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METHOD AND SYSTEM FOR DNAMIXTURE 
ANALYSIS 

FIELD OF THE INVENTION 

The present invention pertains to a process for analyzing 
mixtures of DNA molecules. More specifically, the present 
invention is related to performing experiments that produce 
quantitative data, and then analyzing these data to character 
ize a DNA component of the mixture. The invention also 
pertains to systems related to this DNA mixture information. 

BACKGROUND OF THE INVENTION 

With the advent of PCR-based STR typing systems, mixed 
samples can be separated into their individual DNA profiles. 
Quantitative peak information can help in this analysis. How 
ever, despite Such advances, forensic mixture analysis still 
remains a laborious art, with the high cost and effort often 
precluding timely reporting. 

This invention describes a new automated approach to 
resolving forensic DNA mixtures. This “linear mixture analy 
sis” (LMA) is a straightforward mathematical approach that 
can integrate all the quantitative PCR data into a single rapid 
computation. LMA has application to diverse mixture prob 
lems. As demonstrated herein on laboratory STR data, LMA 
can assess the quality and utility of its solutions. Such rapid 
and robust methods for computer-based analysis of DNA 
mixtures are helpful in reducing crime. 

In forensic science, DNA samples are often derived from 
more than one individual. In such cases, key objectives 
include elucidating or confirming a mixed DNA sample's 
component DNA profiles, and determining the mixture ratios. 
Current manual qualitative peak analysis of mixed DNA 
samples is slow, tedious, and expensive. These difficulties can 
generate considerable delay in the casework analysis of 
forensic DNA mixtures, underscored by the current USA 
backlog comprised of over 100,000 unanalyzed rape kits. 

Under appropriate data generation conditions, STR peak 
data can be quantitatively analyzed. Such quantitative 
approaches have spawned heuristic and computer-based 
methods that can potentially resolve these complex data. 
These prior art statistical computer programs are limited in 
that they typically analyze each STR locus separately, and 
may require human intervention when combining the locus 
results into a complete nonoptimized solution (Clayton T M. 
Whitaker JP Sparkes R. Gill P. Analysis and interpretation of 
mixed forensic stains using DNASTR profiling. Forensic Sci. 
Int. 1998; 91:55-70; Evett I W. Gill P. Lambert J. A. Taking 
account of peak areas when interpreting mixed DNA profiles. 
J. Forensic Sci. 1998; 43(1):62-69; Gill P. Sparkes R, Pinchin 
R. Clayton T M. Whitaker J. P. Buckleton J. Interpreting 
simple STR mixtures using allele peak area. Forensic Sci. Int. 
1998; 91:41–53), incorporated by reference. 
The present invention includes a quantitative analysis 

method that describes the mixture problem as a linear matrix 
equation. One name for this novel DNA analysis approach is 
“Linear Mixture Analysis,” or “LMA. Unlike previous 
methods, the mathematical LMA model uses STR data from 
all the loci simultaneously for greater robustness. The linear 
mathematics permits rapid computer calculation, and pro 
vides a framework for statistical analysis. An associated error 
analysis can measure the quality of the overall Solution, as 
well as the utility of each contributing locus. 

This specification details the generation of linear mixture 
data, novel methods of linear mixture analysis, a nonobvious 
mixture deconvolution technology for determining unknown 
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2 
mixture components, an associated error analysis, the com 
putation of probability distributions, a set of statistical tests, 
useful bootstrap simulation methods, user interfaces and data 
visualization for communicating results, utility in forensic 
applications, and useful extensions of linear mixture analysis. 

SUMMARY OF THE INVENTION 

The invention pertains to a method of analyzing a mixed 
DNA sample. The method is comprised of the steps of obtain 
ing a mixed DNA sample. Then there is the step of amplifying 
the DNA sample to produce a product. Then there is the step 
of detecting the product to produce a signal. Then there is the 
step of analyzing the signal to determine information about 
the composition of the mixed DNA sample. 
The invention also pertains to a method for finding Sus 

pects. The method is comprised of the steps of obtaining a 
sample related to a crime wherein the sample includes DNA 
from a plurality of individuals. Then there is the step of 
determining mathematically with a computing device ageno 
type related to an individual in the sample. Then there is the 
step of comparing the genotype with a database of genotypes 
to form a comparison. Then there is the step of finding a likely 
Suspect from the database using the comparison. 
The invention also pertains to a system for resolving a 

DNA mixture. The system comprises means for amplifying a 
DNA mixture, said means producing amplified products. The 
system further comprises means for detecting the amplified 
products, said means in communication with the amplified 
products, and producing signals. The system further com 
prises means for quantifying the signals that includes a com 
puting device with memory, said means in communication 
with the signals, and producing DNA length and concentra 
tion estimates. The system further comprises means for auto 
matically resolving a DNA mixture into one or more compo 
nent genotypes, said means in communication with the 
estimates. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 shows a representation of information in linear 
mixture analysis. 

FIG. 2(a) shows the relation between a data point and two 
genotypes. FIG. 2(b) shows a specific perpendicular relation 
ship and point. 

FIG.3(a) shows the closest points to the search space at the 
minimum solution. FIG.3(b) shows a contradiction of mini 
mality. 

FIG. 4(a) shows a highly confident three allele solution at 
a locus. FIG. 4(b) shows an ambiguous three allele solution. 

FIG. 5 shows a four allele solution at a locus. 
FIG. 6 shows minimization curves for different mixing 

weights. 
FIG. 7 shows a mixture deconvolution solution. 
FIG. 8(a) shows a distribution from a two unknown mix 

ture problem. FIG. 8(b) shows a distribution from a one 
unknown mixture problem. 

DESCRIPTION OF THE PREFERRED 
EMBODIMENT 

Linear Mixture Data 
A detailed description of the data generation and initial 

data analysis process has been given ("Method and System 
for DNA Analysis.” filed Feb. 15, 2000, having Ser. No. 
09/504,389), incorporated by reference. This section summa 
rizes the key steps. 
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Step 1. Sample Extraction. The DNA is extracted from the 
sample (e.g., a forensic stain). This is preferably done using 
standard techniques such as cell lysis followed by inorganic 
Solvent extraction, Such as phenol chloroform or silica gel 
membranes. Chelex is another standard extraction mecha 
nism. Additional lysis and processing may be done for 
extracting sperm DNA. It is preferable to remove PCR inhibi 
tors (e.g., divalent cations, proteins) so that the PCR ampli 
fication can proceed as linearly as possible. Additional clean 
up steps, such as microcon purification, may be helpful. See 
(Ausubel FM, Brent R. Kingston RE, Moore D D, Seidman 
JG, Smith JA, et al., editors. Current Protocols in Molecular 
Biology. New York, N.Y.: John Wiley and Sons, 2001; Dra 
copoli NJ. Haines J. L. Korf B R. Morton CC, Seidman CE, 
Seidman J G, et al., editors. Current Protocols in Human 
Genetics. New York: John Wiley and Sons, 2001; QIAamp 
DNA Blood Kit, Qiagen, Valencia, Calif.; Microcon, Milli 
pore, Bedford, Mass.), incorporated by reference. 

Step 2. PCR Amplification. The extracted and purified 
DNA template is then PCR amplified using a preferably mul 
tiplexed primerset. It is preferable to quantitate the DNA, and 
use the amount of DNA template (e.g., 0.5 ng to 2 ng) rec 
ommended for use with the multiplex primer set. However, 
limited Sample material or other circumstances may necessi 
tate using Smaller or larger DNA amounts (e.g., 1 pg to 1 ug). 
In such cases, the PCR conditions can be varied. For example, 
the number of PCR cycles can be increased with very low 
DNA quantities. With small amounts of DNA (e.g., under 100 
pg), SGMPLUS(R) STR multiplex kit users have increased the 
cycle number from 28 to 34. It is preferable to use a high 
quality thermostable polymerase (e.g., AMPLITAQ GOLDR) 
DNA polymerase), along with a hot-start procedure to reduce 
spurious amplification. See (PROFILERPLUS(RSTR multi 
plex kit, COFILER(R) STR multiplex kit, SGMplus manuals, 
Applied Biosystems, Foster City, Calif.; POWERPLEX16(R) 
STR multiplex kit, Promega, Madison, Wis.; Gill P. Whitaker 
J. Flaxman C. Brown N. Buckleton J. An investigation of the 
rigor of interpretation rules for STRs derived from less than 
100 pg of DNA. Forensic Sci Intl 2000, 112:17-40), incorpo 
rated by reference. 

Step 3. Size Separation and Detection. Automated DNA 
sequencers combine fragment separation and detection. 
Some older gel-based systems (e.g., Hitachi FM/BIO2(R) 
DNA sequencer) perform these operations in separate steps. 
An adequate quantity and quality of run controls should be 
used, including internal size standards, allelic ladders, known 
positive controls, and negative controls. Preferably, the detec 
tor (e.g., fluorescent) exhibits a linear response over a large 
range, and an appropriate amount of PCR product is loaded 
into the system to work within this linear range, thereby 
avoiding low signal to noise or saturation of the detector. The 
detecting step produces data files collected from detected 
PCR product signals. See (ABI/310R DNA sequencer, ABI/ 
377R DNA sequencer, ABI/3700.R DNA sequencer user 
manuals, Applied Biosystems, Foster City, Calif.; FM/BIO2 
user manual, Hitachi Software, South San Francisco, Calif.; 
MEGABACER DNA sequencer 1000 user manual, Molecu 
lar Dynamics, Sunnyvale, Calif.; SCE/9610R DNA 
sequencer user manual, SpectruMedix, State College, Pa.), 
incorporated by reference. 

Step 4. Image and Signal Analysis. Baseline removal and 
color separation are performed on the detected signals. This 
produces signals in each dye that are not corrupted by peaks 
from spectrally overlapping dyes. On gel images, lane track 
ing is performed to identify the one dimensional profiles. On 
both gel and capillary systems, the internal size standards are 
tracked, and then used to map pixel location into an estimate 
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4 
of DNA fragment size. The sized signal information is then 
recorded for further analysis. See (GENESCANR DNA 
analysis Software user manual, Applied Biosystems, Foster 
City, Calif.; FM/BIO2 user manual, Hitachi Software, South 
San Francisco, Calif.; TRUEALLELE(RDNA analysis and 
interpretation Software user manual, Cybergenetics, Pitts 
burgh, Pa.), incorporated by reference. 

Step 5. Quantitation and Allelic Analysis. The data signals 
are compared with the allelic ladder signals; preferably, these 
signals are in size coordinates. The relevant allelic peaks of 
each marker are then precisely sized to determine the allele, 
and possibly other information (e.g., size deviation, allelic 
designation, genotype). The allelic peaks are quantified to 
estimate their relative DNA concentration; this can be done 
using peak height (or area) taken from the signal peak or its 
modeled function. See (GENOTYPERR DNA interpretation 
Software user manual, Applied Biosystems, Foster City, 
Calif.; STRCALL(R) DNA interpretation software user 
manual, Hitachi Software, South San Francisco, Calif.; 
True Allele user manual, Cybergenetics, Pittsburgh, Pa.; Ng, 
S.-K., Automating computational molecular genetics: solv 
ing the microsatellite genotyping problem, Computer Sci 
ence Dept, 1998, Carnegie Mellon University), incorporated 
by reference. 

Step 6. PCR Artifact Removal. It is preferable (although 
not required) to remove PCR amplification artifacts prior to 
quantitative mixture analysis. PCR stutter can be removed 
from a locus by calibrating the allele stutter patterns on 
related Samples from a laboratory, and then mathematically 
removing (or attenuating) the stutter from the examined 
sample. Relative amplification of alleles within a locus (also 
termed preferential amplification or heterozygote imbalance) 
can be adjusted for by calibrating the imbalance on related 
samples from a laboratory, and then mathematically adjusting 
allele balance from the examined sample. See (Martens, H. 
and T. Naes, Multivariate Calibration 1992, New York: John 
Wiley & Sons 438; Ng, S.-K., Automating computational 
molecular genetics: Solving the microsatellite genotyping 
problem, in Computer Science. 1998, Carnegie Mellon Uni 
versity; Perlin, M. W., et al., Rapid construction of integrated 
maps using inner product mapping:YAC coverage of human 
chromosome 11 Genomics, 1995. 28(2): p. 315-327), incor 
porated by reference. 
The quantified allelic peaks of the PCR amplified sample at 

a locus behave linearly over a wide range of parameters. 
Specifically, the relative DNA concentrations at a locus (ad 
justing for PCR stutter and relative amplification) are propor 
tional to the relative amounts of DNA allele template present. 
This physical phenomenon is a fact of nature. Poor PCR 
conditions can induce nonlinear behavior. It is therefore pref 
erable to use optimal DNA template, enzyme, multiplex 
primers, and other high quality PCR amplification elements. 
Linear Mixture Model 
Linear Model 

In the PCR amplification of a mixture, the amount of each 
PCR product scales in rough proportion to the relative 
weighting of each component DNA template. This holds true 
whether the PCRs are done separately, or combined in a 
multiplex reaction. Thus, if two DNA samples A and B are in 
a PCR mixture with relative concentrations weighted as wA 
and w8 (0sw As1, Osw851, w A+wB=1), their correspond 
ing signal peaks after detection will generally have peak 
quantitations (height or area) showing roughly the same pro 
portion. Therefore, by observing the relative peak propor 
tions, one can estimate the DNA mixture weighting. Note that 
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mixture weights and ratios are interchangeable, since the 
mixture weight 

A + B 

is in one-to-one correspondence with the mixture ratio 

A 
B 

To mathematically represent the linear effect of the DNA 
sample weights (WA, w8, wC, ...), combine all the locus data 
into a single linear matrix equation: 

which has expected value: 

Here, column vector d describes the mixture profile's peak 
quantitation data, matrix G represents the genotypes (column 
gives the alleles for individual), and w is the weight column 

vector that reflects the relative proportions of template DNA 
or PCR product. The quantitative data profile d is the product 
of genotype matrix G and the weight vector w. The more 
complete data description includes an error term e. while the 
error term is exploited later on, the expected value form is 
sufficient for the first parts of the discussion. 
More precisely, write the vector/matrix equation d=Gw 

for mixture coupling (of individuals and loci) as coupled 
linear equations that include the relevant data: 

dik = X gijk Wii, 
i 

where for locus i, individual j, and allele k: 
d is the allelek proportion in the observed mixture data at 

locus i; 
g is the genotype of individual j at locus i in allele k, 

taking values 0 (no contribution), 1 (heterozygote or 
hemizygote contribution), or 2 (homozygote contribu 
tion), though with anomalous chromosomes other inte 
ger values are possible; and 

w, is the weighting in the mixture of individual j's DNA 
proportion. 

