

Mid-Atlantic Association of Forensic Scientists Richmond, Virginia May, 2025

Authors Mark W. Perlin, PhD, MD, PhD, Matthew M. Legler, BS, Kari R. Danser, MS, Jeremy D. Curto, BS

Opposition argument

"Ground truth" laboratory data is needed to validate a probabilistic genotyping system (PGS).

LR distributions show this isn't so.

Validate on casework data

"Since the [TrueAllele] method's high *specificity* assures identification hypothesis H with considerable certainty, we can safely examine the Pr{**X**=x | H} *sensitivity* distribution of positive log(LR) values." - PLOS ONE 2014 Virginia validation study

Similarly, high *sensitivity* lets us safely examine the *specificity* distribution of negative log(LR) values.

United States v Curtis Johnson

- In 2013, men robbed an armored truck outside a New Orleans bank, killing the truck guard in a shootout.
- A bandana was collected from the crime scene
- A 70 pg sample was a three-person mixture
- TrueAllele separated out bandana genotypes
- Comparing a 27% contributor with Johnson, LR = 200
- 2021 Daubert hearing, TrueAllele admitted, first trial
- 2022 Second trial, guilty verdict, 50-year sentence

Report LR error rate

A match between the bandana and Johnson is 200 times more probable than coincidence.

For a match strength of 200, only 1 in 4.1 thousand people would match as strongly.

ER ≤ 1/LR 1/4100 ≤ 1/200

United States v Alejandro Sandoval

- Police collected a baggie containing methamphetamine
- Defense tested baggie, found a DNA mixture
- Two different PG software programs used
- Unsuccessful Daubert attempt to challenge OPG
- Plea agreement dropped the more serious charge
- JFS published a speculative "Case Report"

FORENSIC SCIENCES

LETTER TO THE EDITOR I ⓐ Open Access i ⊕ ④ ⊙ ⊗ Commentary on: Thompson WC. Uncertainty in probabilistic genotyping of low template DNA: A case study comparing STRmix™ and TrueAllele®. J Forensic Sci. 2023;68(3):1049–63 Mark W. Merin PD, MD, Pholog, Nast But Phol. Mark R. Wilson Pholog

First published: 25 April 2024 | https://doi.org/10.1111/1556-4029.15518 | Citations: 1

Opposition argument

TrueAllele and Other PG (OPG) can give different LR results. So PGS isn't reliable!

LR distributions show this isn't so.

tical thr	esholds
Data peaks	log(LR)
11	-0.53 ban
24	-1.38 ban (reported)
38	-7.48 ban
Data peaks	log(LR)
210	-6.08 ban
	Data peaks 11 24 38 Data peaks 210

United States v Ravel Mills

- 2020 shooting-related homicide in Washington, D.C.
- Gun and magazine recovered as evidence
- Gun: 6% component of a three-person mixture
 - log(LR)= -7.86, log(ER)= -11.18
- Magazine: 2% component of a four-person mixture
 log(LR)= -11.21, log(ER)= -14.54
- Federal prosecutor requested Daubert hearing
- Typical defense expert attack: old-style binary logic
- TrueAllele won "on the papers", no hearing needed

Opposition argument

TrueAllele's own validation study shows high LR error rates. Thus the PGS isn't reliable!

LR distributions show this isn't so.

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

Opposition argument

Binary error rate (LR < 1 or LR > 1) in the case's actual software version

N=	Mixture Range %	count for LR<1	% for LR<1
20	1–5	7	35%
17	5–10	0	0%

Binary error rates are simplistic and irrelevant 1. The likelihood ratio is quantitative

2. Error rate depends on LR magnitude

Endinate depends on Li				
Source	Mixture Weight %	log(LR)	log(ER)	
Gun	5.89	-7.86	-11.18	
Magazine	2.40	-11.21	-14.54	
	1.63	-3.49	-6.08	
	1.08	-2.61	-3.84	
	1.70	-2.47	-4.37	
Validation	1.32	-1.40	-3.14	
	2.26	-0.60	-2.69	
	1.65	-0.54	-2.37	
	1.40	-0.15	-2.53	

Conclusions

How to rebut unfounded PGS opposition arguments

- 1. Use fully Bayesian PGS on all STR data (no threshold)
- 2. Separate mixtures into accurate contributor genotypes
- 3. Report all inclusionary and exclusionary LRs
- 4. Use LR distributions to report LR error rates
- 5. Respond to bad arguments with good LR science

Cybergenetics

