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ABSTRACT

A DNA database can link crime scenes to suspects,
providing investigative leads. These DNA
associations can solve cold cases, track terrorists, and
stop criminals before they inflict further harm.
However, current government databases do not fully
preserve DNA identification information, and cannot
maximize public safety.

DNA data is summarized in a genotype. The
genotype can be stored on a database, and compared
with other genotypes to form a likelihood ratio (LR)
match statistic. Data uncertainty, present in most
evidence, translates into genotype probability.

Highly informative interpretation uses all the
quantitative DNA data, placing higher probability on
more likely genotype values. Most evidence, though,
is interpreted by qualitative human review, which
diffuses probability across infeasible solutions. Since
the LR is proportional to the true genotype probability,
weaker interpretation methods lead to weaker (or
nonexistent) DNA matches.

The weakest DNA interpretation method is RMNE,
which thresholds quantitative data into all-or-none
qualitative "allele” events. The current DNA
databases (including CODIS) use an RMNE allele
representation that discards considerable genotype
information, losing sensitivity and specificity.

The "probabilistic genotype" representation is part of
the new ANSI/NIST-ITL data exchange standard.
Unlike allele lists, this database representation can
preserve all DNA identification information, and be
quantified dynamically into LR match statistics. Every
interpretation method has a corresponding genotype
probability representation.

ISFG's 2006 mixture guidelines recommend the more
informative LR over RMNE. Unfortunately, current
databases transform hard won LR genotypes into less
informative RMNE alleles. This poster shows how
genotype probability can preserve identification
information for DNA investigation.

B. Applying a threshold
discards the peak height
information and its uncertainty,
leaving only a guess at
possible alleles. This allele list
is currently stored on a DNA
database, instead of more
informative probabilistic
genotypes.

C. Thresholds cause a million-
fold information loss in DNA
information, as measured by
the likelihood ratio (LR) match
statistic. Shown are the
log(LR) values on the same
DNA mixture data as inferred
using probabilistic genotypes
(blue) and RMNE thresholds
(orange). See reference #3.

D. Thresholds introduce a false-
negative rate that often exceeds
100% on DNA mixture data.
These low information evidence
alleles populate DNA databases,
and fail to identify criminals. A
more informative DNA database
would instead use probabilistic
genotypes.

INFORMATION FAILURE

Taxpayers fund crime laboratories so that DNA can help apprehend and convict criminals, hoping to prevent further
victimization (1). In that light, every incorrect DNA miss is a moral failure. Government DNA policies over the last
decade have magnified these scientific failures into a public safety crisis (2).

Most biological evidence is not pristine, comprising mixed, low level or damaged DNA. Crime labs excel at
generating superb DNA data from these specimens. But their approximate human review methods cannot fully

extract the identification information from their data.

In science, informative inference is achieved by fully explaining the observed data. Computers can explain DNA
signals by examining every conceivable quantitative genotype explanation (3). Without computer assistance,
people cannot conduct a thorough examination of their data.

Instead, human review reduces highly informative DNA data to qualitative all-or-none possibilities (4). These

"threshold" methods discard most of the DNA match strength (5, 6). For example, on homicide DNA data from a
national laboratory, | testified to a 189 billion computer-inferred match statistic; using thresholds, the lab had only
assigned 13 thousand (7-10).

With thresholds, the false negative rate (failure to identify) exceeds 100% on typical mixture data (11). This error
rate is unprecedented in science, and would be unacceptable in any other field affecting human lives (e.g.,
medicine, engineering). These errors bring into question the scientific rigor of human DNA mixture interpretation.

Threshold interpretation of DNA evidence lets a forensic analyst testify comfortably in court. But these weak
methods often fail to identify criminals or prevent crime. Indeed, human review can misrepresent 70% of computer
interpretable DNA mixture items as "inconclusive”, providing no match score at all (12).

The same threshold methods that lose a million-fold factor of DNA information are also used for national DNA
database evidence. By storing "alleles” instead of genotypes, these databases discard vast amounts of
identification information. However, a probabilistic genotype DNA database (such as TrueAllele) can preserve the
evidence information, and thus solve far more cold cases.
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A. The quantitative modeling of DNA
data accounts for peak height and
uncertainty, producing allele pair
possibilities. A genotype is a
probability distribution over these
allele pairs. Shown is a genotype
possibility for a two contributor DNA
mixture, with @ minor (blue) and major
(orange) allele pairs.
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