencer.
We have used the DuPont Genesis DNA sequencer, which
can generate fluorescent intensity data for 10-12 lanes,
with one lane assigned to each individual. Thus, 10 family
members can be haplotyped for the dystrophin gene by a
single sequencer run. Each lane's signal intensity is ob-
served as photomultiplier tube (PMT) voltage units (12-
bit resolution) and is sampled by the sequencer every 3 s,
providing -20 data points/base of DNA. Gels were run
for a total of 4 h, generating -5,000 data points/lane (in-
dividual). Machine-readable data files from the sequencer
runs, recorded as a linear fluorescence signal (PMT volt-
age) trace for each lane (individual), were automatically
generated by the Genesis 2000 software. These time-ver-
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sus-voltage files were input into our software, as described
below.

Signal Processing
Each individual's preprocessed DuPont data file con-

tains a time-versus-intensity trace of the multiplexed PCR
sequencer run generated from the corresponding gel lane.
For quantitative processing, these data must be converted
to DNA size-versus-DNA concentration units. Our soft-
ware first searches predetermined time regions to find the
molecular-weight markers (dystrophin gene exons 50 [271
bp] and 52 [113 bp]). A linear interpolation is then per-
formed to construct a time-versus-size mapping grid. Each
predefined CA-repeat locus is then processed indepen-
dently within its predefined size window. Every peak
within the CA-repeat marker region is identified and is as-
signed a time and an area. The apex of a peak is defined as
the point of change between a monotonically increasing
series and a monotonically decreasing series, left to right.
The monotonicity predicate holds when the difference be-
tween an average of right values and an average of left val-
ues exceeds a predetermined threshold. With the linear
time-to-size interpolation from the grid, the time of each
peak apex's occurrence is converted to a DNA size esti-
mate. The areas are computed as the full width at half-
max peak and are considered to be proportional to the
approximate DNA concentration for any specific locus.

Allele Separation by Deconvolution
We mathematically deconvolved overlapping stutter

peaks of proximate alleles at a locus, thereby computing a
single peak per allele. For any given marker, the allele stut-
ter pattern is relatively fixed. The DNA concentrations for
one allele at each discrete DNA size can be written as the
pattern vector <Pa,. . ., Pl, PI, Po>, or, equivalently, as
the polynomial p(x), p(x) = pnx" +. . . + p2x2 + pjx + P0.
Each coefficient Pk is the observed peak area in the allele's
pattern for stutter peak n.
The superimposed stutter patterns observed in the se-

quencer data of heterozygotic markers can be similarly de-
scribed by a polynomial, q(x). The coefficients of q(x) are
the superimposed peak areas produced by PCR stuttering
of the two alleles. The PCR stutter of each allele has a fixed
pattern described by the polynomial p(x). When the allele
contains precisely r repeated dinucleotides, the pattern is
shifted 2r bases on the sequencer gel lane. (With a tri- or
tetranucleotide repeat, the pattern would be shifted 3r or
4r bases, respectively, and similar analyses would apply.) A
2r-base shift in the stutter pattern mathematically corre-
sponds to multiplication of the polynomial p(x) by x2r.
Therefore, if the two allele sizes are s and t, then the two
stuttered alleles produce the shifted polynomials xsp(x)
and xtp(x), respectively. Superimposing these two allele
stutter patterns produces the observed sum q(x) = xsp(x)
+ xtp(x) = (xs+xtp(x). Direct deconvolution to obtain the
allele sizes s and t (hence, the genotype) by polynomial di-

vision via q(x)/p(x) = xS + xt is not sufficiently robust with
real data containing noise. Therefore, we devised a
method based on statistical moment computations. Fur-
ther, since the computing time for these moments is just
proportional to the size of the data (i.e., linear time), the
algorithm is fast, and it is asymptotically faster than direct
(and noise intolerant) polynomial division, which requires
quadratic time. This speed advantage may prove important
in on-line real-time automated genotyping.
The kth moment of a polynomial u(x) is uk = u *k(1l,

