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ABSTRACT 

 

DNA mixtures arise when two or more people contribute their DNA to a biological 

sample. Data-simplifying thresholds fail to give accurate results when applied to 

complex mixture patterns. An entirely objective interpretation approach is to first 

separate out the genotypes of each mixture contributor, without ever seeing the subject, 

and only afterwards make a comparison.  

Comparison of a separated evidence genotype with a subject’s reference 

genotype, relative to a population, yields a match statistic. This likelihood ratio is a 

standard measure of information change based on observed evidence that addresses 

FRE 403 relevancy balancing. The reliability of objective genotype separation has been 

extensively tested. Such extensive testing, error rate determination, and scientific peer-

review address FRE 702 and Daubert reliability factors.  

Courts have accepted this extensively validated computer approach, with 

admissibility upheld at the appellate level. Separated genotypes provide results that 

juries find easy to understand. Objective DNA analysis elicits identification information 

from evidence, while rigorous validation establishes accuracy and error rates. Courts 

require solid science – extensively tested and empirically proven – to promote criminal 

justice, societal safety, and conviction integrity.  
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Deoxyribonucleic acid (DNA) mixtures arise when two or more people contribute their 

DNA to a biological sample. Mixtures are seen in sexual assault kits, homicide 

evidence, handguns and other “touch DNA” surfaces. With advances in detection 

technology, they have become the predominant form of DNA evidence in many crime 

laboratories. While DNA from one person is easy to interpret, mixture data has complex 

patterns comprising many allele peaks of varying height. 

One person’s DNA produces either one allele peak, or two of similar height, so a 

height “threshold” is meaningful. But data-simplifying thresholds fail to give accurate 

results when applied to complex mixture patterns. Ten years ago, scientists at the 

National Institute of Standards and Technology (NIST) demonstrated a ten order-of-

magnitude match statistic discrepancy between crime laboratories analyzing the same 

mixture data [1]. Mixture “inclusion” analysis tests whether a subject’s alleles are 

included in a set of (thresholded peak) alleles, but it is inherently subjective – the 

analyst sees the subject’s genotype during the analysis.  

An entirely objective (and potentially more informative) approach is to first 

separate out the genotypes of each mixture contributor without ever seeing the subject, 

and only afterwards make a comparison. This can be accomplished by sophisticated 

computing that considers many thousands of genotype alternatives, and how well their 

additive combinations explain the quantitative data [2]. Multiple possibilities for a 

contributor genotype are assigned probabilities. Faithful modeling of the laboratory 

process can yield genotypes that accurately preserve DNA identification information.  

Introduction 
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 Comparison of a separated evidence genotype with a subject’s reference 

genotype, relative to a population, gives a match statistic. This statistic is a simple ratio 

– the probability of genotype match divided by the random match probability. The 

statistic is also a likelihood ratio (LR), or Bayes factor (BF), which is a standard measure 

of information change based on observed evidence.  

Mathematically, the LR is probative because it assesses how evidence data 

affects a hypothesis (i.e., whether the subject contributed their DNA to the mixture). The 

LR’s assessment is also non-prejudicial, because (as a BF) the ratio factors out prior 

belief about the hypothesis. Thus genotype separation addresses Federal Rules of 

Evidence (FRE) 403 relevancy balancing.  

The reliability of objective genotype separation has been extensively tested for at 

least one such system. Dozens of independent and developmental validation studies 

have been conducted, with seven peer-reviewed TrueAllele® publications. These 

studies use the LR as an objective information measure to assess the method’s 

sensitivity (true positives), specificity (false positives) and reproducibility (close 

numbers). This extensive testing, error rate determination, and scientific peer-review 

address FRE 702 and Daubert reliability factors.  

Courts have accepted this extensively validated computer method, which has 

withstood Daubert and Frye challenges in six states. Admissibility has been upheld at 

the appellate level. Separated genotypes provide results that are easy to understand.  

Objective DNA analysis elicits identification information from evidence. Validation 

establishes accuracy and error rates. Courts require solid science – extensively tested 

and empirically proven – to promote criminal justice, societal safety, and conviction 
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integrity. This paper describes DNA mixtures, and how to objectively interpret them, 

focusing on relevance, reliability, and acceptance.  

 

 

 

We examine DNA mixture evidence in a Baltimore trial of Nelson Clifford; the author 

was an expert witness for the prosecution. Arguing consent, Clifford had been acquitted 

of sexual offenses on four previous occasions [3]. In this fifth case, mixtures were found 

on articles of clothing – a green shirt and a belt. The forensic question was: “Did 

suspect Nelson Clifford contribute his DNA to the victim’s clothing?”  