Illustrative Examples 

It is useful to motivate the use of vectors and matrices in 
modeling STR mixtures. This section provides extended 
illustrative examples. 
The first example shows the coupling of DNA mixture 

weights with relative peak quantities. Suppose that there are 
three individuals A, B, C represented in a mixture, where 50% 
of the DNA is derived from individual A, 25% from indi 
vidual B, and 25% from individual C. Mathematically, this 
corresponds to a weighting of w A=0.5, w3=0.25, and 
wC=0.25. Further suppose that at one locus the genotypes 
a. 

A has allele 1 and allele 2, 
B has allele 1 and allele 3, and 
C has allele 2 and allele 3. 

This information, and the predicted peak quantities, are laid 
out in FIG. 1. 
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6 
Referring to FIG. 1, the relative data quantity is calculated 

for each allele at the locus as shown. For example, allele 1's 
relative data value of 0.75 is calculated from (a) the genotype 
values of <1, 1, 0> (i.e., the allele is <present, present, 
absent>) at allele 1 for individuals A, B, and C, and (b) the 
individuals' DNA mixture weight contributions of <0.50, 
0.25, 0.25>. The computation is performed by computing the 
inner product of these two vectors as (1x0.50)+(1x0.25)+(0x 
0.25)=0.75. 
The information in FIG. 1 can be connected via the linear 

vector/matrix equation: 

alleles alleles Talleles Talleles wA 

in of of of . B 

mixture A B C C 

Representing each allele as a position in a column vector, this 
forms the linear relationship: 

0.75 

which is the mathematical expression of Table 1. Note that the 
sum of alleles in each allele column vector (whether mixture 
or individual) is normalized to equal two, the number of 
alleles present. 

With multiple loci, the weight vector w is identical across 
all the loci, since that is the underlying chemical mixture in 
the DNA template. This coupling of loci can be represented in 
the linear equations by extending the column vectors d and G 
with more allele information for additional loci. 
To illustrate this coupling of DNA mixture weights across 

multiple loci, next add a second locus to the three individual 
mixture above. At locus two, Suppose that the genotypes are: 
A has allele 1 and allele 2, 
B has allele 2 and allele 3, and 
C has allele 3 and allele 4. 

Combine this vector information via the partitioned matrix 
equation: 

locus 1 ioctls1 i? locus 1 i? locus1 

mixture A's BS CS 

alleles alleles alleles alleles wA 

- - - - --- --- . wb 

locus2 locus2 locus2 locus2 C 

mixture A's BS CS 

alleles alleles alleles alleles 

0.75 1 1 O 

0.75 1 || 0 || 1 

0.50 O || 1 || 1 
0.50 

. 0.25 
0.50 1 || 0 || 0 

0.25 
0.75 1 || 1 || 0 

0.50 O || 1 || 1 

0.25 O || 0 || 1 
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Multiple loci produce more data and provide greater confi 
dence in estimates computed from these linear equations. 
Problem Formulations 

Given partial information about equation d=Gw, other 
elements can be computed by solving the equation. Cases 
include: 
When G and w are both known, then the data profiled can 
be predicted. This is useful in search algorithms. 

When G and dare both known, then the weights w can be 
computed. This is useful in confirming a Suspected mix 
ture, and in search algorithms. 

When d is known, inferences can be made about G and w, 
depending on the prior information available (such as 
partial knowledge of G). This is useful in human iden 
tification applications. 

The DNA mixture is resolved in different ways, depending on 
the case. 

In the preferred embodiment, normalize the mixture profile 
data vector dateach locus. That is, for each locus, let NumAl 
leles be the number of alleles found in an individual’s geno 
type (typically Numalleles=2, one for each chromosome). 
For each allele element of the locus quantitation data, multi 
ply by Numalleles, and divide by the sum (over the observed 
alleles) of all the quantitation values for that locus. Then, the 
Sum of the normalized locus quantitation data is Numalleles, 
which totals 2 in the illustrative example above. 
Linear Mixture Analysis 
A fundamental problem in DNA mixture analysis is deter 

mining the mixture weights (also termed proportions or 
ratios). This section focuses on the problem of how to com 
pute the mixture weights, given the mixture data d, and the 
genotype vectors of the J known contributors. 

Resolving DNA mixtures using LMA entails (a) obtaining 
DNA profile data that include a mixed sample, (b) represent 
ing the data in a linear equation, (c) deriving a solution from 
the linear equation, and (d) resolving the DNA mixture from 
the solution. The LMA approach is illustrated in the following 
problem formulations. 
Geometric Perspective 
The geometry of the linear model is usefully represented 

by the relations of the genotype vectors in multidimensional 
data space. The genotypes are points that may be usefully 
defined as either the pure allele ({0, 1, 2} valued) vectors, or 
as the continuous real-valued data points generated by the 
PCR process (which may contain PCR stutter, relative ampli 
fication, and other artifacts). This geometric model can be 
used with any number of component genotypes, and with any 
number of loci. The basis vectors of this space are the relevant 
alleles, and points in the space describe multiplex PCR mea 
surements (preferably renormalized within each locus). A 
vector coordinate is the renormalized peak quantity (e.g., 
height, area) corresponding to a relative estimate of DNA 
concentration for one allele. 

In a “mixture combination', the real-valued nonnegative 
elements of the weighting vector w sum to 1. That is, the 
points of w form a simplex. Define the space of all possible 
genotype mixtures C(G) as the J-1 dimensional Subspace of 
R' (K the number of alleles considered) generated by all 
mixture combinations Gw of the weighted columns of G. For 
J different individuals, the elements of w lie in the J-1 dimen 
sional simplex, so C(G) (with full G rank) is a J-1 dimen 
sional Subspace. 

With J-2 contributors to the mixture, J-1 equals 1. Then, 
the three points (component genotypes a and b, and mixture 
data d) lie on a plane, and can be easily visualized (FIG. 2.a). 
The solution subspace Gw-abw of possible mixtures in 
this case is a line. This line describes all physically realizable 
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8 
linear mixtures of genotypes a and b, where the exact location 
is given by the mixture combination weight w. 
The least squared error solution to d=Gw--eminimizes the 

length of the error vectore. The minimum solution econnects 
data point d to its perpendicular projection on the line formed 
by a and b (FIG. 2...b). This projection of d onto the subspace 
C(G) generated by mixture combinations of the columns of G 
(i.e., a biw, for positive w Summing to 1) can be computed 
via the perpendicular projection operator P: 

Applying operator P to d produces the point Pd, the least 
squares estimate Giwo. This projection can be generalized to 
account for known covariance structure. Perpendicular pro 
jection operators and least squares estimation are described in 
(Christensen, R., Plane Answers to Complex Questions: A 
Theory of Linear Models 1996, New York: Springer-Verlag), 
incorporated by reference. 
Determining Mixture Weights 

Consider the case where all the genotypes G and the mix 
ture data dare known, and the mixture weights w need to be 
determined. This problem is resolved by solving the linear 
equations d=Gw-i-e for w using a least squares matrix divi 
sion method. One standard method is linear regression (Seber 
GAF. Linear Regression Analysis. New York: John Wiley & 
Sons: 1977), incorporated by reference. Such computer 
implementations often use singular value decomposition 
(SVD) (Press W H, Teukolsky SA, Vetterling WT. Flannery 
BP. Numerical Recipes in C: The Art of Scientific Comput 
ing. Second ed. Cambridge: Cambridge University Press: 
1992), incorporated by reference. 

In the MATLABR) numerical analysis and visualization 
Software programming language, w can be estimated as: 

using the built-in matrix division operation “\'. With full rank 
matrices, matrix multiplication via the normal equations 
computes the weights as: 

A preferred embodiment for robustly determining the weight 
WA is using the projection operator Pd to set the ratio to 
Pd-bl/a-b. This embodiment applies the constraint that the 
weight factors Sum to unity. 

Others have computed mixture weights by minimizing 
parameters at single loci (Gill P. Sparkes R. Pinchin R. Clay 
ton T M. Whitaker JP, Buckleton J. Interpreting simple STR 
mixtures using allele peak area. Forensic Sci. Int. 1998: 
91:41-53). In the LMA model, this early work can be reinter 
preted as minimizing at a single locus the Sum of squares 
deviation ||d-Giw' over w for each feasible integer-valued 
genotype matrix G. This prior art has a limited single-locus 
view of the data, which restricts the amount of derivable 
useful information; there is no known way to combine the 
separate single locus partial Solutions into one global opti 
mum. Moreover, such prior art does not make special use of 
the known reference genotypes, which contain much valuable 
information. LMA improves on such earlier mixture methods 
by providing a mathematical basis that can use the data from 
all the loci simultaneously in a rapid optimized numerically 
computed global minimization. Moreover, LMA permits the 
genotype matrix entries to assume any possible value, and not 
just integers. 

Analogous mixture problems occur outside molecular 
biology, and are similarly modeled using linear matrix equa 
tions. In chemometrics, the approach is termed “multivariate 
calibration” (MC) (Martens H, Naes T. Multivariate Calibra 
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tion. New York: John Wiley & Sons: 1992), incorporated by 
reference. These MC methods are quite different than com 
puting genotypes (and mixture weights) from the data. For 
example: 
(1)MC finds real-valued solutions but genotypes are whole 

numbers. MC finds solutions in a real-valued multidi 
mensional Euclidean function space R. However, 
genotype solutions lie in a Subset of the integer-valued 
lattice in R*. 

(2) Calibration exploits signal continuity whereas locus 
patterns contribute combinatorially. MC inversion 
methods exploit the continuity of close solutions. How 
ever, the genotype mixture problem instead has combi 
natorial solutions, since each locus contributes its own 
Subsets of integer-constrained possibilities (i.e., allele 
combinations). 

(3) MC methods rely on multiple samplings whereas (with 
limited forensic samples) mixture data typically arise 
from a single multiplex PCR experiment. MC typically 
uses multiple data objects (i.e., five or more spectra), and 
finds mixture solutions via linear operators (e.g., inverse 
matrices). In this forensic STR mixture problem, usually 
only a single data object (the DNA-limited multiplex 
PCR) is obtained, and different search algorithms are 
required. 

Therefore, novel methods are needed that are specifically 
tailored to the requirements of the STR mixture genotype 
data, as described next. 
Mixture Deconvolution 

Crime scene stains are typically comprised of J contribu 
tors, where J-1 are of known genotype, and 1 genotype is 
unknown. For example, with J–2, in the mixture data d, the 
victim's genotype a is known, but the perpetrator's genotype 
b is unknown. This is often the case in sexual assault cases. If 
this unknown genotype b were determined, it could be used to 
match a specific Suspect, or to search a DNA database of 
likely Suspects (e.g., convicted offenders) for a matching 
profile. Such a (relatively) unique b would greatly improve 
upon the current art, in which a large set of non-unique can 
didate Suspect genotypes is generated. 

Yet this problem is hard, and is as yet unsolved in the prior 
art. The reason for this is that the quantitative allele measure 
ments for the Kalleles create a vast K-dimensional search 
space. For example, with just J-2 individuals, Kranges from 
about 50 to 100 dimensions for modern 10 to 15 locus mul 
tiplex STR experiments, assuming no stutter removal (and 
about half that dimension when stutter is removed). K 
increases with marker panel size (e.g., with currently antici 
pated STR, SNP and other genetic markers), as well as with 
the number J of contributing individuals. Even when J-1 
contributors are known, the unknown J" contributor can 
assume any one of a combinatorial number of genotypes 
drawn from possible allele values in each of the K dimen 
sions. For example, even restricting the possible alleles to the 
three values {0,1,2}, the number of solutions is 3", a rather 
large number which is approximately 10, or one trillion 
trillion trillion trillion possibilities. 

Interestingly, there is a highly novel, useful, and nonobvi 
ous problem reduction. Given J-1 known contributors, the 
search space can be reduced to a small, finite J-1 dimensional 
simplex. For example, with a two person (one known, one 
unknown) mixture, the problem reduces to searching for a 
minimum on a line segment (i.e., a small bounded continuous 
one dimensional interval). This search can be done in under 
0.1 seconds using standard minimization procedures on an 
inexpensive personal computer. The prior art is limited to vast 
combinatorial searches of discrete genotype possibilities that 
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10 
are intractable on even the most powerful computers. The 
current invention improves on this by changing the problem 
to a far simpler search on a just few (i.e., J-1) bounded 
continuos parameters; the genotype Vectors are found inci 
dently during the process. Unintuitively, the invention makes 
efficient use of increasing quantities of data to improve the 
accuracy and confidence of the genotype estimate. 

This section describes the “mixture deconvolution' inven 
tion. Given the quantitative mixture data d, and J-1 known 
contributing genotypes, the unknown contributor genotype b 
is automatically, accurately, and efficiently computed. 

Consider the case of J individuals, where J-1 of the J 
genotypes are known, the quantitative mixture data profiled 
is available, and the task is to find the unknown genotype b 
along with the mixture weighting w. This important problem 
is currently unsolved in the prior art. The invention’s solution 
is demonstrated here. 
Determining Genotype Profiles 

Consider first the special case where the mixture weights w 
known, and J=2. That is, there are two individuals A and B, 
one of the two genotypes (say, a) is known, the other indi 
viduals genotype (say, b) is not known, the mixture weight 
ing w is known, and the quantitative mixture data profile d is 
available. 
Expand d=Gw-i-e in this case as: 

where a and b are the genotype column vectors of individuals 
A and B, and w A and w3=(1-wA) are their mixture weights. 
Then, to resolve the genotype, algebraically rewrite this equa 
tion as: 

or, equivalently, as: 
b(wA)=(d-wAgA)/(1-wA)-ef (1-wA) 

and, taking expected values, obtain: 
b(wA)=(d-wAgA)/(1-wA) 

and then solve for b by vector arithmetic. The computed 
b(wA) is the normalized difference of the mixture profile 
minus afraction of Asgenotype. The accuracy of the Solution 
increases with the number of loci used, and the quality of the 
quantitative data. Typically, however, the mixture weights w 
are not known. 