where u(k) is the kth algebraic derivative of u(x). Uk can be
rapidly computed by weighted summation of the coeffi-
cients of u(x)'s kth derivative. As derived in the appendix,
s + t = (q1-2p1)/po, s2 + t2 = [(q2-2p2) + (s+t)(po-2p1)]/
po, and (st)2 = 2(s2+t2) - (s+t)2. The first expression for s
+ t implies that, given the hemizygous distribution p(x),
the stuttered sequencer data q(x), and the size t of the
larger allele (corresponding to the peak of the largest PCR
product), the size s of the smaller allele can be computed.
The last two expressions are used for simultaneously gen-
otyping both alleles. Applying all three expressions, we can
directly calculate the allele sizes as s = [(s+t)+(s-t)]/2 and
t = [(s+t)-(s-t)]/2. This computation has the effect of
deconvolving the superimposed PCR stutter patterns of
the heterozygotic alleles into the two discrete peaks, hav-
ing sizes s and t, needed for straightforward genotyping.
The real numbers s and t are rounded (up or down) to the
nearest integer occurring in the observed peak data.

Setting Phase by Graph Propagation
Once the genotypes have been determined for a DMD

pedigree, phase can be readily set on the X chromosome.
This is done by treating the pedigree as a graph, where the
nodes are the individuals and the links are the inheritance
paths between them. Starting from a male descendant (e.g.,
the proband), the neighboring nodes that are one inheri-
tance link away (whether child or parent) are explored. In-
dividual haplotypes are locally determined from haplo-
typed neighbors, as follows:

* Male individuals are given the haplotype of their hemi-
zygotic genotype.

* Female individuals are set from a male neighbor by as-
signing one haplotype to the male's haplotype and as-
signing the second haplotype as the difference, at each
marker, of the individual's genotype and the male hap-
lotype.

* Female individuals are set from a haplotyped female
neighbor by first determining which (if either) of the
neighbor's haplotypes is contained within the individu-
al's genotype. This haplotype becomes the first haplo-
type of the individual, and the second haplotype is ob-
tained as the difference, at each marker, of the individu-
al's genotype and the first haplotype.
Other local computations, such as assessing consistency,

can be done when visiting each node. Since the graph tra-
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versal only propagates to unhaplotyped neighbors, the al-
gorithm terminates when all individuals have been consis-
tently haplotyped.

Independent graph propagations from each male de-
scendant are done. The propagation locally terminates at
an individual when a parent-child haplotype inconsistency
is detected. This early termination can suggest both where
recombinations (or other events) occur in the pedigree and
how to correct for their occurrence.

Determining Carrier and Affected Individuals
For the purposes of program development, we have as-

sumed DMD/BMD to be a fully penetrant X-linked reces-
sive disorder with a low mutation rate. Once the entire
pedigree has been haplotyped, the carrier and affected in-
dividuals can then be inferred. If no recombination events
are found, then the dystrophin gene haplotype of the pro-
band serves as a signature that indicates an affected disease
gene. Any male with this disease gene haplotype signature
on his dystrophin gene who is reachable in the X-linked
recessive pedigree graph is interpreted as affected. Sim-
ilarly, reachable females shown to have the disease gene
signature (on one chromosome) are considered carriers.
Since our propagation algorithm only communicates be-
tween individuals who can directly transmit or receive an
X chromosome (i.e., immediate parents or children), inde-
pendent (i.e., unreachable) paternal lineages that coinci-
dentally share the disease gene signature are not incor-
rectly phenotyped.

Software System and User Interface
Individual software modules were written for signal pro-

cessing on the DuPont Genesis data, allele separation by
deconvolution, haplotyping via graph propagation, and
carrier/affected status determination. All are modules of a
single computer program developed in Macintosh Com-
mon LISP. A color graphic interface was also developed
for presenting the pedigree and for displaying the process-
ing and results of genetics computations.