A mixture sample contains DNA from two or more people. Figure 1 shows a 

relatively large amount of DNA from one person (blue) who has a 6,8 allele pair, a 

second person (orange) who is homozygous for allele 7, and a third person (green) with 

a 7,9 allele pair. The additive combination of these relative DNA amounts produces a 

data signature for this particular biological mixture.  

 

 

 

Bayes law lets us reach meaningful conclusions from a small amount of data. Bayes 

uses this data to update belief. The probability law is 250 years old [4], but has gained 

considerable traction in the last 50 years with the advent of digital computing [5].  

Bayes begins with a prior probability (brown, right side) of what we believe before 

we see data (Figure 2). We examine data through a likelihood function that describes 

Case Example 

Bayes law 
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how well a hypothesis explains the data, giving a probability number (green, middle). All 

hypotheses are considered, determining how the data updates our belief (blue, left). 

The result is a posterior probability, our final belief after we have observed the data.  

Genotype modeling is the application of Bayes law to genetic identification 

(Figure 3). We begin with a random genotype (brown, right) of probabilities for about 

100 different allele pair possibilities at each locus. The quantitative data is then 

examined, usually for short tandem repeat (STR) data [6].  

A computer considers all genotype possibilities, along with variables such as 

stutter, degraded DNA, variances, and other parameters. After examining the data, we 

derive a new genotype probability. This result represents our belief in the different 

genotype values for each contributor at every genetic locus.  

 

 

 

Bayesian analysis starts with the data. We have STR genetic data comprised of 

quantitative peak heights, shown for the green shirt mixture at locus TH01 (Figure 4). 

There is a pattern of taller peaks at alleles 6 and 8, and lower peaks at 7 and 9.  

It is important to use all of the data. Specifically:  

(a) The amounts of the DNA matter, expressed as peak heights that reflect the 

relative quantities of each allele in the biological sample.  

(b) The pattern of high and low peaks matter, as these patterns can be explained 

by different genotype hypotheses of allele pair quantities and their artifacts.  

(c) The peak variation is needed for modeling variance parameters; there can be 

STR data 
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dozens of these parameters in a DNA mixture problem. For example, the 6 

and 8 peaks here represent roughly the same amounts of DNA contributed by 

one person, but we see variation in their (unequal) peak heights.  

 

 

 

A likelihood function helps separate out the genotypes of each contributor to a mixture. 

The likelihood explains the genotyping data mathematically. Shown is one such 

explanation, out of many thousands that were considered (Figure 5). There is a major 

amount of a first 6,8 allele pair (blue), a minor amount of a second homozygote allele 

pair at allele 7 (orange), and a minor amount of DNA for third allele pair 7,9 (green).  

Adding up these three different allele pairs forms a pattern, where the heights of 

those cumulative allele quantities are (to a first approximation) near the peak heights of 

the observed data. Since this pattern explains the data well, it has a relatively high 

likelihood and thus confers higher probability to each of the contributor genotypes.  

A separated contributor genotype is shown in Figure 6. The locus vs. contributor 

table (center) lists 13 genetic loci, with TH01 in the first row, followed by another 12 loci. 

Each of the three assumed contributors has a separate column. There are thus 39 locus 

contributors (13 loci × 3 contributors), each with its own separated genotype.  

The bar graph (blue) shows one such genotype, here for a minor contributor at 

the TH01 locus. Out of a hundred or so possible TH01 allele pairs, the STR data has 

focused probability onto about a half dozen of these possibilities (x-axis). The probability 

scale is also shown (y-axis). Each bar gives the posterior probability of seeing an allele 

Genotype separation 
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pair (for this minor contributor at TH01), after having seen the STR mixture data.  

This objective genotyping procedure is unbiased by the suspect’s genotype; the 

computer is not given that reference information, only the mixture data. Moreover, the 

process is unbiased by a human analyst subjectively selecting data peaks. Data is 

entered into a machine, and then analyzed automatically. This mechanization facilitates 

workflow and productivity, but also ensures objectivity.  

This process infers a separated genotype for each contributor at every locus. 

These objectively derived mixture genotypes are recorded on a computer’s hard drive. 

We can now use these separated genotypes to calculate a DNA match statistic, relative 

to the suspect.  