Consider next the case where the mixture weights w are not 
known, with J–2, genotype a is known, but genotype b is not 
known. The goal is to make inferences about the genotype 
matrix G starting from a mixture data profiled. This case has 
practical applications for forensic Science. In one typical sce 
nario, a stain from a crime scene may contain a DNA mixture 
from the victim and an unknown individual, the victims 
DNA is available, and the investigator would like to connect 
the unknown individual's DNA profile with a candidate per 
petrator. This scenario typically occurs in rape cases. The 
perpetrator may be a specific Suspect, or the investigator may 
wish to check the unknown individual's DNA profile against 
a DNA database of possible candidates. If the mixture weight 
WA were known, then the genotype b could be computed 
immediately from the vector difference operation (with 
known weights) just described. 
Minimization Algorithm 

Since WA is not known, one workable approach is to search 
for the best weight w in the 0.1 interval that satisfies addi 
tional constraints on the problem. By setting WA equal to this 
best w, this computes the genotype g(WA) as a function of this 
optimized wA value, and derives b-g(w A). A suitable con 
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straint is the prior knowledge of the form that possible solu 
tion genotype vectors g can take. It is known that solutions 
must have a valid genotype subvector at each locus (e.g., 
having alleles taking on values 0, 1 or 2, and Summing to 2). 
One may also consider null alleles, corresponding to failed 
(or low copy number) PCR amplifications. This knowledge 
can be translated into a heuristic function of b(w) which 
evaluates each candidate genotype solution b against this 
criterion. The result of this “mixture deconvolution' algo 
rithm is a computed genotype b and the mixture weights W. 
The heuristic applied is a function of the unknown weight 

w, the observed data profiled, and the known genotype a. 
Since danda are fixed for any given problem, in this case the 
function depends only on the optimization variable W. For any 
given win (0,1), compute the vector: 

To minimize the errore, it suffices to minimize the expres 
sion: 

The primary issue is how to select the minimum distance to 
the correct genotype b at each value of W, so that it can be 
compared with vector b(w). 
Compute and record the deviation devi(e(w)) as fol 

lows. The devil function at one locus is defined as: 
Assume the genotype comprises one homozgotic allele. 
Compute the deviation by finding the index of the largest 
peak, and forming a vector oneallele that has the value 2 
at this index and is 0 elsewhere. Let dev1 be the sum of 
squares difference between genotypes b(w) and oneal 
lele. 

Assume the genotype comprises two heterozygoticalleles. 
Compute the deviation by finding the index of the two 
largest peaks, and forming a vector twoallele that has the 
value 1 at each of these two indices and is 0 elsewhere. 
Let dev2 be the sum of squares difference between geno 
types b(w) and twoallele. 

Return the lesser of the two deviations as the genotype 
difference, adjusted by the (1-w) scaling for the error 
term: (1-w) min(dev1, dev2). 

To compute dev(e(w)), Sum the component devi(e(w)) 
at each locus. That is, the heuristic function is the scalar value 

device(w) =X device (e(w)). 
loci 

Minimize this function over w in 0.1 to find wa, and esti 
mate b from the computed b(w A). If desired, the summation 
terms can be normalized to reflect alternative weightings of 
the loci or alleles, e.g., based on variance. Other heuristic 
functions can be used that reflect reasonable constraints on 
the genotype vectors (Gill P. Sparkes R. Pinchin R. Clayton T 
M. Whitaker J. P. Buckleton J. Interpreting simple STR mix 
tures using allele peak area. Forensic Sci. Int. 1998;91:41 
53), incorporated by reference. 
To assess the quality of the computed STR profile, use 

information from this minimization search. Rule checking 
can identify potentially anomalous allele calls, particularly 
when peak quantities or sizes do not conform to expectations 
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(Perlin M. Computer automation of STR scoring for forensic 
databases. In: First International Conference on Forensic 
Human Identification in The Millennium; 1999; London, UK: 
The Forensic Science Service: 1999), incorporated by refer 
ence. Quality measures can be computed on the genotypes, 
which may suggest problematic calls even when no rule has 
fired. A most useful quality Score in this mixture analysis is 
the deviation dev(e) of the computed genotype. Low devia 
tions indicate a good result, whereas high scores Suggest a 
poor result. It may be helpful to partition the deviations by 
locus, using the locus deviation function devi(e). When a 
locus has an unusually high deviation, it can be removed from 
the profile, and the resulting partial profile then used for 
human identity matching. 
J Individuals, 1 Unknown 

With JD2 individuals and 1 unknown genotype, the data 
can similarly be resolved. With J-2 the mixture space (of 
weights or mixed genotypes) is parameterized by a one 
dimensional line. In general, with arbitrary individuals J the 
mixture space is parameterized by a J-1 dimensional sim 
plex. 
The search is conducted over the J-1 dimensional simplex 

for weights w, ..., w . That is, to define the J-vector w, J-1 
weights are selected so that w+...+w -1, and 0<ws1, for 
all. The continuos genotype approximation points explored 
in the image of the J-1 dimensional simplex weights are: 

where (d-wa-... W. a ) can be written in matrix form 
aS 

d-fa 1... a -Iffwi ... WJ-1'. 

Genotype b is the closest valid genotype to b(w), chosen by 
the fast dev(e(w)) functions defined above. With w, 
defined as: 

w-(1-w- ... -w- ), 

the error vector e(w) is then: 
e(w)=w (b-b(w)), 

so the squared error is computed as: 

|e|2=w.b-b(w)? 
One result of the search is the minimizing mixture weight 

wo. Another is the least squared error vector e(wo) that 
extends from data point dinto its perpendicular projection Pd. 
Point Pd resides within the genotype mixture subspace C(G) 
(the image under G of the simplex mixture weights), and is the 
closest point to d that lies in that Subspace. The search also 
returns b, the closest valid genotype to b(wo). The definition 
of a “valid' genotype depends on the nature of the DNA 
template and the PCR experiment. 
Minimization Method 
The minimization over the simplex can be performed using 

most practical global search algorithms. In the neighborhood 
of the correct solution, the search space has parabolic shape. 
This suggests using a search algorithm that can exploit this 
feature. While virtually any robust search procedure will suc 
cessfully implement the required function minimization, a 
straightforward algorithm is described. 

Step 1. (Global) Parameterize the J-1 dimensional simplex 
as a J-1 dimensional unit cube, since w is just (1-W . . . 
w). Perform a global minimization by preferably partition 
ing the J-1 cube into n parts (e.g., n=2 to 1000, depending on 
the search space) along each dimension, and then forming the 
n' volume elements as the product space of the 1-D parti 
tions. The partitioning can depend on the anticipated value of 
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w. Compute the squared error functionel’—wf-b-b(w) at 
a point within each voxel. Record the set of smallest values 
and their points. 

Step 2. (Local) Choose either Step 2a or Step 2b. Continue 
the search at the local level. 

Step 2a. (Local iterative) Repeat the procedure at voxel 
sample points that appear to be potential minima, but focus in 
on Smaller Volumes around the point. 

Step 2b. (Local search) Use a standard minimization algo 
rithm. For one dimensional search, use golden section search, 
inverse parabolic interpolation, or Brents method. In higher 
dimensions, use a general methods such as Nelder-Mead 
simplex search, or direction set search. There are many good 
local search algorithms that work here (Forsythe, G. E., M. E. 
Malcolm, and C. B. Moler, Computer Methods for Math 
ematical Computations 1977, Englewood Cliffs, N.J.: Pren 
tice-Hall; Brent, Richard P. 1973, Algorithms for Minimiza 
tion without Derivatives, Prentice Hall, Englewood Cliffs, 
N.J.; Press, W. H., et al., Numerical Recipes in C: The Art of 
Scientific Computing. Second ed 1992, Cambridge: Cam 
bridge University Press), incorporated by reference. 
Correctness of Minimization 
The mixture deconvolution method starts with mixture 

data from J individuals, and the known genotypes of J-1 
individuals. The method determines the best estimate of the 
J" genotype, along with the J mixing weights. In evaluating 
the possible weighting values w, the method estimates b(w) 
and finds the closest b to this estimate. 
Many different b's may be considered as the weights w 

vary during this process. However, there is no orthogonality 
constraint (between b(w) and the C(G) subspace, with b a 
column of G) on such closest candidate genotypes. Therefore, 
is not obvious that the correct b is ever chosen: might there be 
some b' that is closer than the correct b to b(wo)? With an 
incorrect genotype b' cloaking the true b, the error would not 
be minimized and the correct weight wo and genotype esti 
mates b(wo) and b would not be found. 

Background: Referring to geometry FIG.3.a, there exists a 
genotype point bin R', such that the simplicial subspace C(a 
b) is the closest subspace to d out of all possible C(a,b) 
choices. Let G=ab, and Gab. For J-2, C(G) is the finite 
line segment connecting points a and b; this line segment 
represents all possible error-free mixtures of genotypes a and 
b. The perpendicular projection point Pd=Gwo is the closest 
mixture point to d in C(G), or indeed in any mixture space 
C(G). The distance r=|(I-P)d between points d and Pd is the 
minimal distance between d and any point in any C(G). 

Assertion: At point b(wo), the minimization search method 
finds the genotype b corresponding to the minimal distancer. 

Proof: Referring to FIG. 3...b, suppose that there exists ab' 
that is closer to b(wo) than is b. Then the angle dab' is less than 
angle dab. Hence the line C(ab') intersects the circle cen 
tered at d of radius r. Therefore there exists a mixture in C(a 
b') whose distance to d is less than r. But this violates the 
minimality assumption for r, and the assertion is proved. Note 
that sin 0 provides a bijection between minimal angles and 
minimal distances. QED. 

To extend the proof for arbitrary J. note that there exists a 
minimal r such that for Some genotype matrix G-a as a 
b), the perpendicular projection operator Pd is closest to data 
point d. The J points {a, a ... a, b} form a J-1 dimensional 
simplex which is orthogonal to the error vector e(wo) (P- 
I)d of length r. As with the J-2 case, there is a J-1 dimensional 
sphere centered at d of radius r, and another centered at bOwo) 
of radius riw. By a minimality argument of lines, distances, 
and angles similar to one presented for the J-2 case, but using 
the interior of the spheres instead those of the circles, there 
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14 
can exist nob' closer than b to b(wo). Therefore, regardless of 
the number of contributors J, the minimum weights wo and 
genotype vector b are found via the b(wo) search of the 
simplex domain. 
Error Analysis 

Variances are calculated from the linear model d=Gw--e. 
together with the global minimal solution Pd=Gwo. Note that 
the error vectore can be computed as (I-P)d. The variances 
can be computed from the data using standard linear regres 
sion methods (Christensen, R., Plane Answers to Complex 
Questions: A Theory of Linear Models 1996, New York: 
Springer-Verlag; Martens, H. and T. Naes, Multivariate Cali 
bration. 1992, New York: John Wiley & Sons 438: Seber, G. 
A. F., Linear Regression Analysis 1977, New York: John 
Wiley & Sons), incorporated by reference. When genotype 
vectors are computed from the data, as in mixture deconvo 
lution, the computed genotypes can be usefully viewed as 
parameters of the model, than as fixed components of the 
design matrix G. 

Estimating the variance of of the data d. With Kallele 
measurements, and Jindividuals, G is a KXJ design matrix (of 
rankJ), and Ed G. W. Assuming (for now) equal variances in 
each component of the observed quantitative data, the disper 
sion of the data is given by DId=o I. Then an unbiased 
estimate of the variance of is the sample variance S: 

ld - G - wolf le(wolf RSS 
dof T dolf T. dolf 

where RSS is the “residual sum of squares', and dof is the 
“degrees of freedom”. Typically in linear modeling, dof-K- 
J. However, in Some cases, the degrees of freedom are 
adjusted, depending the actual number of parameters used in 
the estimation. For example, in mixture deconvolution, when 
the J-1 weights are varied, the J" weight is computed from 
the others. Hence the dof in this case is K-J--1. Bootstrap 
algorithms often dispense with these distinctions altogether, 
particularly in variance calculations, and just use K. In prac 
tice, with the values of Kused in multiplex PCR (e.g., 25 to 
50), small differences in the dof will not greatly affect the 
statistical computations. 

Estimating the variance O, of the mixture weights w. The 
dispersion of the weighting vector w is DIwo-O,(G'G)'. 
Since wo is estimate with the smallest variance, estimate the 
weight variances as: 

The variance of thei" weight is S' times thei" diagonal entry 
(G'G)'. (Covariances between the weights are described 
by the off-diagonal entries.) In particular, this estimate has 
utility for assessing the quality of the mixture problem, since 
a small variance O, (e.g., S. (G'G)') in the mixture 
weightwo indicates a high confidence in the solution (e.g., wo 
and b, with mixture deconvolution). 

Estimating the variance O, of the genotype estimate b(w). 
Since d=Gw--e. 

and so O, is proportional to O/w. Therefore, a reasonable 
estimate of O, at the solution point is S/w. 
When there is additional information about the covariance 

structure of the observations, one can use the general covari 
ance matrix V. Important special cases include V-OI (used 
above), and V a diagonal matrix with VO, (weighted least 
squares). The covariance matrix V is readily estimated from 
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the data when multiple mixture experiments are performed on 
the DNA samples. One need only use the standard statistical 
definition 

where X and Y are vectors of random variables corresponding 
to quantitative allele measurements obtained from multiplex 
PCR experiments. 
A highly useful effect of the invention is that variances and 

standard deviations can be computed directly from the experi 
mental data in order to quantify a confidence in the results. 
The most preferred embodiment derives the estimates 
described here (including mixture weights, genotype vectors, 
and variances) using a linear model of the data. By applying 
least squares estimation (or, equivalently, maximum likeli 
hood estimation), exact distributions are not required. An 
alternative preferred embodiment obtains variance estimates 
and confidence intervals using standard bootstrap simulation 
procedures (Efron, B. and R.J. Tibshirani, An Introduction to 
the Bootstrap 1993, New York: Chapman & Hall), incorpo 
rated by reference. These simulation methods, however, can 
provide useful extensions for solving additional DNA mix 
ture problems, as described next. 
Bootstrap Methods 
A more difficult mixed DNA problem is that of two 

unknown contributors. That is, there are J contributors, J-2 
with known genotype, and 2 genotype profiles unknown. For 
example, with J-3, in the mixture data d, the victims geno 
type a is known, but there are two unknown genotypes band 
b, one of which (at least) is the perpetrator. This can happen, 
for example, in a sexual assault when there are (a) multiple 
assailants, or (b) a consensual partner and an assailant. If the 
unknown genotypes band b were determined, they could be 
used to match specific Suspects, or for searching a DNA 
database of likely Suspects (e.g., convicted offenders) for a 
matching profile. Such (relatively) unique b and b would 
greatly improve upon the current art, in which a large set of 
candidate Suspect genotypes is generated. 