Results

Identification ofDinucleotide Repeat Alleles
The first step in the automated linkage analysis is to de-

termine the genotypes of family members at each of the
four intragenic dystrophin gene CA-repeat loci. The out-
put from the DuPont automated sequencer is a data file
containing PMT voltage as a function of time for each in-
dividual (lane) of the gel (fig. 1). The two molecular-weight
markers and complex allele patterns for each of the four
dinucleotide repeat alleles are seen as peaks in these data.
To automatically define genotypes at each dinucleotide

repeat locus, the software first searches the time windows
corresponding to the molecular-weight markers. Once
these are identified, the software conducts a linear inter-
polation between these markers, to derive a time-versus-

size (in nucleotides of DNA) mapping. Predefined DNA
size windows for each of the four dinucleotide repeat loci
are then superimposed on the quantitative PMT signal
data, and all peaks within those windows are identified.
Peak areas are automatically calculated. The program
scans the window for each marker and assesses the pattern
of peaks, to classify the peaks into one of three classes:
hemizygote/homozygote alleles, distinct heterozygote al-
leles, or superimposed heterozygote alleles.
These three classes of peak patterns are defined as fol-

lows. A hemizygote/homozygote allele comprises a single
decay pattern of decreasing peak amplitudes, with DNA
size decreasing from right to left (fig. 1); the rightmost and
largest peak is considered to be the primary peak. For ex-
ample, individual III-1 of family 40 is a male hemizygote.
At locus STR-45, for the values shown in table 1, the peak
occurs at length 171 nucleotides, with a concentration of
101,299. Thus, the genotype of individual 111-1 at locus
STR-45 is assigned the value 171.
The peak pattern is classified as distinct heterozygote

when (a) two such decay patterns are found within the
marker window and (b) the two primary peaks are of sim-
ilar amplitude. For example, individual 11-2 of family 40 is
heterozygotic at locus STR-49. As seen in table 1, there is
one peak at length 233 and a second peak at length 264.
The stutter peaks are widely separated, so the genotype
was readily determined to be (233,264).
The third class, superimposed heterozygote alleles, is in-

voked when no simple pattern of alleles satisfying the hem-
izygotic/homozygotic or distinct-heterozygotic criteria is
detected. In this class, present only in female heterozy-
gotes, the alleles are closely spaced and produce a complex
pattern of overlapping peaks. Deconvolution of the peak
pattern is then invoked to identify the two alleles. Since
the peak decay patterns are similar for any given locus,
the deconvolution of a complex heterozygous pattern at a
locus can be done with respect to the hemizygous decay
pattern (of a different individual) at the same locus.

Consider, for example, the STR-45 locus of individual
1-2 of family 40. The DNA concentrations at the PCR
product sizes 161-173 are given in table 1. The sizes and
concentrations can be represented by the polynomial

q(x) = 61326x173 + 94852x171 + 47391X169

+ 18115X167 + 5896x165 + 1928X163 + 930X161.

This pattern does not conform to a simple uniform de-
cay. In family 40, individual III-l's hemizygotic locus STR-
45 does (as expected) have a simple decay pattern from the
peak at size 171 down through size 161, as seen in table 1.
These data can similarly be represented by the polynomial

p(x) = 101299X171 + 55373x169 + 20799x167

+ 7242x165 + 2171X163 + 821X161
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Table I

Computed Base Size versus Peak Area, for Representative
Individuals and Loci

Size Individual 111-1 Individual 1-2

Marker STR-45:
161 .......... 821 930
163 .......... 2171 1928
165 .......... 7242 5896
167 .......... 20799 18115
169 .......... 55373 47391
171 .......... 101299 94852
173 .......... 0 61326
175 .......... 0 0

Individual 11-2

Marker STR-49:
221 843
223 1217
225 2360
227 6123
229 11469
231 26811
233 48135
234 ...............0
236 0
238 0
240 0
242 0
244 0
246 0
248 0
250 0
252 1695

2 4 ............... 27254 2877
26 ............... 51256 5410

258 11553
260 17482
262 258662 2 ...............25 6
264 286722 4 ...............28 7

NOTE.-The DNA concentrations shown were detected and quanti-
tated at every DNA length (rows) for each genotyped individual (col-
umns). The peak area values were computed by the system, from the raw-
data files used to generate the graphs in fig. 1, are in arbitrary units, and
have been rounded to the nearest integer. Zero values denote minimal
signal. The numbers illustrate the three classes of CA-repeat genotype
data: hemizygote/homozygote alleles, distinct heterozygote alleles, and
superimposed heterozygote alleles.