 

 

 

Our forensic comparison goal is to assess the strength of match. We consider FRE 403, 

which governs the relevance of evidence. We want to assess the identification 

hypothesis “Did the suspect contribute his DNA to the mixture?” The legal role of 

relevance is to balance the probative force of DNA evidence against the danger of 

unfair prejudice to the defendant (Figure 7).  

The likelihood ratio conducts this balancing mathematically. The LR is a form of 

Bayes theorem for a single hypothesis [7]. It quantifies the question “To what extent 

does the evidence increase or decrease strength in the identification hypothesis?”  

The LR has a numerator (blue) that measures the extent to which the hypothesis 

is impacted upon by data. This numerator is inherently probative, since it centers on 

Relevance and match 
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how evidence affects the hypothesis. The denominator (brown) states the initial 

prejudicial odds of the identification hypothesis before seeing data. In dividing 

numerator by denominator, the LR factors out the prior prejudice from the evidentiary 

probative force.  

After applying Bayes theorem and some algebra, we can calculate the likelihood 

ratio through genotype posterior probability [8]. At the defendant’s genotype, we simply 

divide the probability after having seen data by the probability before seeing data. That 

is how genotypes give us match statistics. They provide a way of using DNA data to 

calculate a likelihood ratio for the identification hypothesis.  

 

 

 

Separated genotypes are much easier to understand than unmixed STR data. With a 

separated genotype, mixture comparison is like random match probability (RMP), the 

standard DNA statistic involving just one genotype. We ask the question, “To what 

extent does the evidence match the suspect more (or less) than a random person?”  

The graph in Figure 8 shows the same posterior genotype probability distribution 

(blue bars) as before – the separated contributor at the TH01 locus after the data has 

been seen. Now also shown (brown bars) are a half dozen (out of a hundred) allele pair 

possibilities having prior genotype probabilities for a random person in the population – 

the prior gives the chance that we are seeing a match purely by coincidence.  

With these posterior (blue) and prior (brown) genotype probabilities, we can 

make a statistical comparison with anyone’s genotype. In this case, the genotype of the 

Match simplification 
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defendant happens to be a 7,9. We therefore focus our attention on that allele pair (red 

rectangle), looking at the ratio of posterior (blue bar) to prior (brown bar) probability at 

7,9. This ratio of 47% to 13% equals 3.62, the value of the likelihood ratio at TH01.   

The LR is the posterior genotype probability at the suspect's genotype, divided by 

the probability of a coincidence. We see that the numerator’s 47% is less than the full 

100%. A 100% numerator over a 13% denominator would be the simple RMP match 

statistic. But a DNA mixture introduces match uncertainty, so we must consider that 

reduced strength of match in the numerator, in addition to the usual genotype rarity in 

the denominator. Using separated genotypes, the LR is just the old RMP but with a 

reduced numerator; this idea is easy to understand and explain in court.  

The match statistic is shown for each locus by a horizontal bar (Figure 9). The 13 

loci are listed from top to bottom. Since STR genetic loci are independent, we can 

multiply these values together to calculate the joint LR. Stated in plain language, a 

match between the shirt and Nelson Clifford is 182,000 times more probable than 

coincidence.  

 

 

 

Also of interest is the exclusionary power of a matching genotype. Comparing the 

contributor genotype (over all loci) with 10,000 random genotypes, we obtain a bell 

shaped curve of match statistics (Figure 10). This non-contributor distribution describes 

the match information (on a logarithmic scale) for someone who did not contribute their 

DNA to the mixture. The logarithmic mean is around –10, for an average exclusionary 

Exclusionary power 
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power of 1 over 10 billion; for a non-contributor, a coincidence is far more probable than 

an evidence-based match. The standard deviation (yellow bar) is around three log units.  

From this non-contributor distribution (Figure 11), we can calculate an error rate 

for the match statistic (purple math). The LR is 182 thousand, which has a log10(LR) of 

5.25. The normal distribution’s z-score for this log(LR) value is 5.02, or five standard 

deviations to the right (yellow bar). That deviation has a p-value tail probability of 2.53 × 

10-7. Therefore, the chance of observing a non-contributing individual with a LR of at 

least 182 thousand (i.e., a false inclusion) is 1 in 4 million.  

 

 

 

Figure 12 shows a separated DNA mixture. TrueAllele separated the green shirt mixture 

into three genotypes: 11%, 82% and 7% contributors. These genotypes were objectively 

inferred, without examination bias from the suspect or some other reference. Following 

genotype separation, comparisons were made to three references (victim, elimination 

and Clifford), yielding match statistics to each of the three mixture contributors.  