This problem (more than one unknown contributor) is quite 
hard, and not feasibly solved in the prior art. Within the vast 
K-dimensional search space of quantitative allele measure 
ments, two genotype profiles are to be ascertained. With J-2 
individuals, and K=100, how can the genotypes possibly be 
separated and uniquely identified? For with three feasible 
allelic values, each person can have one of 10 possibilities, 
and in combination, the number of possibilities is the square 
of that figure: 10', or a “google' of possible genotype 
solutions. Brute force computation is clearly not a viable 
approach. 

However, with a novel combination of mathematics, com 
putation, and information, the described invention can use 
fully solve this problem. In a nonobvious way, the invention 
combines the method detailed above for deriving one 
unknown (and its confidence) from a mixed DNA profile, 
together with DNA database information. Since the goal is to 
match a suspect in the database of candidate offenders (which 
includes all available profiles from actual Suspects in the case, 
as well as all other accessible DNA databases), the genotype 
of the unknown individual is preferably included in the 
matchable database in order for a match to actually occur. 

It is useful to have a null distribution of scores for a popu 
lation of randomly selected candidate solutions. Then, a can 
didate solution can be compared with this null distribution, 
and a decision made about the whether or not the score Sug 
gests a likely candidate. This section describes how to con 
struct such null distributions using statistical simulation resa 
mpling via bootstrap methods (Efron, B. and R. J. Tibshirani, 
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An Introduction to the Bootstrap 1993, New York: Chapman 
& Hall), incorporated by reference. It further describes how to 
use confidence scores generated by the invention together 
with such null distributions. 
Two Unknown Case 
A method for resolving two unknown DNA profiles using 

a DNA database proceeds as follows. 
The first step constructs and characterizes the null distri 

bution of randomly constructed solution confidence scores. 
With two unknowns, this is done by simulating one unknown, 
and then using mixture deconvolution to compute the second 
unknown, along with an error estimate (e.g., the variance) of 
the solution. A function of this error estimate is used as a 
confidence score. 

Step 1a. Gather data. 
Analyze the DNA mixture peaks to determine the useful loci. 
A locus that is useful for mixture analysis typically has 
more than one allele present. 

Determine the relevant alleles within each useful locus. The 
relevant alleles should preferably have a relative DNA 
concentration that exceeds some preset or data-dependent 
threshold. 

When feasible, retrieve the population frequencies within 
each locus of the relevant alleles. If the prior allele distri 
butions are not available, then preferably use uniformly 
distributed frequencies. 
Step 1b. Sample a distribution of genotypes {g} for the 

population that represents the mixture alleles. In the preferred 
embodiment, this is done by simulating a large number (e.g., 
100 to 5,000 generally suffice, with 500 to 2,000 the most 
preferred range) of genotypes. Preferably, use the prior locus 
allele frequency distribution (restricted to alleles found in the 
mixture) to sample genotypes representative of the popula 
tion that could have generated the mixture. 

Step 1c. Compute a distribution of confidence scores for 
the mixture data allele population. In the J-2 known mixture 
case, genotypes a and b are the two unknowns. For each 
sampled genotype g, set genotype a to g,. Use the mixture 
deconvolution method to estimate the weight vector wo, the 
genotype b, and a confidence score in the solution based on 
the error. Preferably, the confidence scores, is a function of 
the estimated variance ind (of) or wo (o, ). Record the set 
of confidence scores {s}. 

Step 1d. Compute parameters (e.g., mean, variance, confi 
dence interval) of the distribution of sampled confidence 
scores {s}. Continuing with the bootstrap procedure, these 
simulated distribution parameters are computed by the “plug 
in principle for bootstrap statistics (e.g., averages, moments, 
order Statistics, or any computable function). 

Step le. Use the computed parameters of {s} to help 
identify outliers of unusually high quality. In the most pre 
ferred embodiment, this is done by modeling the {s} distri 
bution (e.g., as a normal, beta, or gamma function), and 
determining tail probabilities based on the value of the con 
fidence score. Alternatively, confidence intervals can be con 
structed by the bootstrap for identifying outlier confidence 
scores. In any case, the bootstrap mean and standard deviation 
can provide an approximate guide to identifying noncentral 
values. 
A second computation is then performed. For every candi 

date genotypeh, in the database of possible offenders, a mix 
ture deconvolution is performed, and a confidence score is 
computed. These scores are then compared with the null 
distribution of confidence scores from Step 1 to identify any 
genotypesh, of unusually high confidence that match the data. 
The set of Such highly confident genotypes, preferably in 
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ranked order, is then returned. More specifically, iterating 
over the candidate genotypes {h} in the database: 

Step 2a. Select a candidateh, from the database. The data 
base comprises the available Suspect, convicted offender, or 
other known genotypes. 

Step 2b. Perform mixture deconvolution. Set ah, and 
compute b. Compute the error measures of the mixture decon 
volution solution, as described above. 

Step 2c. Compute the confidence score t, for h, using an 
error-based scoring function commensurable with the one 
used in Step 1c above. Note that: 
When the null distribution has a modeled probability func 

tion, the tail probability can be used. 
The actual S value of h, is a useful numerical score, since 

Smaller values Suggest higher confidence. These quadratic 
values can follow a X distribution. Moreover, ratios of 
sample variances can follow an F distribution, which can 
provide additional ranking and hypothesis testing informa 
tion. 
Step 2d. Compare the confidence score with the null dis 

tribution. Compare t, with the null distribution {s}. 
Step 2e. Identify the possible matching genotypes. Ift, is a 

high confidence score for candidate h, then record the geno 
type (preferably along with its score) as (ht) for further 
evaluation. When bootstrapped confidence intervals are used, 
note that the endpoints provide a straightforward decision 
rule for identifying outliers. The ranked outliers of high con 
fidences are recorded for further examination. 
The result of this procedure is a set of ranked genotypes 

{h} that are in the suspect database which match the mixture 
data unusually well. In practice, this set will generally be 
either empty (no matches were found), a singleton (only one 
good match was found), or a doubleton (both DNA contribu 
tors reside in the database). This null distribution comparison 
method uses a database of DNA profiles that provide a set of 
candidate first individuals. It further uses a mixture deconvo 
lution method that can complete a J-1 mixture problem and 
compute a second individual, along with its confidence score. 
The advantages of this method are many; several are enu 

merated. The mathematical analysis is fully automatable on a 
computing device, so that the current large amount of human 
forensic expert effort is not required. The method can solve 
complex problems that even human experts cannot handle, 
and thereby identify candidate suspects. The results provide 
statistical confidence measures for reporting useful to the 
prosecution or the defense. By reducing large lists of candi 
date to just a few (or even no)Suspects, a vast amount of police 
investigative work is entirely eliminated. This elimination can 
save tens of thousands of dollars in even one case, and can 
help better apply limited law enforcement resources to reduc 
ing crime. 
One Unknown Case 

It can be useful to obtain additional measures of confidence 
in a genotype solution (e.g., when using mixture deconvolu 
tion). A variation of the bootstrapped null distribution method 
above can be used to obtain useful confidence information 
when there are J-1 known contributor profiles, and one 
unknown contributor profile. 

Step 1. Form the null distribution. This works similarly to 
the case above. However, here there are J-1 known geno 
types, and so these are fixed throughout. Only the one 
unknown profile is sampled. 

Step 1a. Gather data. Determine the alleles in the mixture 
data. Use uniformly distributed frequencies when population 
estimates are not available. Note that multiple estimates can 
be computed, one for each population allele frequency distri 
bution. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

18 
Step 1b. Sample a distribution of genotypes {b, for the 

population that represents the mixture alleles. In the most 
preferred embodiment, all the alleles in the mixture at a locus 
are used. This approach is in keeping with current reporting 
practice. In an alternative preferred embodiment, it may be 
possible to use a subset of such alleles. For example, in a three 
locus case with J–2, Suppose that locus dhas alleles {1,2,3}, 
and reference profile a has alleles {1,2}; then it logically 
follows that the unknown genotype b must include allele {3} 
at that locus, and so the allele combination {1,2} would not be 
possible for b at that locus. While this embodiment is more 
efficient than including all possible alleles, it can be less 
robust with quantitative data, particularly when the DNA 
quantity of the allele is relatively small. 

Step 1c. Compute a distribution of confidence scores for 
the mixture data allele population. In the J-1 known mixture 
case, genotype b is the only unknown. For each sampled 
genotype g, set genotype b to g. Use linear modeling error 
estimation Such as perpendicular projection to estimate the 
weight vector wo, and a confidence score s, as above in the 
Solution based on the error. This geometrical calculation is 
simpler (and faster) than searching for unknown genotypes. 
Record the set of confidence scores {s}. 

Step 1d. Compute parameters (e.g., mean, variance, confi 
dence interval) of the distribution of sampled confidence 
scores {s}. Use the “plug-in” principle for bootstrap statis 
tics. 

Step le. Use the computed parameters of {s, to help 
identify outliers of unusually high quality. In the most pre 
ferred embodiment, model the s, distribution (e.g., as a 
normal, beta, or gamma function), allowing the determination 
of tail probabilities based on the value of a confidencescore. 
Alternatively, use confidence intervals. 

Step 2. Compare with the null distribution. This works 
similarly to the case above. However, here there are J-1 
known genotypes, and the single unknown genotype is com 
puted using mixture deconvolution. Thus, there is just one 
score (that of the mixture deconvolution Solution) to compare 
against the null distribution. 

Step 2a. Compute the genotype b from the data. This is 
preferably done using the mixture deconvolution invention. 

Step 2b. Determine the error measures of the mixture 
deconvolution solution. 

Step 2c. Compute the confidence score t for busing the 
error-based scoring function used in Step 1c above. 

Step 2d. Compare the confidence score with the null dis 
tribution. Compare t with the null distribution {s}. 

Step 2e. Ascertain whether or not b is a high confidence 
matching genotype. This is done using the results of Step 2d. 
Zero Unknown Case 

In the case of J knowns, the minimum variance can be 
determined directly by least Squares projection of the data d 
vector into the J-1 simplex Subspace of mixed genotype 
vectors. However, bootstrap resampling provides another 
mechanism for assessing the error, hence the quality of the 
solution. This can be useful when the data deviates greatly 
from linear behavior. Simulations for error distribution esti 
mation have been well described, including both bootstrap 
ping pairs and bootstrapping residuals (Efron, B. and R. J. 
Tibshirani, An Introduction to the Bootstrap 1993, New York: 
Chapman & Hall), incorporated by reference. 
Probability Distributions 

It is useful to compute probabilities from the observed data. 
This can be done once the data or error distributions are 
modeled. It is reasonable to assume normal distributions for 
the experimental error in PCR amplification, electrophorectic 
band migration, and fluorescent detection. These assump 
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tions lead to a normal error model for the observed DNA 
quantities. In an alternative preferred embodiment, the error 
distribution is modeled directly from the data of many iden 
tical mixture experiment replications; this empirical error 
model is then used in place of the theoretical normal model. 
Data Distribution 
Assume that the error vector components e, are normally 

distributed. Then e-N(0, of I), and hence d-N(G-w, 
O'I), where K is the number of alleles included in the quan 
titative analysis, and G is a KXJ genotype matrix. That is, the 
probability of the data disapproximated by the multivariate 
normal distribution: 

1 
Pd G, w) = Ign exp 

K 26 

where 6° is the sample variance estimate computed from S. 
This probability attains its maximum value when G is correct, 
and wo is the least squares estimate. 

It is also known that 

RSS 

O-2 
dof. S? 2 

O-2 dof 

which characterizes the sample variance as having a chi 
squared distribution. 

Suppose that the erroris unbiased E(e)=0, but its dispersion 
is more generally DeFOV, rather than the uniform of 
With this covariance structure, the residual Sum of squares is: 

ff-(Gw-d)'V (Gw-d) 
hence the probability distribution is: 

Weight Distribution 
The distribution of the mixture weight vector w can be 

directly computed using the mathematics of linear models 
(Seber, G.A.F., Linear Regression Analysis 1977, New York: 
John Wiley & Sons), incorporated by reference. Given the 
variance of, one immediately has: 

Therefore, the distribution of the weights is woN (w.O.) 
and the distribution of the weight variation as (wo-w)'G'G 
(wo-w)' Xf. When the error covariance structure is a known 
constant matrix of V, the dispersion of w generalizes to: 

These distributions permit the comparison of different 
mixture weights, the assessment of relative likelihood, and 
the determination of confidence intervals. Moreover, the vari 
ance estimate 6, (or the standard deviation) is a highly 
useful measure of the confidence in the obtained results. 
Genotype Distribution 

For comparing (or ranking) likely genotypes from the data, 
it is useful to have a numerical score. One powerful and 
well-accepted score is the likelihood ratio (Edwards, A. W. F., 
Likelihood, Expanded ed. 1992 Baltimore: Johns Hopkins 
University), incorporated by reference. To compare the 
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hypothesis of one genotype b relative to another one b, one 
can form the likelihood ratio (LR): 

The value of the LR provides a measure of belief in one 
hypothesis over another. The detailed computation of the LR 
(for any number of individuals J) via its component probabili 
ties is described below. 
An LR may include hypotheses concerning “unknown 

genotypes. Note that the mixture deconvolution method per 
mits ascertainment of a genotype (with high confidence), 
given the other J-1 genotypes in the mixture. Using associ 
ated variance and probability estimates, this ascertainment 
Suggests that a very high probability is associated with the 
correct “unknown', whereas very low probabilities are asso 
ciated the incorrect “unknowns'. That is, the supposedly 
“unknown may actually be quite known from the data. These 
probabilities are useful in weighting the possibilities based on 
the data, as shown next. 

For conviction in court, it would be useful to present a 
statistical measure that describes the degree of confidence in 
the defendant’s genotype based on the data. Given the distri 
bution of the data under different models, one can determine 
the posterior probability of the genotypes. For example, con 
sider the representative likelihood ratio: 

|Rd) pH - Praia, i. 

evaluated at the observed data vector d. This LR compares the 
prosecution's hypothesis that the quantitative mixture data d 
are generated by victim a and the defendant b, relative to the 
defense hypothesis that the data are generated by the victim a 
and an unknown random person. Similar derivations and 
alternative formulations have been described (Evett, I.W. and 
B. S. Weir, Interpreting DNA Evidence: Statistical Genetics 
for Forensic Scientists 1998, Sunderland, Mass.: Sinauer 
Assoc; Evett, I.W., P. Gill, and J. A. Lambert, Taking account 
of peak areas when interpreting mixed DNA profiles. J. 
Forensic Sci., 1998 43(1): p. 62-69), incorporated by refer 
CCC. 