and can be used to help recover the two alleles at individ-
ual 1-2's STR-45 locus.
As described in Methods, 1-2's peak pattern at locus

STR-45 can be viewed as the superposition of two shifted
copies of III-l's peak pattern at STR-45. Mathematically,
the observed q(x) pattern is the sum of two shifted copies
of p(x): q(x) = xsp(x) + xtp(x) or (xs+xt)p(x). Deconvolu-
tion of q(x) with respect to p(x) can determine (xs+xt),
where s and t are the peaks of the shifted patterns. That is,
s and t provide the genotype. The polynomial coefficients
are first renormalized to account for the expectation that

p(x) measures a single chromosome dosage, whereas q(x)
measures two doses. Then, using the polynomial moment
technique detailed in Methods and shifting the sizes
to their correct origin, we compute s = 173.061 and t
= 170.832. Rounding these numbers to the closest inte-
gers in the peak pattern, we obtain the genotype (173,171).

This example result illustrates how PCR stutter peaks
can be effectively exploited using our deconvolution ap-
proach to automatically resolve CA-repeat alleles that are
close in size. The computed genotypes for all tested mem-
bers of family 40 were obtained by the program at every
locus by invoking and applying the appropriate method
(i.e., hemizgote/homozygote, distinct heterozygote, or su-
perimposed heterozygote) to the data (fig. 2).

Establishing Haplotype Inheritance and Phenotype
Once the genotypes have been determined, the risk can

be directly assessed in this X-linked disease gene system.
This is done by setting phase to determine haplotypes and
then inferring the phenotype of each all individuals, from
their haplotype(s). The phenotype is inferred by comparing
the proband's signature haplotype with the haplotypes of
other related individuals in the pedigree. The use of
multiple informative markers assures that, with high prob-
ability in our system, identity by state of the multiple
markers implies identity by descent. Thus, an identical sig-
nature at a related individual in the DMD pedigree implies
a shared chromosomal segment, including the diseased
dystrophin gene region(s). Males sharing an affected pro-
band's signature are presumed to be affected, whereas fe-
males sharing this signature are presumed to be carriers.
An example of setting phase from the allele data is illus-

I

II

III

207 215 207
171 175 171
233 264 233
131 131 131

221 215
175 175
234 262
131 131

Figure 2 Output from the pedigree-construction and genotyping
modules. Shown are the genotypes that the software automatically com-
puted for each tested member of family 40 (fig. 1). The software auto-

matically applied one of three methods (maximum of single peak, maxima
of double peaks, or allele deconvolution) most appropriate to the locus
data. This diagram was drawn by the graphic-display component of the
system.
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2

II

III

207 215 207
171 175 171
233 264 233
131 131 131

221 215
175 175
234 262
131 131

Figure 3 Inheritance graph construction and setting of phase.
The links between the individuals in family 40 show the X-chromosome
inheritance paths between parents and children. These links are traversed
to generate the vertical, in-phase haplotypes shown. This is done by ap-
plying the haplotyping rules when graph nodes (i.e., individuals) are
reached in the graph traversal. This diagram was drawn by the graphic-
display component of the system.

trated with female individual 11-2 and male proband III-
1 from family 40. The genotype of 11-2 across the four
dystrophin markers 5 DYS-Il, STR-45, STR-49, and 3-CA
is the allele sequence (207,215), (171,175), (233,264), and
(131,131). Ill-l's haplotype is 207,171,233,131. Extracting
this haplotype from 11-2's genotype leaves 215,175,264,
131; these two sequences describe 11-2's two haplotypes.
The program applies the graph-propagation and consis-

tency-analysis rules given in Methods to set phase for the
entire pedigree. With the family 40 pedigree as an example,
the graph traversal of the pedigree follows the X-chromo-
some inheritance links shown in figure 3 and generates the
phase-known haplotypes shown for each individual. No
inconsistencies are detected in family 40.
The program then determines phenotypes. In family 40,

for example, proband III-l's allele signature at the four
markers 5 DYS-Il, STR-45, STR-49, and 3-CA is the allele
sequence 207,171,233,131. All individuals in family 40
sharing this sequence on one of their haplotyped chromo-
somes are presumed to also share the affected proband's
disease gene. Thus, individual 111-3 is inferred to be an-
other affected male, and individuals 1-2, 11-2, and 11-4 are
inferred to be carrier females. The phenotyped pedigree is
shown in figure 4.