In this fifth Clifford case, the jury convicted him of third degree sex offense [9]. 

“Only DNA connected Clifford to the masked man who terrorized” his victims [10]. The 

defendant’s prior sex offense was considered when he was sentenced to over 30 years 

in prison.  

 

 

 

Case outcome 
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TrueAllele has been extensively validated in dozens of studies conducted by 

Cybergenetics and crime labs. Four peer-reviewed studies were performed on 

laboratory-synthesized data of known composition – mixtures that are made in the 

laboratory [11-14]. Three other peer-reviewed studies were done on casework samples, 

which have more realistic data complexity [15-17]. Both types of studies should be done 

when thoroughly validating a DNA mixture interpretation method.  

A recent TrueAllele validation paper appeared in the Journal of Forensic 

Sciences. The study was conducted with co-author Kevin Miller in collaboration with the 

Kern County crime laboratory in Bakersfield, California. Entitled “TrueAllele genotype 

identification on DNA mixtures containing up to five unknown contributors,” the study 

employed a realistic randomized mixture design.  

The Kern paper reported seven main results. The “contributor sufficiency” axis 

examined how changing the computer’s assumed number of contributors affects the 

match statistic. This axis showed that once there are a sufficient number of assumed 

unknown contributors, TrueAllele’s match statistic does not materially change.  

For example, suppose there are actually three contributors in a DNA mixture. 

When the computer conducts separate runs assuming three, four, or five unknown 

contributors, the statistical match results will be essentially the same. Therefore, 

TrueAllele does not need to know the true number of contributors. Three other axes of 

interest were specificity, sensitivity, and reproducibility.  

 

TrueAllele Validation 
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Specificity validation studies are helpful in court. Figure 13 shows the distribution of 

log(LR) values for comparisons made between separated mixture genotypes and 

random genotypes. Millions of genotype comparisons were made, and the log(LR) 

values were recorded. The mixtures contained 2, 3, 4 or 5 unknown contributors.  

The LR data are shown on a logarithmic scale. Zero log(LR) means there is no 

information (blue vertical line). As the number of contributors increases (from 2, to 3, 4 

or 5), specificity (or exclusionary power) decreases. With five contributors in low-

template DNA, the average is over one in a billion.  

Specificity data can be used to develop a table of false positive events, as was 

done in this validation study. The table provides false inclusion error rate information. 

When asked in court, “What is the chance of seeing a false inclusion when the match 

statistic is a thousand?” the response can be an accurate numerical estimate. With 

log(LR) non-contributor data collected and tabulated, the error rate becomes a definite 

probability, whether one in a thousand or one in a trillion.  

 

 

 

Sensitivity examines to what extent a method can detect someone who actually 

contributed DNA to a mixture. As we increase mixture complexity from two to five 

contributors, the contributor distribution shifts leftwards towards less identification 

information (Figure 14). However, even with five contributors, and very low DNA 

 Specificity 

 Sensitivity 
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quantities, TrueAllele successfully made most of the identifications.  

 

 

 

We assessed TrueAllele reproducibility by running the program twice on the same data 

under the same conditions. Each point on the scatterplot in Figure 15 shows log(LR) 

values from two independent computer runs on one mixture. The points line up nicely 

along a 45° angle, showing that the replicated numbers are essentially the same. 

Reproducibility was measured using a within-group standard deviation statistic, and 

found to be well under a log unit, regardless of DNA quantity or contributor number.  

 

 

 

Reliability is important for the admissibility of scientific evidence. Expert evidence should 

be based on reliable methods that have been reliably applied to sufficient data. Daubert 

admissibility factors include whether a method is testable, has an associated error rate, 

has undergone peer-review, and is generally accepted in the relevant scientific 

community. The Frye standard considers only general acceptance.  

TrueAllele has been admitted after Daubert challenge in Louisiana and Ohio. The 

system has withstood Frye challenges in California, New York, Pennsylvania and 

Virginia. Internationally, TrueAllele has successfully weathered “voir dire” challenges in 

Australia and the United Kingdom.  

 

 Reproducibility 

Reliability 



 16 

 

 

TrueAllele acceptance is widespread. Judicial acceptance has been facilitated by 

validation studies. The first TrueAllele case was tried six years ago in Pennsylvania, 

which led to an appellate precedent in that state [18].  

TrueAllele has since been used in hundreds of criminal cases, and in over half of 

the states in the United States. TrueAllele experts appear mainly for the prosecution, 

but also testify for the defense. Five crime labs now regularly use TrueAllele in their 

criminal casework, with California having started in 2013 [19].  