If the defendants genotype is b, then the LR becomes: 

genotype i 

The prior genotype probabilities Pr{b} can be computed 
(with or without F correction) from population allele fre 
quency information in the usual way (Balding, D.J. and R. A. 
Nichols, DNA profile match calculation: how to allow for 
population stratification, relatedness, database selection and 
single bands. Forensic Sci Int, 1994, 64: p. 125-140; Evett, I. 
W. and B. S. Weir, Interpreting DNA Evidence: Statistical 
Genetics for Forensic Scientists, 1998, Sunderland, Mass.: 
Sinauer Assoc), incorporated by reference. The other prob 
ability to evaluate is 
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the probability of the observed mixture data d, given the two 
component genotypes. This term is needed for computing 
both the numerator and denominator. 

The determination of Pr{da,b,} does not appear in the 
prior art of DNA mixture analysis. Indeed, it is desperately 
needed, but conspicuously absent, in a seminal mixture 
analysis paper (equation 5. Evett, I. W., P. Gill, and J. A. 
Lambert, Taking account of peak areas when interpreting 
mixed DNA profiles. J. Forensic Sci. 1998, 43(1): p. 62-69). 
However, by using the linear modeling invention, these prob 
abilities can be estimated using the probability estimates 
already described. 

In a first preferred embodiment, Prala, b} is computed at a 
point at a closest location. For J-2 individuals, this sets G=a 
b. In general, for Pr{dG}, the procedure is to construct the 
perpendicular projection operator PG(G'G)'G', and find 
the error vector e=(I-P)d=(d-Gw) that projects donto the 
closest point Pd=Gw in the J-1 dimensional simplex C(G). 
The squared error e'e then equals the term that appears in the 
exponent of the probability: 

1 

P to it {dG} as Pad G, w = exp 
K 26 

Since the length of the errorel is minimized at the point Gw, 
the normal function is maximized there, and this can be a 
reasonable estimate, particularly with Small variances. This 
distribution partitions the genotype measurement space into 
nested cones that radiate out from the data point d. 

In a second, more preferred embodiment, Pr{dla, b} is 
computed more accurately by considering all possible mix 
ture weights. This is done (with J-2) by integrating over all 
possible values of the mixture weight w: 

When integrating over a likelihood ratio LR(d), the w inte 
gration can be performed separately for each term, or, pref 
erably, taken over the entire LR. For general genotypes G 
having Jindividuals, the mixture weight vector w lies within 
the J-1 unit simplex, and the integral is taken over the entire 
simplex: 

we simplex(J-1) 

In this decomposition, the first probability function 
Prd|G,w} is estimated as: 

1 
Pd G, w) = If exp 

26-2 

In the most preferred embodiment, the variance estimate of is 
set by the globally minimal variance. In an alternative 
embodiment, the variance used is scaled according to the 
hypothesis, so that of depends on the Softhe genotype under 
consideration. 

The second function Prw} is the probability of the mix 
ture weight vector w, prior to having seen the data d. In one 
preferred embodiment, a uniform prior can be used, with all 
mixture weight vectors having equal probability. In a second 
most preferred embodiment, the prior is computed from the 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

22 
mixture weights observed (or sampled) from a relevant popu 
lation of cases. This can be done by using the inventions 
linear mixture model, possibly together with mixture decon 
Volution, and accurately determining the mixture weights, 
hence the prior Pr{w} for the crime stain population. With 
Small variances, the mass of the integral will be tightly cen 
tered around the minimization point Gw in the simplex C(G), 
and the form of the prior may have little effect on the com 
puted probability. In the art of empirical Bayesian estimation, 
beta distributions and other “unknown priors are success 
fully employed (Carlin, B. P. and T. A. Louis, Bayes and 
Empirical Bayes Methods for Data Analysis, 2000, Chapman 
& Hall/CRC Press), incorporated by reference. 
The third function dw is the differential of the integration. 

This will cancel out in a likelihood ratio calculation, and 
therefore does not affect most calculations. 

This ability to compute the LR 

genotype i 

by appropriately weighting the prior probabilities Pr{b} 
based on the weight of evidence in the data Pr{dla,b, repre 
sents a strikingly useful advance over the prior art. Current 
forensic reporting practice typically uses full weighting of all 
possible genotypes in a mixture (National Research Council, 
Evaluation of Forensic DNA Evidence: Update on Evaluating 
DNA Evidence, 1996, Washington, D.C.: National Academy 
Press), incorporated by reference. At each locus, then, the full 
weight of each possible genotype is currently used, instead of 
the weight as determined by the data. Examining the effect on 
the denominator is shown by: 

genotype i genotype i 

Relationship (1) expresses the fact that, in general, the 
probability Pr{dla, b} of the correct genotypeb, has an expo 
nentially greater likelihood than the probability Pr{dla,b,} of 
any of the other genotypes b, . Thus, the only term that is 
typically apparent in the data weighted Sum over the geno 
types is Pr{b}. 

Relationship (2) is the observation that the probability of 
just one of the possible genotypes is less than the Sum of the 
probabilities across all possible genotypes. In a two person 
mixed sample, a three allele locus (and, for that matter, a four 
allele locus) has six possible genotype contributors. So con 
sidering all six possibilities, instead of just one, will reduce 
that loci's multiplicative contribution to the LR by a roughly 
factor of 6. 

Taken over all 13 CODIS loci, the multiplication of inde 
pendent locus LRs would reduce the total LR by a factor of 
about 6', or over 10' (i.e., ten billion) fold. That is, by not 
properly weighting the true chance of a “random man” given 
the data, the prosecution can incorrectly concede to the 
defense an astronomical amount of likelihood. This conces 
sion can become most crucial when poor DNA samples from 
crime scenes reduce the power of the STR data (fewer loci, 
PCR artifacts, allelic dropout, etc.). 
The LR calculations above made use of the multiplicative 

combination rule for independent LRs (Edwards, A. W. F., 
Likelihood, 1992, Baltimore: Johns Hopkins University; 
Lindgren, B. W., Statistical Theory. Fourth ed. 1993, New 
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York, N.Y.: Chapman & Hall), incorporated by reference. For 
multiple independent loci, this is written as: 

Prid H.} 
Prid, H, T locus i locits i 

Thus, the likelihoods (or probabilities) of the data and geno 
types can be determined separately at each locus, and then 
combined later on. This permits focusing on the properties of 
single loci, with the knowledge that the single locus results 
can easily be combined to compute a composite result. 
An LR for any number J of contributors can be computed 

using LMA. This is because LMA provides the key enabling 
factor: the probability function Pr{dG,w} of the data digiven 
any hypothesis about the genotype G and weight w param 
eters. The geometrical computations of LMA permit an esti 
mate of the variance, whether by normal theory or bootstrap 
resampling. One can specify the hypothesis of the prosecu 
tion H, regarding known genotypes G, and unknown 
genotypes G, and the hypothesis of the defense H 
regarding the alternative known genotypes G, and 
unknown genotypes genotypes G. There may be con 
straints relating common genotype parameters in G, 
and in G. After forming the likelihood ratio, Sum over 
all possibile genotype configurations (restricted for efficiency 
to the alleles found in the mixture data) over all the unknown 
genotype variables in (G.U.G.), and simulta 
neously integrate out the mixture weights w lying in the J-1 
dimensional simplex of feasible mixture weights. For com 
putational efficiency, it may be useful to structure the problem 
with a hierarchical (or empirical) Bayes model, and use 
Markov Chain Monte Carlo (MCMC) methods for more rapid 
integration (Berger, J. O., Statistical Decision Theory and 
Bayesian Analysis. Second ed 1985, New York: Springer 
Verlag; Tanner, M.A., Tools for Statistical Inference: Meth 
ods for the Exploration of Posterior Distributions and Like 
lihood Functions 1996, New York: Springer Verlag), incorpo 
rated by reference. 
Computer Methods 

There are various computer methods that are useful in 
implementing LMA and mixture deconvolution. The use of 
numerical methods (integration, minimization, search, etc.), 
matrix algebra, multivariate regression, efficient algorithms, 
and statistical calculations are described elsewhere in this 
specification. Many of these operations are built directly into 
high level mathematical programming languages such as 
MATLAB and S-plus. 

Simulation is a powerful computational method. In popu 
lation genetics, many problems can be solved numerically by 
resampling from simulated genotypes. To do this, one needs 
a genotype simulator. In the preferred embodiment, geno 
types are simulated at each locus independently. For a given 
set of possible alleles (based, for example, on the alleles 
appearing in the mixture data) and their population frequen 
cies, alleles are sampled using a random number generator 
and a decision function based on the cumulative distribution 
of the allele frequencies. The effect of population inbreeding 
is accounted for by using corrected allele frequencies that 
include F. 

Visualization is a highly effective mechanism for rapidly 
exchanging information with a user. Novel visualizations of 
geometric genotype relationships are described in this speci 
fication, both for the complete genotype, as well as for indi 
vidual loci. To render a three allele mixture system, it is best 
(when feasible) to focus on the two dimensional simplex 
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image of the measurement space, which uses the constraint 
that the weights Sum to 1. The geometric graphics computa 
tion can be done in three dimensions, and then projected onto 
the two dimensional Surface (triangle) for user display by 
means of a linear transformation Such as the 2x3 matrix: 

-O.70711 
-0.40825 

0.70711 O 
-0.40825 O.816S 

Examples of Such automatically rendered visualizations are 
shown for a three allele locus in FIGS. 4.a and 4.b. 

For rendering visualizations in four allele dimensions, it is 
preferable to perform geometric graphics computation in the 
natural 4-D space, and then project onto the three dimensional 
region (tetrahedron) for user display by means of a linear 
transformation Such as the 3x4 matrix: 

-O.70711 0.70711 O O 
-0.40825 -0.40825 O.816S O 
-O.28868 -O.28868 -O.28868 O.86603 

Using computer Software that includes a three dimensional 
renderer (e.g., the plot3 function in MATLAB) can then flex 
ibly project the image into the 2-D for user interaction. An 
example of such an automatically rendered visualization for a 
four allele locus is shown in FIG. 5. 
To understand the behavior and reliability of LMA search 

methods, it is useful to present the associated minimization 
curve. An automatically rendered visualization for a minimi 
zation curve is shown in FIG. 6. To see the data and its 
analysis in terms of quantified peaks, it is useful to view the 
genotypes and mixture results in a way that focuses on the 
relevantalleles at each locus. An automatically rendered visu 
alization for genotypes and mixture results is shown in FIG.7. 
The user can interact with these two visualizations (e.g., a 
mouse device controlling a slider). Adjusting the weight will 
change both the location on the minimization curve (or higher 
dimensional Surface), as well as change the calculated mix 
ture heights in the genotype figure. This interactive feature 
makes visually apparent how a calculated mixture resembles 
a valid genotype only when near a correct mixture weight. 
Data Results 
Methods described above are shown via examples on a 

mixture data set. 
Data Generation 
Two anonymous human DNA samples (A and B) were 

analyzed both individually, and in different mixture propor 
tions (10:90, 30:70, 50:50, 70:30, 90:10). PCR amplification 
was performed on the samples on a PCT-100 thermocycler 
(MJ Research, Waltham, Mass.) using the ten STR locus 
SGM plus multi-mix panel (PE BioSystems, Foster City, 
Calif.). Size separation of the fluorescently labeled PCR 
products was done with internal size standards on an ABI/310 
Genetic Analyzer capillary electrophoresis instrument (PE 
Biosystems). GeneScan analysis (including comparison with 
allelic ladder runs for allelic size designation) was performed, 
and the peak heights and areas were recorded. 
The linear mixture analysis used the mixed DNA profile 

data d, along with the reference profile genotype a. The LMA 
heuristic search algorithm was implemented in MATLAB 
(The MathWorks, Natick, Mass.), and used to analyze the 
data on a Macintosh PowerBook G3 (Apple Computer, 
Cupertino, Calif.). The automated heuristic algorithm was 
applied to each data case, with the program searching for 
local minima to compute the mixture weight W and the 
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unknown genotype profile b. The computation time for each 
problem was under 0.1 seconds. The computed profile was 
compared with the actual profile for individual B. (While 
known in advance for assessment purposes, neither the mix 
ture weight w nor B's profile were used in the calculations.) 
Mixture Deconvolution 

Mixture deconvolution was performed on the data, as 
described above. Five deviation curves are shown in FIG. 6, 
each plotting squared deviation against the mixture weight. 
From left to right, these curves correspond to the heuristic 
functions of the 10:90 (plus), 30.70 (solid), 50:50 (cross), 
70:30 (dash), and 90:10 (dot) mixture ratios. The minima of 
these curves are located near 10%, 30%, 50%, 70%, and 90%, 
respectively, demonstrating that heuristic minimization infers 
the proper mixture weight. The shape of the 90:10 (dot) curve 
reflects the trajectory through allele space as the weight 
changes from 0 to 1. Note that the minimum has a parabolic 
shape. 
The following expected ratios produced the estimated mix 

ture weights and standard deviations: 

expected estimated w estimated O, 

10:90 11.09% 1.02% 
30:70 29.53% O.90% 
50:50 48.43% 1.12% 
70:30 69.59% O.85% 
90:10 89.04% O.81% 

Note that the standard deviations are relatively small. In every 
case, the estimated mixture weight is within two standard 
deviations of the expected ratios. 
One hundred alleles were estimated (5 experimentsx10 

lociper experimentx2 alleles per locus). Due to experimental 
variation, not all alleles can be called uniquely. However, 
under the assumption of unique allele calls, there was one 
incorrect call, foran miscall rate of 1%. The miscall was in the 
90:10 experiment at locus D21, where the true heterozygote 
genotype (2.3) was estimated to be a homozygote genotype 
(2.2). This was due to the low quantity ofbs DNA present in 
the extreme 90:10 mixture case. 

The data d, reference a, and estimated b(wo) are shown in 
FIG. 7. The quantitative data d of the 30:70 mixture experi 
ment is shown at every SGMplus locus (first row). Also 
shown is the known reference profile of individual a (second 
row). Using mixture deconvolution, the computer estimates 
the unknown genotype b(wo) (third row) and the mixture 
weight wo. Note that the estimated genotype is the same as the 
true genotype. 
Distribution of d 

The error vectore is computed from (1 -wo)|b(wo)-b(wo), 
where wo is the minimizing weight parameter, b(wo) is the 
continuous estimate of the genotype parameter, and b(wo) is 
the integer-valued estimate that is the closest valid genotype 
to b(wo). With K-31 alleles, the sample variance S is esti 
mated as 

|el? PtdIG, w) = - 
K - 1 I'll exp 

K 26 

The estimate of O, is taken as the square root of the sample 
variance, with 6-0.04.07–V0.001658. 
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Once O has been estimated, the probability distribution 

centered at d can be approximated as the multivariate normal: 

1 
K exp - a 2 

(2itó)2 26, 

Here, K=31, and G is the matrix formed from the genotype 
column vectors a and b. 
Distribution of w 
The variance of w, o, , is estimated from of as G, of 

(G'-G). For example, in the 70:30 mixture case (with b as 
the minor component), 

24 5 0.0436 -0.0091 : (G. G) = 24 -O.O.091 0.0436 

V (G. G) = 0.2087 

and, with of 0.0407, one computes 

the standard deviation 6, for genotype as weight WA as 
6,-0.0085=(0.0407)(0.2087). 