Identifying Recombinant Chromosomes
When a recombination event occurs, inconsistencies

arise in the X-linked pedigree graph haplotype relation-
ships between parents and children. These inconsistencies
can be detected by the described methods and then can be
used to localize the event within the pedigree.
When a recombination occurs, our straightforward

rules for setting haplotype phase by taking set differences
between sequences of alleles are no longer operable. For
example, suppose that a recombination occurred between
the STR-45 and STR-49 markers in a meiosis of individual
1-2 in family 40. Then related individual II-2 would still
inherit the paternal haplotype 215,175,264,131, but the
maternal disease haplotype would be changed from
207,171,233,131 to 207,171,252,135. Further, the pro-
band 111-1 would then inherit from 11-2 the haplotype
207,171,252,135. As described next, these changes propa-
gate inconsistencies at certain points in the pedigree.
The program detects inconsistencies via early termina-

tion: it propagates the parent-child set-difference opera-
tion through the inheritance graph as completely as possi-
ble but terminates as soon as an inconsistency is detected.
Thus, with the hypothetical recombination between loci
STR-45 and STR-49 in grandparent 1-2 of family 40, a
propagation from the male grandchild III-1 or III-2 would
correctly haplotype grandsons 111-1 and 111-2 and mother
11-2 but would incorrectly haplotype grandmother 1-2. At
that point, 1-2's haplotype would be inconsistent with the
rest of the pedigree (i.e., individuals 11-3, 11-4, 111-3, and III-
4). This inconsistency would be detected by the local set-
difference operations emanating from 1-2, and the haplo-
typing computation would halt. The result of this partial
computation is shown in the left-hand panel of figure 5.

These inconsistencies can be exploited to locate recom-
bination events. If the same recombination example is con-
tinued with family 40, a propagation of the set-difference
operation could also be initiated from grandson III-3, on
the other half of the pedigree graph. This propagation cor-
rectly haplotypes individuals 1-2, 11-3, 11-4, 111-3, and III-4

I

II

III

207 215 207
171 175 171
233 264 233
,131 131 131

215 221
175 175
262 234
131 131

Figure 4 Identification of individuals having the at-risk haplo-
type. All individuals who share a chromosomal haplotype with proband
III-1 are inferred to carry the disease gene. III-1's haplotype is the allele
sequence 207,171,233,131. Male III-3 has this haplotype and is presumed
to be affected. Females 1-2, 11-2, and 11-4 have this haplotype on one of
their X chromosomes and are inferred to be carriers. This diagram was
drawn by the graphic-display component of the system.
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I

II

III

II

III

207 215
171 175
252 264
135 131

207 215 221
171 175 175
233 262 234
131 131 131

Figure 5 Detection of recombination events. Data on family 40 have been modified to simulate a recombination event between loci STR-45
and STR-49 in grandparent 1-2, affecting individuals 11-2 and 111-1. Graph propagations are performed from grandsons until an inconsistency is detected;
at that point, the graph traversal halts. Haplotypes are shown only for those individuals who are in the consistent region of the graph. These diagrams
were drawn by the graphic-display component of the system. Left, Results of propagating from grandson 111-1. Right, Results of propagating from
grandson 111-3. The arrow, indicating the inheritance link between individuals 1-2 and 11-2, locates the recombination event.

but would stop when the inconsistency is found between
the grandmother 1-2 and her daughter 11-2. The resulting
partial haplotyping is shown in the left-hand panel of figure
5. By combining the results of these two propagations, one
immediately identifies the inconsistency as arising from the
gametes of individual 1-2. One infers that the single recom-
bination event occurred between individuals 1-2 and 11-2,
since this scenario entirely accounts for the data. (Other-
wise, one would have to assume two identical recombina-
tion events between I-2 and her daughters 11-3 and 11-4,
which is far less likely.) By inspecting the haplotypes of I-
2,11-3, and 11-4 and comparing them with those of 11-2, we
find that the recombination event is immediately localized
to the region between the STR-45 and STR-49 markers.