The main impact of TrueAllele is in bringing DNA evidence back into criminal 

cases. Past and current crime laboratory interpretation guidelines discard most mixtures 

as “inconclusive,” or assign weak statistics. This information loss precludes the 

evidence from being heard in court. TrueAllele restores mixtures as viable DNA 

evidence, with guilty pleas a common outcome.  

 

 

 

Objective genotyping can help eliminate examination bias. When a calculator doesn’t 

know the comparison profiles, interpretation can’t be directed toward a desired answer. 

After separating out genotypes from a mixture, they can be compared against any 

number of people (one, two, ten, or a entire database).   

Identification information (the likelihood ratio logarithm) is a standard information 

statistic. The log(LR) quantifies DNA information in a case, as well as in a validation 

Acceptance  

Conclusions 
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study. The LR condenses the many aspects of genotype comparison into a single 

number. Scientific LR validation can help establish accuracy, applicability, and error 

rates. These assessments aid in understanding DNA mixture evidence, and how to use 

or explain it in court.  

There are untested mixture interpretation methods. For example, the manual 

combined probability of inclusion (CPI) method has enjoyed widespread use for 15 

years [20]. CPI is a probabilistic genotyping approach based on a very simple likelihood 

function, one that does not make much use of the data [21]. CPI accuracy has not been 

assessed, even though its reliability has been questioned [22,23]. Validation is needed 

to demonstrate CPI’s relevance and reliability.  

Courts need solid forensic science that has been empirically proven. Untested 

DNA mixture statistics should not be offered as reliable evidence. With objective and 

reliable science, better data interpretation achieves better criminal justice, helping to 

protect society and maintain conviction integrity.  
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3. Genotype modeling 
Apply Bayes law to genetic identification 
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5. Separate genotypes 
Consider every possible genotype (Bayes) 
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7. Relevance (FRE 403) 
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9. Match statistic at all loci 

A match between the shirt and Nelson Clifford is  
182 thousand times more probable than  

a coincidental match to an unrelated Black person 

10. Specificity of evidence genotype 
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11. Error rate for match statistic 
µ = – 9.9 
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z-score = 5.02 

p-value = 2.53 x 10-7 

error of 1 in 4 million 

non-contributor 
distribution 

0 5 

Nelson 
Clifford  

12. Separated DNA mixture 

Victim Elimination Nelson Clifford 
23.1 thousand 32 trillion 182 thousand 
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13. Specificity 

shrinkage toward zero information, as contributor number
increases, for both high and low DNA amounts (1 ng and
200 pg).

These trends are quantified in Table 8. The mean values
showed roughly equal specificity across the three different ethnic
groups (Tables S1 and S2). At 1 ng (Table 8a), there was

FIG. 7––Specificity (200 pg). The log(LR) specificity distribution for mixtures having (a) 2, (b) 3, (c) 4, and (d) 5 contributors. The LRs were computed rela-
tive to 10,000 randomly generated profiles across the FBI African American (BLK, red), Caucasian (CAU, green), and Hispanic (HIS, blue) populations.

TABLE 8––Specificity. Specificity statistics were calculated for the eight groups (quantity and contributor number). (a) The minimum, mean, maximum, and
standard deviation log(LR) values were averaged across three ethnic populations. (b) The total number of false inclusions is shown for each group, binned by

log(LR) value (rows).

ncon

1 ng 200 pg

2 3 4 5 2 3 4 5

(a) Summary statistics
N= 600,000 900,000 1,200,000 1,500,000 600,000 900,000 1,200,000 1,500,000
Min !30.000 !30.000 !30.000 !30.000 !30.000 !30.000 !30.000 !20.143
Mean !23.904 !18.339 !13.878 !9.429 !20.247 !13.507 !9.517 !7.636
SD 4.608 5.990 7.183 4.536 6.821 5.986 4.048 2.218
Max !1.514 1.511 2.140 3.202 0.410 1.878 2.006 1.671

log(LR)

1 ng 200 pg

2 3 4 5 2 3 4 5

(b) False inclusions
0 0 18 142 1071 0 36 152 123
1 0 6 37 200 0 16 22 18
2 0 1 7 24 2 1 3 4
3 0 0 0 6 0 0 0 0

Total 0 25 186 1301 2 53 177 145
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14. Sensitivity 

using their weight, quantity, and log(LR) values (Fig. 1). The
scatterplots of positive match results were roughly linear
(r2 = 0.505), and for two contributors showed the expected
log(LR) reductions for equal contributor weights and high DNA
amounts. The average regression slope across all groups was
13.33 log(LR)/log(DNA), with a standard error of 0.74. This
slope value means that a 10-fold change in contributor DNA
amount yields about a trillion-fold change in LR (Table 3).

