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ABSTRACT 
 
Manual review of complex DNA evidence does not fully elicit all the data's 
identification information.  Therefore, computer methods have been 
developed for mathematical interpretation of mixed and low-template DNA.  
The genotype modeling approach computationally separates out the 
contributors to a mixture, with uncertainty represented through probability.  
Comparison of a contributor genotype to another genotype, relative to a 
population, calculates a likelihood ratio (LR).  Validating an interpretation 
method on a broad range of DNA mixtures having known composition can 
help predict an expected LR outcome in a particular case.  

 This randomized experimental design examined 40 DNA mixture items.  
The 4 mixture sets had 2, 3, 4 or 5 contributors, with each item specified as 
a random mixture weighting of randomly assigned known references.  Both 
normal (1 ng) and low (200 pg) template amounts were studied, for a total of 
8 groups (4 contributor numbers x 2 template amounts) each having 10 
mixture items.   

 The mixture weight (MW) of each item's contributors had a 
predetermined design value, but was subject to laboratory variation.  For 
each item, the TrueAllele system computed two MW estimates, one using all 
the known genotypes, and the other with all genotypes unknown.  MW was 
also computed manually on the 2 contributor items.  There was a strong 
association (r2 = 0.999) between the three computed MWs for an item, and 
less (r2 = 0.907) with the design value (p < 10-12).  The computed TrueAllele 
known-genotype MWs had the most precise values (average sd = 0.0195 
log(LR) units), and were used in the remainder of the study.   

 Following a procedure used in a previous validation study [1], 
scatterplots were developed comparing a contributor's known DNA quantity 
(logarithm of MW x total DNA, x-axis) versus its identification information 
(log of LR, y-axis).  This approach permitted examination of all the match 
results (all contributors of all items) within their groups across a single 
statistical analysis.  The scatterplots of positive match results were roughly 
linear (r2 = 0.638), showing expected log(LR) reductions for equal MWs and 
high DNA amounts.  The average regression slope was 12.66 log(LR)/
log(DNA) (p < 10-40), so a ten-fold change in DNA amount yielded a trillion-
fold change in LR.   

 Analysis of covariance (ANCOVA) of the eight groups showed different x-
intercept values, but no significant difference in slope (p = 0.348 > 0.05).  
This slope invariance was observed across four different contributor 
numbers (2, 3, 4 and 5) and DNA template amounts (200 pg and 1 ng).  This 
invariance indicates that TrueAllele's information response to DNA mixture 
data is relatively independent of contributor number or template amount.  
The ANCOVA outcome suggests that this genotype modeling method 
produces reliable match results, regardless of the DNA mixture composition.   

 The false exclusion rate (Type II error) was estimated as a function of 
MW.  For normal DNA amounts, there were positive match results in 100% 
of comparisons (0.10 ≤ MW ≤ 1.00), 82% (0. 05 ≤ MW ≤ 0.10), 40% (0.01 ≤ 
MW ≤ 0.05) and none below 0.01.  With low-template DNA, positive match 
results were found in 100% of comparisons (0.25 ≤ MW ≤ 1.00), 91% (0.10 ≤ 
MW ≤ 0.25), 24% (0.05 ≤ MW ≤ 0.10) and none below 0.05.  In addition to 
these sensitivity and specificity results, reproducibility was measured in all 
groups.  

 This validation study used randomly generated DNA mixtures (reflective 
of actual casework samples) of up to 5 contributors, with both high and low 
template amounts, to assess TrueAllele genotype modeling.  The study 
found that the computer's MW values were reliable, and that match 
information changed with DNA quantity in a predictable way that did not 
significantly depend on contributor number or template amount.  Type II 
error was determined as a function of MW.  This in-depth experimental study 
and statistical analysis show the applicability and limitations of the TrueAllele 
method.  
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CONCLUSIONS 
 
The computer interpretation of DNA evidence is a 
twenty-first century necessity.  With ever-increasing 
numbers of STR loci, DNA mixtures having three or 
more contributors, low-level or degraded samples, 
and the potential for subjective examination bias, 
human analysts cannot be expected to fully 
process all the data.  Such thorough and objective 
mathematical DNA mixture interpretation is the 
province of machines.  