Application to Family Data

Five families (40, 152, 154, 230, and 232) were analyzed
using the described system. The number of genotyped in-
dividuals in each family was 9, 6, 6, 3, and 6, respectively.
There were no recombination events in these families. In
the initial signal processing of the DuPont sequencer data,
some pedigrees had individual lane data with ambiguous
reference marker peaks that were not detected by the com-
puter. We added an interactive graphic software module
for initial signal processing of lane data, which allowed a
user to optionally interrupt the signal processing of lane
data and to indicate the locations of (1) the left reference
marker peak, (2) the right reference marker peak, and (3)
any spurious data peaks. In 42 haplotypings, only one spu-
rious data peak needed to be suppressed (an individual's
lane data in family 232).

For some families, there was ambiguity in the quantitative
sizing of alleles, because of local variations of 1 or 2 bp in gel

migration that were not corrected for by linear interpolation
between the two reference markers used. In the 168 observed
alleles in the five families, 89% (149/168) showed no size vari-
ation, 9% (15/168) showed 1-bp variation, and 1% (3/168)
showed 2-bp variation; there was one new mutation at a locus,
as well. This ambiguity caused early termination of the pro-
gram, during the graph propagation for setting phase. The size
variation was handled by incorporating a tolerance (in base
pairs) into the graph propagation, so that allele sizes within the
specified tolerance were considered equivalent. Analysis of a
family then proceeded by starting with a 0 tolerance and then
incrementing by 1 until the program ran to completion. Family
40 ran at 0 tolerance, families 152 and 232 ran at a 1-bp toler-
ance, and families 154 and 230 required a tolerance of 2 bp.
The automated genotyping revealed two grandpaternal al-

leles in family 40, at STR-49 (allele 264, which is inherited by
individuals 11-2 and III-2, and allele 262, which is inherited by
individuals 11-3, 11-4, and III-4). The inheritance pattern and
single dinucleotide allele difference suggest mutation as the
most likely explanation. Interestingly, this mutation was
mistyped in (Schwartz et al. 1992); however, quantitative re-
examination of the sequencer traces (fig. 1) confirms the com-
puter interpretation. Since I-l's grandpaternal haplotype is
neither used nor inferred by the program to set phase, no
inconsistencies were detected.

After allele determination and setting of the size tolerance,
all subsequent processing was fully automatic. The constraint
propagation process used the allele information to unambig-
uously set phase; the phenotypes were determined; and the
results were visually presented to the user, as a pedigree, on
the computer display, annotated with carrier and affected sta-
tus. Once the initial signal analysis was done, all this subse-
quent processing for a family was completed in several sec-
onds on a Macintosh Quadra-class computer.
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Discussion
Automation of genotype data acquisition, interpreta-

tion, and storage would benefit human molecular medi-
cine at a number of levels. (1) The identification of disease
genes through genetic linkage analysis would be dramati-
cally accelerated: the currently labor-intensive and tedious
process of linkage studies would be largely replaced by
highly multiplexed, computerized allele identification and
haplotype interpretation. Localization of disease genes
would then be limited only by the availability of adequate
disease families for analysis. (2) Automated data acquisi-
tion of dense genetic information should also open ave-
nues for novel approaches to elucidation of disease molec-
ular genetics, for both simple and complex genetic disor-
ders, as well as in cancer research. (2a) For example,
concordance mapping, where each meiotic recombination
breakpoint is localized on each chromosome in each prog-
eny, becomes possible. In this approach, analogous to
physical mapping (Perlin and Chakravarti 1993), specific
regions of the genome are identified that are concordant
between all affected individuals but discordant with all un-
affected individuals in a given pedigree. This approach
could eliminate the need for much of the complex statisti-
cal analyses intrinsic to more traditional linkage studies.
(2b) Complex genetic loci may be dissected by the identi-
fication of shared, localized haplotypes in unrelated
affected patients (linkage disequilibrium mapping). (2c)
Small regions demonstrating loss of heterozygosity could
be mapped by comparing tumor DNA with peripheral
blood DNA in cancer patients, thereby identifying genome
regions important in cancer. (3) In the clinical setting, au-
tomated genotyping would increase the speed and accu-
racy of diagnostic studies. In addition, automation could
dramatically decrease costs associated with molecular di-
agnostics. Molecular diagnostic tests are currently quite
expensive, primarily because of the substantial personnel
requirement for data generation and interpretation.
The goal of genotype automation is to generate large