This calculation is the source of the 0.85% standard deviation 
value for the 70:30 mixture experiment appearing in the table 
above. 
From the estimated mixture weight (69.59%) and standard 

deviation (0.85%), one can compute a confidence interval for 
the 70:30 experiment. With the Z distribution test 
(Zoos = 1.96), the 95% confidence interval is 67.92%, 
71.25%; using the more exact t distribution test (toos 2.04; 
dof 30), the 95% confidence interval is 67.85%, 71.32%). 
These two confidence intervals are essentially equivalent, and 
both contain the predicted value of 70% with a high p value. 
Note that mixture deconvolution computes a rather tight esti 
mate on the mixture weight, with 95% of the distribution mass 
concentrated in under 4% of the range. 
Likelihood 

It is useful to rank the genotypes according to their likeli 
hood ratio LR, dividing the probability of each candidate 
genotype by the probability of the highest probability geno 
type. This can be done for the entire genotype, across all loci, 
or (by the multiplication of independent data rule) one locus 
at a time. The first approach is best for comparing two geno 
types in the context of all the data. The last “locus-based 
approach is useful when trying to understand the data in more 
depth, seeing if there are equivocal loci that might be prob 
lematic, and deciding whether to report more than one geno 
type at a locus when the LR does not discriminate conclu 
sively. 

For the 70:30 mixture data, consider the LR computation at 
locus THO1. This is representative of typical results on these 
data. Take the LR for two genotypes as the ratio LR(d) of 
P{dG} to the maximal probability P{dG}. Form the log of 
the likelihood ratio (or “support') as the logarithm of this 
ratio, or 

Pd G} 
iri (d) = in fE) 
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Report the computed probabilities and lir (in base 10 loga- In the most preferred embodiment, lines are drawn from a 
rithm units) for the ranked genotypes for the data at this locus to every candidate genotype b. Each line represents a pos 
in the table: sible solution for mixtures of genotypes a and b, Lines that 

genotype 011 002 O20 101) 110 200 

Pld=G. 54.064 1.2247e-06 7.687e-16 1.5844e-18 3.3288e-22 3.7843e-24 
Ir; O -7.6449 -16.847 - 19533 -23.211 -25.155 

10 

The first genotype 0 1 1 is about ten million times more fall within the interior of the circle (or sphere) have sufficient 
likely than the next closest candidate 00 2. This typical proximity to the data d to permit a probability value that is 
result shows very strong Support for the selected genotype at within the confidence level. Lines that fall entirely outside the 
this locus. circle (or sphere) are outside the confidence region. In FIG. 

In some cases, the data are more equivocal, and the LR 15 4.a., only one line falls within the confidence circle. Thus the 
Support can help in deciding which genotypes are likely, and genotype (2.3) (at the other end of this line emanating from 
how to report the results. Recall that the one allele miscall (out the known genotype (1.2)) is the only genotype which resides 
of a hundred scores) occurred in the 90:10 mixture experi- within the 99% confidence region. 
ment, at the D21 locus. The likelihood analysis is shown for In an alternative preferred embodiment, the conical surface 
this data in the following table: (or rays) emanating from point a, and tangent to the confi 

genotype 020 O11) 110) 101) 002) 200 

Pld=G, 32.432 10.583 O.36474 OOOO92291 6.924.5e-OS 2.4045e-OS 
Ir; O -0.48.636 -1949 -4.5458 -5.67O6 -6.1299 

The table shows that the first two ranked genotypes have dence circle (or sphere) is drawn. Genotype points residing 
comparable likelihood, and that the third genotype may not be within the conical boundaries (defined by the penumbra of the 
an unreasonable possibility. In the reporting of this mixture, 30 point and sphere) lie within the conical genotype confidence 
the automation program (or a user) in this ambiguous case region, and those outside may be rejected. In FIG. 4.a., only 
would elect to report two (or perhaps three) possible geno- the genotype (2.3) would fall within this penumbra. 
types at this locus. This conclusion, that there is more than Referring to the automatically generated FIG. 4.b, the 
one likely genotype, is derived entirely from the data using genotype mixture space for the three allele case at locus D21 
the likelihoods. It would be most useful to visualize these 35 is shown for the 90:10 mixture. Recall that the computer 
likelihood relationships. A novel method for visualizing such reported a small support difference between the most highly 
genotype likelihood is demonstrated next. ranked possible genotypes. These close probabilities are use 
Visualizing Likelihood fully visualized in the Figure. Here, genotype a is at point 
The likelihood function, as a (minimal) sufficient statistic, (1,3), the true genotype b is at point (2.3), and the data point 

partitions the genotype space into regions of constant value. 40 d is shown in the interior of this space near a. However, 
In the case of mixture deconvolution, with J–2, an equiva- multiple lines fall within the 99% confidence data region. 
lence class for a particular value may be thought of as a These include lines from (1.3) to genotypes (2.3), (2.2), and 
conical Surface originating at point a, with its center line (just barely) (1.2). Therefore, it is visually apparent that these 
extending through d, having an angle from this line deter- genotypes should be included in a 99% confidence reporting 
mined by the constant likelihood (or probability) value. This 45 of candidate genotypes. Computer visualization of a 95% 
picture can be a useful visualization in certain applications. confidence region shows that only the first two highly ranked 
(For arbitrary J, the equivalence class is rooted at the known genotypes would be reported at that level. 
genotype Subspace C(G), and forms a hyperplane that is There is a natural three dimensional visualization of the 
tangent to a sphere around data point d.) likelihood relationships for the four allele case. Referring to 
A confidence region can be constructed for genotypes 50 the automatically generated FIG. 5, the 99% sphere about 

based on the data. The sum of squared error deviations fol- the data point d is shown. Of all the lines emanating from a to 
lows achi square distribution. This x distribution can be used candidate genotypes b, only one (the line to genotype (2.4)) 
to examine confidence in the results at one locus, a set of loci, intersects the confidence sphere. Hence, only this genotype 
or the entire genotype. lies within the conical confidence region (i.e., the penumbra 

Referring to the automatically computer generated FIG. 55 of point a and the data confidence sphere). 
4.a, the genotype mixture space for the three allele case at These automatically generated computer drawings are 
locus THO1 is shown for the 70:30 mixture. This space is a highly useful in visually clarifying the likelihood, probability, 
two dimensional simplex embedded in the three dimensional and confidence relationships between the data and the geno 
measurement space (for three alleles). The six candidate types. The immediate intuition they provide can replace far 
genotypes occupy positions along the boundary (three at Ver- 60 more tedious, time consuming, and less effective review of 
tices, and three along the edges). The possible expected mea- nonvisual presentations. 
surements for a two person mixture are described by the solid RandomMan. Likelihood 
line (within the simplex) that connects the two genotype One can compute the likelihood ratio of the hypothesis of 
points. The data point d is shown in the interior of the trian- the prosecution relative to the hypothesis of the defense. A 
gular space. A 99% confidence chi square radius is drawn 65 typical formulation entails a "random person' hypothesis by 
around the data point. Part of the b(w) search space is shown the defence (Evett, I. W. and B. S. Weir, Interpreting DNA 
by the dashed line extending from a, through d, to b(wo). Evidence: Statistical Genetics for Forensic Scientists, 1998, 
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Sunderland, Mass.: Sinauer Assoc), incorporated by refer 
ence. Suppose that H is the prosecution's hypothesis that the 
stain contains the genotypes of the victim a and the defendant 
b, while defence hypothesis H is that the stain contains the 
genotypes of the victim a and a random person. This LR can 
be written as: 

LR(d) = Prida, b} 

X Prida, b} . Pribi} genotype i 

where the probability computations have been described 
above. 

Consider the 70:30 mixture data, at the locus THO1. Sup 
pose that each of the three alleles have a population frequency 
of 10%.Then, computing the LRs as described gives an LR(d) 
of 50, and an Ir(d) of 1.699. 
The LR(d) of 50 follows from taking the reciprocal of the 

genotype frequency of ~2ppi, or 2(0.1)(0.1) which is 0.02; 
this reciprocal is 50. It is clear from the lr(d) values that there 
is essentially only one significant term in the denominator, 
that of the correct genotype. The current art is focused on the 
population frequencies, and generally includes all of them in 
the sum. However, using the LMA invention for LRs, the data 
probabilities overwhelming Suggest only one genotype, 
essentially removing the improbable ones, and appropriately 
using properly weighted genotype population frequencies. In 
the preferred embodiment, the F inbreeding coefficient is 
accounted for, and bootstrapping is done to adjust for Sam 
pling error. 

Without this novel data probability correction, the H. 
would have been the more usual sum of genotype frequencies 
(0.1+0.1+0.1), or 0.09, leading to an LR of 11.1 (as 1/0.09). 
Thus, with the assumed 0.1 allele frequencies, the invention 
increases the LR at this locus by about a factor of 5. 
The THO1 locus contributes 1.699 supportunits (base 10) 

to H. Over H. The sum of support across all ten loci (using 
the 0.1 allele frequency assumption) is 17.022. Therefore, the 
genotype b found by the method is about a billion billion 
times more likely than that of a random person. 
Posterior Distribution ofb 

In Bayesian inference, the prior probability of genotypes is 
moderated by the likelihood probability of the data to deter 
mine the posterior probability of the genotypes. In the pre 
ceding statement, odds may be used in place of probabilities. 
While many priors cannot be used in court, a prior probability 
of a genotype based on estimated frequency in the population 
may be reasonable. By providing a (novel) means for com 
puting a mixture likelihood, the invention enables the com 
putation of posterior genotype distributions. 
Bootstrap Solutions 

Bootstrap resampling methods provide a powerful mecha 
nism for obtaining distributions, variances, confidence 
regions, and other highly useful statistical values. In particu 
lar, the bootstrap can be used to determine the distribution for 
a (randomized) null hypothesis, along with its mean, standard 
distribution, and confidence regions. Then, hypothesis testing 
and ranking can proceed on the data by comparison with this 
null distribution. 

(2 unknowns) In the case with J individuals, with two 
genotypes unknown, it is possible to effectively match against 
a database of feasible Suspects. This is done using mixture 
deconvolution, together with bootstrap resampling. Consider 
the case with J-2. Using the 70:30 mixture data, with B 
resamplings, in each iteration: 
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A genotype a is randomly generated according to specified 

(e.g., uniform) population allele frequencies, with alleles 
drawn from the mixture data. 

Mixture deconvolution is run on a and d to estimate band 
wk. 

The standard deviations O and O. are estimated, and 
recorded. 
The bootstrap statistic used here is the standard deviation 

O. This is used as a confidence score for the quality of the 
fitted least squares solution. While either variance is useful, 
O, permits comparison between experiments using an invari 
ant 0,1 Scale, independently of the geometry of each solu 
tion. On completing the resampling iterations, useful popu 
lation statistics are computed by the bootstrap plug-in 
principle, Such as the resampled distribution mean and stan 
dard deviation. 

Referring to FIG. 8...a, the resampled distribution of stan 
dard deviations O, * is shown for B=1000 iterations, along 
with the known minimum solution. The distribution has a 
normal-like central form. The mean is 0.04297, and the stan 
dard distribution is 0.00575. The distribution is bracketed 
with a minimum of Z=-2.64 standard units (SU), and maxi 
mum of Z=4.52 SU. The statistic of the correct solution is 
shown at the left, located Z=-6.00 SUs to the left of the mean. 

In the preferred embodiment, individual genotypes from a 
known genotype are tested as above, but they are drawn from 
a database of possible Suspects (e.g., a DNA database) rather 
than simulated. The candidate suspects are preferably limited 
to those that share a sufficient number of alleles with the 
observed mixture data. The resampled distribution and its 
statistics show that incorrect genotypes would tend to follow 
the resampled distribution. However, when a correct geno 
type is found, it is a clear outlier from the others. In this case, 
the Z-6 score of the actual genotype corresponds to a nor 
mally distributed probability of one in a billion. Such prob 
ability information can be very useful for ranking the candi 
dates. When following up database leads, the ranking makes 
clear which individual(s) are the outliers, and to what degree. 

(1 unknown) In the case of Jindividuals, with J-1 geno 
types a, known, but one genotype bunknown, it can be useful 
to assess the quality of the solution in a distribution-free way. 
This is done comparing the quality of the mixture deconvo 
lution estimate b (i.e., O.) against the quality of randomly 
resampled genotypes. Consider the case with J-2. Using the 
70:30 mixture data, with Bresamplings, in each iteration: 
A genotype b is randomly generated according to specified 

(e.g., uniform) population allele frequencies, with alleles 
drawn from the mixture data, by either (a) including all 
these alleles, or (b) removing alleles that are incompatible 
with a and the data d. 

The mixture weight w is computed by perpendicularly pro 
jecting donto the C(G) space, and taking ratios. This main 
tains the simplex constraints on w. 

The standard deviations O* and O, * are estimated, and 
recorded. 
Referring to FIG. 8.b, resampling is shown using the “sam 

pling all alleles' version, since that is most compatible for 
comparison with the current art. The resampled distribution 
of standard deviations O, * is shown for B=1000 resampling 
iterations, along with the known minimum solution. The dis 
tribution has a normal-like central form. The mean is 0.06623, 
and the standard distribution is 0.01340. The distribution is 
bracketed with a minimum of Z=-2.51 SUs, and maximum of 
Z=4.63 SU. The statistic of the correct solution is shown at the 
left, located Z=-4.31 SUs to the left of the mean. This corre 
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sponds to a probability of one in a hundred thousand, and 
shows high confidence in the genotype solution G-a b. 
relative to other alternatives. 