 To be forensically useful, interpretation methods 
must be fully tested on realistic data.  The history of 
mixture interpretation is strewn with unused 
software programs whose aspirations far exceeded 
their implementation (e.g., DNAMIX, I-3, 
LoComatioN, LSD, PENDULUM).  Exceptionally, 
Cybergenetics TrueAllele Casework system has 
been repeatedly proven in extensive validation 
studies, both internal to laboratories and in peer-
reviewed publications [2, 3].  

 This TrueAllele validation study used randomly 
generated DNA mixtures of known composition that 
were representative of actual casework.  The 
samples contained up to five contributors, for both 
high and low template amounts.  The study 
assessed the efficacy of the computer's genotype 
modeling, as quantified by LR.   

 The computer's mixture weight values were 
found to be reliable.  The computed match 
information varied with DNA quantity in a 
predictable way that did not significantly depend on 
contributor number or template amount.  Excess 
assumed contributors did not materially affect the 
conclusions.   

 The match statistic determination of inclusion 
and exclusion gave reproducible match values.  
The system was highly sensitive, preserving 
considerable identification information.  It was also 
extremely specific, providing large exclusionary 
match statistics.  Error rates were determined for 
false inclusions and exclusions.  Inclusion accuracy 
was tabulated as a function of mixture weight.   

 This in-depth experimental study and statistical 
analysis establish the reliability of TrueAllele for the 
interpretation of DNA mixture evidence over a 
broad range of forensic casework conditions.   
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Figure 1. DNA information vs. amount.  Scatterplots 
of TrueAllele-inferred log(LR) versus known DNA 
contributor amount, shown for different numbers of 
contributors (2, 3, 4 and 5 individuals) and DNA 
amounts (1 ng and 200 pg).  Only match results 
having positive log(LR) are displayed.  

How does DNA identification information change 
with DNA quantity?   
 
The change is roughly log linear: a ten-fold change 
in quantity gives a trillion-fold change in LR.  

Figure 4. Sensitivity (200 pg).  Histograms of the log(LR) 
distribution for mixtures having 2, 3, 4 and 5 contributors.  
Average replicated log(LR) scores were used.  

Figure 5. Specificity (200 pg). The log(LR) specificity 
distribution for mixtures having 2, 3, 4 and 5 contributors.  The 
LRs were computed relative to 10,000 randomly generated 
profiles across the FBI African-American (BLK, red), Caucasian 
(CAU, green) and Hispanic (HIS, blue) populations.  

Figure 6. Reproducibility (200 pg).  Scatterplots of paired 
log(LR) values for duplicate computer runs on the same mixture 
sample.  The mixtures had 2, 3, 4 and 5 contributors.  Each 
point shows the first (LR1) and second (LR2) replicates.  

Does TrueAllele interpretation vary much with the 
amount of DNA or the number of contributors?  
  
No, the behavior stays about the same, as shown 
by an unchanging information-to-amount slope.   

Figure 2. Information change regression slopes.  
Scatterplots of log(LR) vs. DNA amount are shown 
for eight different groups: 2, 3, 4 or 5 contributors, 
and either 1 ng or 200 pg of DNA.  The scatterplots 
and regression lines are overlain to show their similar 
slope behavior.  

Figure 3. Information with excess contributors (two 
person mixtures).  In separate computer runs, TrueAllele 
assumed 2, 3, 4, 5 or 6 unknown contributors and inferred 
log(LR) match statistics.  For each mixture component, 
the regression line and data points are shown under 
these five different contributor assumptions.  

If there are K contributors in a mixture, and TrueAllele 
assumes K or more contributors are present, what happens?   
 
Once there are a sufficient number of assumed contributors, 
on average the LR stays the same or lower.  

INCLUSION DISTRIBUTION 
 

EXCLUSION DISTRIBUTION 
 

REPRODUCIBILITY COMPARISON 
 

How well does TrueAllele include genotypes that 
have contributed to a low-template DNA mixture?  
  
Very well, since the LR values usually include, and 
less often exclude, a true contributor.     

How well does TrueAllele exclude genotypes that 
have not contributed to a low-template DNA mixture? 
   
Very well, since the LR values almost always exclude, 
and very rarely include, a non-contributor.  

How well do repeated TrueAllele computer runs give the 
same match statistic with a low-template DNA mixture?  
  
Very well, since replicate LR values for the same match 
comparison line up along the LR1 = LR2 line.  
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