amounts of allele data in as few experimental analyses as
possible and to use computers to acquire and interpret the
data. In this report, we have successfully implemented
many of the steps required for complete automation of
genotyping. We used segregation of multiplexed CA re-
peats distributed throughout the 10-cM dystrophin gene,
as a model system to develop software for computer ac-
quisition and interpretation of genotype data. The
multiplex PCR reaction contained four fluorescein-labeled
CA-repeat loci and used internal molecular-weight mark-
ers, as described elsewhere (Schwartz et al. 1992). We used
the DuPont Genesis 2000 automated sequencer system,
which has automatic lane tracking after initial assignment
of lanes and which, for each sequencer lane, provides raw
digital data as PMT voltage as a function of time. We de-
veloped computer protocols that used the raw sequencer
data files as input and that automatically interpreted the
data and analyzed the genotype information.

Our deconvolution approach for genotyping STRs from
complex band patterns is not limited to the X chromo-
some. Since the stutter pattern is associated with the STR
locus and does not depend on a given family or allele, a
database can be constructed of single-allele decay (e.g., de-
rived from homozygotes or distinct heterozygotes) for
each STR locus of interest. These patterns can then be
used in our deconvolution algorithm to genotype STRs lo-
cated anywhere in the genome, including on autosomes.
There are a number of aspects of our computer ap-

proach that must be modified before the system is robust
enough for practical use. First, trial runs with some pedi-
grees encountered sufficient noise to lead to incorrect in-
terpretations: the program needs to be made more tolerant
of the variability of experimental data. We plan to intro-
duce comparison algorithms that use pattern superposi-
tion of first-degree relatives, to help assign alleles in noisy
data: an analogous process is used when data is interpreted
by the human eye. Second, our program currently uses Du-
Pont Genesis 2000 raw lane data as input. This automated
sequencer system is extraordinarily sensitive and provides
raw individual data as a single digital stream of voltage-
versus-time lane data. Unfortunately, the Genesis 2000 se-
quencer is capable of detecting only a single color (fluo-
rescein), as the proprietary dyes developed by DuPont are
not available for custom incorporation into PCR primers.
Furthermore, production of this automated sequencer has
been halted, and it is no longer commercially available or
serviceable. Finally, determination and propagation of
phase is more complex for autosomal markers, where in-
dividuals with phase-known haplotypes (i.e., males in X-
linked pedigrees) are not available. The high degree of in-
formativeness should facilitate future autosomal studies
with statistical (Ott 1991) or deductive (Wijsman 1987)
analyses.
We are currently adapting our automated genotype-

data-acquisition system to the more common ABI 373A
automated sequencers. These sequencers have the advan-
tage of simultaneous detection of multiple fluorophors.
For example, we have recently described the analysis of 22
CA-repeat loci in two lanes of this sequencer (450 alleles/
gel) (H. Kobayashi, personal communication). However,
the ABI sequencer has the disadvantage of providing out-
put as a "gel file": a two-dimensional, 20-megabyte array
of data points that requires considerable processing before
it can be used as input to our programs. The development
of image-processing software as a front end to our pro-
grams is currently underway.