Interpretation Invariance

There were eight test groups, two for DNA quantity (high,
low) and four different contributor numbers (2, 3, 4, and 5 indi-
viduals). The slope parameter describes an important aspect of
interpretation behavior, namely how contributor DNA amount
affects match information. Finding similarity in the slope param-
eter between the groups’ regression results would suggest that
TrueAllele’s interpretation behavior is relatively invariant across
these conditions. Such interpretation invariance would show that
TrueAllele behaves consistently, regardless of the number of
contributors or amount of DNA.
Consider, for example, the interpretation of a two-person

high-template mixture, relative to that of a five-person low-tem-
plate mixture. The peak height data for these two situations

would look entirely different. On average, there is more identifi-
cation information in a 1 ng two-person mixture than in a
200 pg five-person mixture, as seen in the 4 ban difference in
respective y-intercept values of !14.9 and !18.6 (Table 3). But
their respective slopes of 11.4 and 13.3 are similar, indicating a
consistent information response to changes in contributor DNA
amount.
Analysis of covariance (ANCOVA) was used to test this simi-

larity hypothesis. The covariate was the slope of a regression
line (Fig. 2). The null hypothesis was that the slopes (across the
eight groups) were the same. To reject the null hypothesis, there
would need to be a significant difference between the slopes.
(The intercept values were expected to differ, as each DNA mix-
ture group had its own average identification information.)
The eight groups showed different intercept values (Table 3),

expressing group differences in DNA detectability (x-intercept)
and identification information (y-intercept). There was no signifi-
cant difference in regression line slope (p = 0.3478 > 0.05), and
so the null hypothesis could not be rejected (Table 4). Table 3
indicates the slope invariance across four different contributor
numbers (2, 3, 4, and 5) and DNA template amounts (1 ng and
200 pg). This invariance shows that TrueAllele’s overall infor-
mation response to DNA data does not significantly depend on a
particular mixture’s number of contributors or template amount.

FIG. 5––Sensitivity (200 pg). Histograms of the log(LR) distribution for mixtures having (a) 2, (b) 3, (c) 4, and (d) 5 contributors. Average replicated log
(LR) scores were used.
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15. Reproducibility 

all the data. Such thorough and objective mathematical DNA
mixture interpretation is the province of machines (31).
To be forensically useful, interpretation methods must be fully

tested on realistic data. When software programs cannot robustly
resolve challenging mixtures, their casework applicability
becomes limited (e.g., DNAMIX, I-3, LoComatioN, LSD, PEN-
DULUM). For over 10 years, TrueAllele has been extensively
assessed in validation studies performed by crime laboratories
and Cybergenetics, with publication in peer-reviewed journals
(15–19).
This TrueAllele validation study used randomly generated

DNA mixtures of known composition that were representative of
actual casework. The samples contained up to five contributors,
for both high- and low-template amounts. The study assessed the

efficacy of the computer’s genotype modeling, as quantified by
LR.
The computer’s mixture weight values were found to be reli-

able. The computed match information varied with DNA quan-
tity in a predictable way that did not significantly depend on
contributor number or template amount. Excess assumed contrib-
utors did not materially affect the conclusions.
The match statistic determination of inclusion and exclusion

gave reproducible match values. The system was highly sensi-
tive, preserving considerable identification information. It was
also extremely specific, providing large exclusionary match sta-
tistics. Error rates were determined for false inclusions and
exclusions. Inclusion accuracy was tabulated as a function of
mixture weight.
This in-depth experimental study and statistical analysis estab-

lish the reliability of TrueAllele for the interpretation of DNA
mixture evidence over a broad range of forensic casework condi-
tions.
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FIG. 9––Reproducibility (200 pg). Scatterplots of paired log(LR) values for duplicate computer runs on the same mixture sample. The mixtures had (a) 2, (b)
3, (c) 4, and (d) 5 contributors. Each point shows the first (LR1) and second (LR2) replicates.

TABLE 9––Reproducibility. The table shows the within-group standard devi-
ation rw (ban) for each of the eight test groups, at both 1 ng and 200 pg

DNA template amounts.

ncon 1 ng 200 pg

2 0.189 0.171
3 0.281 0.205
4 0.430 0.255
5 0.287 0.254
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