(General likelihood ratios) There are both parametric and 
nonparametric approaches to bootstrapping the likelihood 
ratio, as described (Efron, B. and R. J. Tibshirani, An Intro 
duction to the Bootstrap, 1993, New York: Chapman & Hall), 
incorporated by reference. An LR can be formed to compare 
any two competing hypotheses, involving any number of 
known and unknown contributors to a mixture. The question 
is how much support this LR has in the data. The specific 
hypothesis pair explored in this data simulation was 

The prosecution hypothesis H, is that the data contains the 
genotypes of a known person a and a random person b. 
whereas the defence hypothesis H is that the data contains 
the genotypes of the two random people a and b*. When the 
genotypes are fully specified, the geometric constraints place 
w in a relatively small region of the J-1 simplex. Therefore, 
the minimum distance to the perpendicular error (I-P)d is 
a useful approximation to the (more exact, but more costly) 
integration over the multidimensional normal distribution 
considering all W. 

Specifically, for any fully specified pair of hypotheses, the 
support function (log of the likelihood) has the form 

PH G. won - di- IIG, . wou - dll? tra (d)= In {d is won - d| – |G: wod - d. 
PdH} 26. 

For each simulated hypothesis set, estimate the Sum of 
squares term for a randomly resampled genotype G by com 
puting the perpendicular projection operator P, determin 
ing the minimum error vector by a matrix multiplication 
e (I-P)d, and then computing the squared error as the 
vector product e'e. The lir is calculated as the difference 
between the squared error terms. After bootstrapping for B 
iterations, the question is then how far the null difference of 0 
lies in standard Z units from the center of the simulated 
distribution. 

Setting B-1000 (preferably, 500sBs2000), and using the 
70:30 mixture data, known genotype a was set to the major 
component, and the two unknown genotypes band c were 
simulated. Using the correcta, a normally shaped distribution 
was obtained for the bootstrapped difference of squares, with 
Zabout 3.0 (mean of 4.62, standard deviation of 1.52). This 
shows that the data supportan LR that includes individuala in 
the mixture, as H suggested, relative to a random person (i.e., 
OSU), as H suggested. (Note that with all random individu 
als, in other simulations Z=0.0, as expected.) 

This approach simulates the random components of any 
hypothesis set, and uses statistical resampling on the fully 
specified LR to determine the confidence in the LR or its 
support. The approach is generally applicable to all Hand H, 
hypothesis sets and their LRs. With simple bootstrapping, it 
works best (on geometrical grounds) when the specified a 
(e.g., the Suspect) is a major contributor to the mixture. To use 
the method in its most general form, it is preferable to employ 
more powerful statistical simulation methods, such as 
MCMC and empirical Bayes. 
Special Analyses 
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(Few loci suffice) It is believed in the current art that many 

loci are required for mixture analysis, and that the current 
megaplexes (e.g., 15 loci) are more powerful in mixture reso 
lution than are the Smaller panels. However, empirical studies 
using LMA on laboratory data show that this is not the case. 
Therefore, Smaller (hence less costly, time consuming, and 
complex) panels may suffice for many forensic applications. 

Referring to the 70:30 mixture data d, the major component 
was used as a known reference sample a, and mixture decon 
Volution was applied to d and a to estimate the unknown 
genotype band the mixing weight wo. In each analysis experi 
ment, a locus order was randomly selected, loci were added 
one at a time, and, for each partial set ofiloci (1sis I, I=10, the 
number of STR loci), mixture deconvolution was applied to 
the partial data set. After deconvolution, the quality of the 
result was assessed by computing the standard deviation O, 
as a confidence score. This experiment was repeated many 
times. 

In a typical experiment, the results for cycle i are shown. 
The columns are (1) the numberi of loci in the data subset, (2) 
the difference of the estimated weight from the final solution 
(wo-69.586%), and (3) the standard deviation of the esti 
mated weight. 

i (w - wo)% o,% 

1 -O.O791 1.5854 
2 O.8009 18696 
3 -2.3509 1.268O 
4 O.2491 1.245S 
5 -0.7744 O.9179 
6 -0.7696 1.OO26 
7 -0.7746 1.0314 
8 -O.2158 O.8824 
9 O O.8335 
10 O O8499 

By the fifth cycle, with i=5 loci, the confidence in the 
weight (i.e., the standard deviation) has converged to about 
1%, and then stayed at that level, with final values of about 
0.85%. The weightestimate itselfhas converged to within one 
percentage point of the final wo by the fourth cycle. That is, 
most of the of the information in the mixture has been 
extracted using just i=5 loci. This reanalysis of the data Sug 
gests that very large multiplex panels (e.g., with D10) may 
not be essential for mixture analysis in all cases. 

In this case, there were 3 four allele cases found in the first 
five loci. Current manual analysis depends largely on four 
allele locus data. Does all the resolving power of mixture 
analysis reside in the four allele data? The next reanalysis 
shows that this is not the case. 

(Three allele data). In the current art, large multiplex STR 
sets (e.g., roughly 10-20 markers) are preferred for mixture 
analysis. This is due in large part to the current need for four 
allele locus data in two person mixture cases when manually 
analyzing the data. Examiners who elect to use peak quanti 
fication data begin with the four allele cases to identify the 
major and minor contributors, and coarsely estimate the mix 
ture weight (Clayton, T. M., et al., Analysis and interpretation 
of mixed forensic stains using DNASTR profiling. Forensic 
Sci. Int., 1998,91: p. 55-70), incorporated by reference. The 
human inspection methods that are prevalent in the current art 
can do little with two or three allele locus data alone, since 
Such data are not clearly resolved by manual analysis. This 
approach necessitates using large panels (at greater expense 
and effort) in order to randomly assure the presence of four 
allele locus data. 



US 8,898,021 B2 
33 

Using LMA on real mixture data shows that four allele loci 
are not required. Referring to the 70:30 mixture data d, the 
major component was used as a known reference sample a, 
and mixture deconvolution was applied to d and a to estimate 
the unknown genotype b and the mixing weight wo. However, 
only the five loci showing three alleles were retained in the 
reanalysis. 

Mixture deconvolution estimated a mixing weight of 
70.50%, with O-1.18%. That is, the computer found a good 
solution (less than 1% from the best estimate) with high 
confidence (a 1% standard deviation) using only five STR 
loci, all of which had three alleles. The computation time was 
35 milliseconds on a Macintosh Cube/G4. In the current art, 
this analysis would be very difficult (if not impossible) by 
visual data inspection methods, and the time spent would be 
measured in hours, not milliseconds. 

(Biallelic SNP analysis) Indeed, two alleles per locus are 
enough to resolve DNA mixtures, using quantitative data and 
mixture deconvolution analysis. This is demonstrated on 
single nucleotide polymorphism (SNP) marker simulation 
data. 

Biallelic data was simulated for different size panels of I 
SNP loci. The simulator generated random biallelic geno 
types a and b at each locus. A mixture weight w was set, and 
the simulated mixture data d was generated as d-Grw--e. 
where G=ab, and e is a random noise vector included to 
model measurement error. Mixture deconvolution was then 
applied to danda, with the computer estimating genotype b 
and mixture weight W. Variances were computed from the 
linear model, providing estimates of O and O,. 
A wide range of values for I and w were explored in the 

experiments. Consider the experiment with I-10 loci, and 
w=95%. This is an interesting case, since it represents few 
SNP loci, and an unknown minor contributor weight of just 
5%. The results of a typical runs analysis are w A=94.42%, 
w3=5.58%, and O, 0.98%. That is, the linear analysis finds 
the correct solution with high confidence. 

These results suggest that the design, use, quantitation, and 
detection of SNP-based assays for DNA mixture analysis 
should account for the power of LMA as a powerful, fast, and 
accurate resolution method. Specifically, fewer loci are 
needed (reduced cost and effort), as long as the data quality, 
quantification, and analysis are of appropriately high quality. 

(Three person analysis) More than J-2 persons can be 
resolved using LMA. Data were generated by mixing DNA 
from three individuals in different proportions, amplifying 
the mixtures using SGMplus, running the products out on an 
ABI/310 automated DNA sequencer, and then recording the 
peak quantifications (height, area, size, genotype). The data 
used in this example were from the (very approximate) 4:1:1 
DNA combination, with 44 alleles across the 10 STR loci. 
When all three genotypes are known, LMA can directly 

Solve for the actual mixture weights. Including a constraint 
that the weights must sum to unity, LMA determined the 
weights as wA=70.56%, w8=11.43%, and wO=18.01%. 

Next, Suppose that the genotypes a and b are known, but 
that genotype c (and the mixture weights w) are not known. 
Applying an initial coarse search (1% spacing) on the 2-D 
search space, mixture deconvolution estimated the weights as 
wA=70%, w8=11%, and wC=19%, which agrees with the 
“all knowns' calculation. This result demonstrates that LMA 
has application to JD2 contributors. 

(Other lab data) The automation methods were applied to 
data from other laboratories, obtaining accurate results. For 
example, there was a reanalysis of the original six locus STR 
data (provided by Dr. Peter Gill) underlying the quantitative 
analysis of mixture sample MT/NO in (Gill P. Sparkes R. 
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Pinchin R, ClaytonTM, Whitaker JP, Buckleton J. Interpret 
ing simple STR mixtures using allele peak area. Forensic Sci. 
Int. 1998;91:41-53), incorporated by reference. Taking indi 
vidual MT as the known reference profile, for each approxi 
mate mixing ratio (1:10, 1:5, 1:2, 1:1, 2:1, 5:1, 10:1), exact 
mixture weights were derived and individual NO’s genotype 
was estimated. The respective computed weights (10.02%, 
13.83%, 27.87%, 41.89%, 58.43%, 77.25%. 86.66%) are in 
close agreement with the four allele locus weights that they 
had estimated (Table 6 for 5 ng DNA in Gill P. Sparkes R. 
Pinchin R, ClaytonTM, Whitaker JP, Buckleton J. Interpret 
ing simple STR mixtures using allele peak area. Forensic Sci. 
Int. 1998:91:41-53). 
Forensic Applications 
Identify Individuals 

Linear mixture analysis is useful for identifying individu 
als from mixed stains. This has application, for example, in 
individual identity, where DNAs (e.g., from people, children, 
accident victims, crime victims, perpetrators, medical 
patients, animals, plants, other living things with DNA) may 
be mixed together into a single mixed sample. Then, mixture 
deconvolution can resolve the mixed data into its component 
parts. This can be done with the aid of reference individuals, 
though it is not required. 
A particularly useful aspect of the method is that given data 

d from a mixed stain, together with one or more reference 
individuals a, a component individual b can be determined 
along with the mixture weights w. When the data provide 
Sufficient Support, this determination can be essentially 
unique. Since the method also provides estimates of the error 
e, estimates of the variances (and standard deviations) O, O, 
and O, can be computed from the data. These values can be 
used to estimate probabilities and perform statistical tests. 
Moreover, they provide a quantitative estimate of the quality 
of a solution. 

Unique identification of individual components of mixed 
DNA samples is useful for finding suspects from DNA evi 
dence, and for identifying individuals from DNA data in 
forensic and nonforensic situations. An individuals genotype 
can be matched against a database for definitive identifica 
tion. This database might include evidence, victims, Suspects, 
other individuals in relevant cases, law enforcement person 
nel, or other individuals (e.g., known offenders) who might be 
possible candidates for matching the genotype. In one pre 
ferred embodiment, the database is a state, national or inter 
national DNA database of convicted offenders. 
When there are no (or only some) reference individuals, but 

other information (such as a database of profiles of candidate 
component genotypes) is available, then the invention can 
similarly derive such genotypes and statistical confidences 
from the DNA mixture data. This is useful in finding suspect 
individuals who might be on Such a database, and has par 
ticular application to finding persons (e.g., criminals, missing 
persons) who might be on Such a database. 
When there is little or no supplementary information, the 

LMA method permits computation of probabilities, and 
evaluation of hypotheses. For example, a likelihood ratio can 
compare the likelihood of the data under two different mod 
els. Integrating (either directly, or in conjunction with statis 
tical resampling) over the parameters (e.g., mixture weights, 
contributing genotypes) using the linear model invention 
enables robust and accurate evaluation of the evidence. 
DNACryptography 
The ability of the invention to uniquely identify individuals 

from a mixture given reference information enables the 
encoding and decoding of individual identity by using mixed 
DNA samples. For example, an individual's DNA could be 
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mixed with the DNA from J-1 other individuals. If J-1 (or 
J-L, L Small) of these individual genotypes were known to a 
decoder (either directly, or through a database of candidate 
genotypes), then the individual’s genotype could be uniquely 
determined from the DNA mixture. Moreover, if an insuffi 
cient number M (i.e., M Zero or Msmall) of these individuals 
were known to a decoder, then the problem of resolving J-M 
individuals from the mixture would be computationally 
intractable, and the identity of the individual would be 
masked by the other contributors, and essentially unknow 
able. This provides a means of communicating in confidence 
the identity of an individual, or encrypted messages. A large 
set of secure cryptographic protocols are immediately 
enabled once this nucleic acid encoding scheme is used 
(Schneier, B., Applied Cryptography, seconded 1996, New 
York: John Wiley & Sons), incorporated by reference. 
One typical application of DNA cryptography is in sending 

secure messages. Suppose that a mixed DNA genotype is 
used as a encryption key. For example, one component of the 
key identifies the sender, and other component identifies the 
recipient. (Reference DNAs may be used, instead of, or in 
addition to, the actual individual's DNA. Additional DNAS 
can be used to further increase the security of the encryption.) 
A message encoded with the mixed DNA sample can then be 
securely sent. 

In one preferred embodiment, a message is encoded using 
an encryption key derived from the sender's genotype. A 
DNA stain containing DNA from both recipient and sender, is 
also sent. Third parties cannot resolve the mixture into its 
components. Both recipient and sender know half the encod 
ing: their own DNA. By supplying their own genotype as a 
reference, the mixture deconvolution invention instantly pro 
vides the recipient with knowledge of the other senders 
genotype. The sender's genotype is then used to decode the 
message. Additional reference genotypes (known to one of 
the parties) can be used to further increase the security of the 
mixed DNA encryption key. 
The DNA cryptography has application to medical records. 