In addition to adaptation for the more common and
flexible ABI automated sequencer, future goals are to au-
tomate risk assessment in DMD/BMD dystrophy families,
via automated incorporation of serum creatine kinase data
and Bayesian risk estimates into the computer haplotype
analysis, and to detect nonpaternity. We are also extending
our system to automated interpretation of genetic map-
ping data (Matise et al. 1994), including automated con-
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cordance mapping of meiotic recombination data across
the entire X chromosome. Eventually, we hope to incor-
porate LOD score calculation and automated experiment
design, in order to optimize the statistical power of exper-
iments using genetic map data.
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Appendix
Key to our full automation is the ability to compute the
allele sizes s and t at a locus, in the presence of PCR stutter
peaks. As above, the data pattern q(x) represents one or
two alleles, whose separation may give rise to complex
stutter peaks, and the data pattern p(x) represents the sim-
pler stutter peaks of just one allele. p(x) and q(x) measure
the same locus for different individuals and are renormal-
ized to reflect the dosage from one or two chromosomes.
Our model is that q(x) is constructed by the convolution
(repeated shifting and adding) of p(x): q(x) = (xs+x)p(x),
where s and t denote the unknown true allele sizes.
We give here a detailed derivation of our deconvolution

procedure for recovering the alleles s and t in the presence
of PCR stutter peaks from q(x), using p(x). p(x) is immedi-
ately known in X-chromosome family data and can be de-
rived via similar deconvolution procedures for autosomal
loci. We proceed in four steps.

Computing an Expression for the Allele Sum s + t
Taking the derivatives of both sides of q(x) =

p(x)(xs+xt), we obtain

d [q(x)]= d [p(x) X (xs+xt)dx d&
d d

= [p(x)]X(x5+) + p(x)X (xs+x)

- p)(x)x(xs+4xt + p(x)X(sXxs-1 + tXx-l~).

Evaluating at x = 1, we obtain

1l)(1) = pM(1) x (lS+lt) + p(l)X (S-ts-l +tX 1t1)
= p~1)(l)X(2) + pM(1(l)X(s+t) -

The nth moment of a polynomial u(x) is u, = u(n)(1). This
may be very efficiently computed, in linear time, as the sum
of the coefficients of the polynomial's nth derivative. The
moments are related to more intuitive function statistics,
such as the mean and variance: E(u) = u1/uo and E(u2)

= u2/uO + u1/uO - (u1/uO)2, respectively. We can rewrite
the above derivation as (easily computable) moment statis-
tics: q1 = 2p, + (s+t)po, or q1/po = 2p,/po + s + t, so

s + t = q1po- 2p,/po
= (ql-2p,)/po. (Al)

Thus, given the hemizygous (or homozygous) distribution
p(x) and the sequencer data q(x), if either s or t is known,
then so is the other. When the position t of the larger allele
is determined by identifying the peak of the largest PCR
product in the locus region, this algorithm will unambigu-
ously determine the location s of the smaller allele.

Computing an Expression for the Allele Sum s2 + t2
To extract second moments, we compute the second

derivative of the relation q(x) = p(x)X(xs+xt). After simpli-
fication, this produces

q2)(X) = p(2)(x) X (xs+xt)
+ 2[p(1)(x)X(sx(-+txt1)]
+ p(x)[s(s-l)Xs-2+t(tl)Xti-2.

Setting x = 1 to calculate moments and rearranging to
group the constant, linear, and quadratic terms in s and t,
we obtain the equality 0 = (2p2-q2) + (s+t)(2p1-pO)
+ (s2+t2)po. Rearranging this equality gives the equivalence

s2 + t2 = [(q2-2p2) + (S+t)(po-2pJ)1/po. (A2)

Each right-hand-side term is directly or indirectly comput-
able from moment properties of the data. For example, s
+ t is known via equation (Al).

Computing an Expression for the Allele Difference s - t
From s + t, given in equation (Al), and s2 + t2, given in

equation (A2), we can now obtain s - t, as follows:

(S-t)2 = S2- 2st + t2
= S2 + t2 - 2st

= 2s2 + 2t2 - (s2+t2+2st)
= 2(s2+t2) - (S+t)2.

This provides a closed-form expression for s - t, as the
square root of 2(s2+t2) - (s+t)2.
Computing Alleles s and t

Combining s + t and s - t, we have s = [(s+t)+(s-t)]/2,
and t = [(s+t)-(s-t)J/2. Thus, by taking the zero, first, and
second moments of the multiallelic sequence data q(x), to-
gether with the known haplotype p(x), we can robustly
and rapidly (in linear time) compute the absolute positions
of nucleotide repeat alleles s and t.
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