In another preferred embodiment, an individual’s genotype is 
used to encode a message. A particularly useful message is 
medical record information about that individual, which can 
be encoded using the individual’s genotype, and then posted 
in a public or semiprivate location (e.g., on an Internet data 
base) indexed by this genotype. When medical personnel 
need to retrieve medical record information on an individual 
whom they are caring for, by having the person available, they 
can readily obtain the individual’s genotype from blood or 
other tissue, and thereby decode the individual’s medical 
records. Other public key methods can be devised; these may 
include additional security codes. Moreover, information 
other than medical records can be communicated in this way. 
The knowledge of the STR loci used can constitute another 
level of encoding and decoding. DNA cryptography has util 
ity in many other cryptographic applications, using a wide 
variety of cryptographic protocols, which are well-known in 
the art (Schneier, B., Applied Cryptography, seconded 1996, 
New York: John Wiley & Sons), incorporated by reference. 
Convict Criminals 
DNA mixtures are currently analyzed by human inspection 

of qualitative data (e.g., electrophoretic bands are present, 
absent, or something in between). Moreover, they are 
recorded on databases and reported in court in a similarly 
qualitative way, using descriptors such as “major or “minor 
band, and “the suspect cannot be excluded from the mixture. 
Such statements are not optimally compelling in court, and 
lead to crude database searches generating multiple hits. 
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Linear mixture analysis of quantitative data changes this 

situation. Precise and accurate quantitative analysis of the 
mixture data can reveal unique identities in many cases. 
Moreover, these mixture analyses can be backed up by sta 
tistical certainties that are useful in convincing presentation 
of evidence. The increased certainty of identification is 
reflected in the increased likelihood ratios, as well as other 
probabilities and statistics, as described above. 
As discussed, with the random person hypothesis of the 

defense, current LR analysis gives far too much away to the 
defense (National Research Council, Evaluation of Forensic 
DNA Evidence: Update on Evaluating DNA Evidence, 1996, 
Washington, D.C.: National Academy Press), incorporated 
by reference. Linear mixture analysis can reduce Such inflated 
LRs by many orders of magnitude. The LR can be improved 
by using standard bootstrapping techniques on the population 
frequencies to remove much of the sampling error. It is pref 
erable to consider inbreeding coefficients when computing 
the prior genotype probabilities from the allele frequencies. 
The invention includes using quantitative data. This may 

entail proper analysis or active preservation of the raw STR 
data, including the gel or capillary electrophoresis data files. 
Removing or destroying this highly quantitative information 
can lead to Suboptimal data analysis or lost criminal convic 
tions. The invention enables mathematical estimation of 
genotypes, together with statistical certainties, that overcome 
the qualitative limitations of the current art, and can lead to 
greater certainty in human identification with increased like 
lihood of conviction in problematic cases. 
Generate Reports 

Preparing and reviewing reports on mixed DNA samples is 
tedious and time consuming work for the forensic analyst. 
This DNA analysis and reporting expertise is also quite 
expensive, and represents the single greatest cost in crime 
laboratory DNA analysis. It would be useful to automate this 
work, including the report generation. This automation has 
the advantages of higher speed, more rapid turnaround, uni 
formly high quality, reduced expense, eliminating casework 
backlogs, alleviating tedium, and objectivity in both analysis 
and reporting. 
The linear mixture analysis and mixture deconvolution 

methods are designed for computer-based automation of 
DNA analysis. The results are computed mathematically, and 
then can be presented automatically as tables and figures via 
a user interface to the forensic analyst. This analysis and 
presentation automation provides a mechanism for auto 
mated report generation. 

There is a basic template for reporting DNA evidence. 
Within this template, there are information and analyses that 
are unique to the case, and other information that is generally 
included. In one preferred embodiment, a template is devel 
oped in a document preparation environment (DPE) that pro 
vides for references to other files and variables. Preferable 
formats include readable documents (e.g., word processors, 
RTF), hypertext (e.g., HTML), and other portable document 
formats (e.g., PDF). A preferred DPE that can output many 
different common formats is FRAMEMAKER(R) document 
preparation software (Adobe Systems, San Jose, Calif.). A 
DPE template is a complete document that describes the text 
and graphics for a standard report, either directly or by refer 
ence to variables and files. 

After the automated mixture analysis, possibly including 
human review and editing, the computer generates all vari 
ables, text, table, figures, diagrams and other presentation 
materials related to the DNA analysis, and preserves them in 
files (named according to an agreed upon convention). The 
DCE template report document refers to these files, using the 
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agreed upon file naming convention, so that these case-spe 
cific materials are included in the appropriate locations in the 
document. The DCE document preparation program is then 
run to create a document that includes both the general back 
ground and case specific information. This DCE report docu 
ment, including the case related analysis information (possi 
bly including tables and figures), is then preferably output as 
a bookmarked PDF file. The resulting PDF case report can be 
electronically stored and transferred, viewed and searched 
cross platform on local computers or via a network (LAN or 
WAN), printed, and rapidly provided (e.g., via email) to a 
crime laboratory or attorney for use as documented evidence. 
Clean up DNA Databases 
Many DNA databases permit the inclusion of qualitatively 

analyzed mixed DNA samples. This is particularly true of the 
“forensic' or “investigative lead database components, that 
contain evidence from unsolved crimes that can be used for 
matching against DNA profiles. 
When these mixed DNA samples are matched against indi 

vidual or mixed DNA queries, many items (rather than a 
unique one) can match. Instead of a single DNA query 
uniquely matching a single DNA database entry, the DNA 
query can degenerately match a multiplicity of mixed DNA 
database entries. This degeneracy is only compounded when 
mixed DNA queries are made. Mixture degeneracy corrupts 
the database, replacing highly informative unique query 
matches with large uninformative lists. In these large lists, 
virtually all the entries are unrelated to the DNA query. 

To prevent this database corruption with mixed DNA pro 
files, it would be useful to clean up the entries prior to their 
inclusion on the database. When the raw (or other quantita 
tive) STR data are available, this clean up is readily imple 
mented by the mixture deconvolution invention. For example, 
consider the common case of a two person mixture containing 
a known victim and an unknown perpetrator. Mixture decon 
Volution estimates the genotype of the unknown perpetrator, 
along with a confidence. (Lower confidences may suggest 
intelligently using degenerate alleles at Some loci.) The 
resolved unknown perpetrator genotypes are then entered into 
the forensic database, rather than the usual qualitative (e.g., 
major and minor peak) multiplicity of degenerate alleles. The 
result is far more uniqueness in Subsequent DNA query 
matches, with an associated increase in the informativeness 
and utility of the matches. 
Clean up DNA Queries 
When performing DNA matches against a DNA database, 

current practice uses mixed DNA stains with degenerate alle 
les. This practice produces degenerate matches, returning 
lists of candidate matches, rather than a unique match. Most 
(if not all) of the entries on this list are typically spurious. The 
length of these spuriously matching lists grows as the size of 
the DNA database increases. 

With mixture deconvolution, the genotype b of an 
unknown contributor can often be uniquely recovered from 
the data dand the victim(s)a, along with statistical confidence 
measures. Thus, using the resolved mixture b, instead of the 
qualitative unresolved data d, a unique appropriate database 
match can be obtained. Moreover, the result of this match is 
highly useful, since it removes the inherent ambiguity of 
degenerate database matching, and largely eliminates spuri 
ous matches. Even when there is more than one unknown 
contributor to d, the invention's bootstrap simulation methods 
permit matching of the mixed data against the database for 
relatively unique results. 
Reduce Investigative Work 
Of all the costs in using DNA technology to find criminals, 

the greatest one is the actual investigative work involved in 
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using the DNA evidence to follow leads. One reason why this 
cost is so high is the large number of leads generated by 
degenerate matches. Following one lead is expensive; follow 
ing dozens can be prohibitive. And as the sizes of the DNA 
databases increase, the investigative cost of degenerate 
matches (from mixed crime stains or mixed database entries) 
will increase further. 
The mixture deconvolution invention overcomes this 

developing bottleneck. By cleaning up the information prior 
to its use, the database searching results become more unique 
and less degenerate. This relative uniqueness translates into 
reduced investigative work, and greatly reduced costs to Soci 
ety for putting DNA technology into practice. The natural 
business model for mixture deconvolution therefore includes 
consideration for reducing this investigative burden. 
Catch Criminals 
The ultimate cost of degenerate DNA matches is losing the 

ability to use DNA technology to find criminals at all. Too 
many leads amount to no useful leads, since large numbers of 
low information leads cannot be practically acted upon due to 
finite law enforcement resources. Then Society pays the high 
est cost: the criminal is not found, not brought to justice, and 
continues to commit further crimes. This has a high financial, 
Societal, economic, and human cost, which can be quantified. 
For example, with sexual assault crimes the estimated dollar 
cost to the victim and society (when the victim's quality of 
life is quantified) is S87,000 per case (Victim Costs and 
Consequences: A New Look, National Institute of Justice 
Research Report, January 1996), incorporated by reference. 
The mixture deconvolution invention can reduce this ulti 

mate cost by cleaning up the DNA mixture samples prior to 
using the data with a database. This clean up reduces the 
degeneracy of the DNA matches, increases the information 
resulting from a database match, and increases the likelihood 
of catching criminals using DNA technology. 
Reduce Laboratory Work 

In preparing potentially mixed DNA samples for PCR 
analysis, crime labs typically attempt to separate different 
tissues whenever possible. This is done to help avoid analyz 
ing mixture traces, which is difficult, time consuming, and 
yields uncertain results in the current art. 

In sexual assault cases, differential DNA extraction is con 
ducted on semen stains in order to isolate the semen as best as 
possible. This is done because, a priori, Semen stains are 
considered to be mixed DNA samples, and the best possible 
(i.e., unmixed) evidence is required for finding and convicting 
the assailant. Thus, mixture separation is attempted by labo 
ratory separation processes. The full differential extraction 
protocols for isolating sperm DNA are laborious, time con 
Suming, and expensive. They entail differential cell lysis, and 
repeatedly performing Proteinase K digestions, centrifuga 
tions, organic extractions, and incubations; these steps are 
followed by purification (e.g., using micro concentration). 
There are also Chelex-based methods. These procedures con 
sume much (if not most) of the laboratory effort and time 
(often measured in days) required to for laboratory analysis of 
the DNA sample. This time factor contributes to the backlog 
and delay in processing rape kits. 

There are also modified differential DNA extraction pro 
cedures that are much faster and simpler. These procedures 
eliminate most of the repetitious Proteinase K digestions, 
organic solvent separations, and centrifugations, reducing the 
total extraction effort from days to hours. However, they do 
not provide the same degree of separation of the sperm DNA 
template as does the costlier full differential extraction. In 
fact, highly mixed DNA samples will often result. 
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With the mixture deconvolution invention, it is feasible to 
replace days of laboratory separation effort with seconds of 
automated computer analysis time. The result is the same: the 
assailant's sperm cells genotype b is separated from the vic 
tim’s epithelial genotype a using the mixed data d. The inven 
tion enables crime labs to use faster, simpler and less expen 
sive DNA extraction methods, with an order of magnitude 
difference. The computer performs the refined DNA analysis, 
instead of the lab, resolving the mixture into its component 
genotypes. 
Low Copy Number 

Given the power of DNA human identity analysis, forensic 
Scientists are now analyzing ever lower quantities of DNA 
recovered from crime scenes. Whereas most STR kits work 
comfortably in the 1 ng range, Scientists are now working well 
below 100 pg, extending down to the 1 pg (several DNA 
copies) range (Gill, P. et al. An investigation of the rigor of 
interpretation rules for STRs derived from less than 100 pg of 
DNA, Forensic Sci Intl. 2000, 112: p. 17-40), incorporated by 
reference. 
To obtain low copy number (LCN) data, laboratories will 

change the PCR protocol, e.g., increase the cycle number 
(say, from 28 to 34 cycles with SGMplus). Experiments are 
often done in duplicate. The combination of less template and 
more cycles can lead to increased data artifacts. Most preva 
lent are PCR stutter, allelic dropout, low signal to noise, and 
mixture contamination. 
The automated analysis methods described earlier herein 

readily remove PCR artifacts such as stutter and relative 
amplification. To handle allelic dropout, new valid genotypes 
(e.g., 1 of one allele, and 0 of any another; these do not sum to 
2 alleles) must be included in the analysis. For example, in 
mixture deconvolution, monozyogotic genotypes would be 
added as valid searchable cases. Signal to noise is increased 
by repeating the experiment, and then combining the results 
at each locus. 

In performing linear mixture analysis, the main effect of 
noise and dropout are seen in increased error measures (such 
as variance and standard deviation). While the invention 
works well on Such data, it cannot extract more information 
from the problem than it actually contains. Therefore, the 
statistical analysis may suggest multiple genotypes. The vari 
ance can be reduced by increasing the informativeness of the 
data. Techniques for this include experiment repetition, using 
multiplex panels that contain more loci, and using more infor 
mative loci (higher heterozygosity or polymorphism infor 
mation content (PIC)). 
Reduced Panel Size 

Current multiplex panels have many STR loci (e.g., from 9 
to 15). This provides tremendous discriminating power that 
can render virtually all of the current and future world’s 
population essentially unique. When matching single profiles 
to single profiles, the panels (in combination with conven 
tional evidence) provide far more information than what 
courts actually need for guilt beyond a reasonable doubt. 

This panel overdesign is intended to overcome many worst 
case scenarios. Conventional wisdom holds that: 

1. DNA databases will be corrupted with mixture data. 
2. DNA evidence will be limited by mixture contamina 

tion. 
3. Only the four allele cases (in two person mixtures) 

provide the analyst with useful information for distin 
guishing the major and minor components. 

4. The more loci, the greater the confidence in the evidence. 
5. In casework practice, not all loci will provide useful 

information. 
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There is certainly truth to these beliefs, based on current 

practice. However, the mixture analysis invention and its 
applications moderate these views, somewhat. Specifically: 

1. DNA databases need not be highly corrupted by mixture 
data. Mixture deconvolution can separate out Suspect 
from victim, thereby cleaning up the database. 

2. DNA evidence need not be highly corrupted by mixture 
contamination. Mixture deconvolution can separate out 
Suspect from victim, thereby cleaning up the queries 
made by crime lab against database. 

3. Four allele cases (in two person mixtures) are not needed 
by the invention's automated computer analysis of mix 
ture data. Indeed, as shown herein, a handful of three 
allele loci work well for complete resolution. 

4. A large number of loci is not needed when using linear 
mixture analysis. A handful suffice for achieving full 
confidence, as measured by the variance in the solution. 

5. While not all loci may provide useful information, in 
fact, for mixture resolution, very few are actually 
needed. 

These observations suggest a simpler approach to crime lab 
stain analysis. Rather than putting considerable effort into 
obtaining as many loci as possible, it might be preferable to 
run a smaller panel (with loci that correspond to a database), 
perform the computer mixture analysis, and determine 
whether or not a useful identifying genotype has been 
obtained. If successful, then a crime lab need not expend 
further resources on additional STR typing. Since the costs of 
STR panels are priced proportionately to the number of loci, 
and many samples are analyzed per case, this could lower the 
incurred cost of information in each case. 
Extensions of the Method 
Other Markers 
The mixture analysis methods work with markers other 

than STRs. One important class of markers are the single 
nucleotide repeat polymorphisms (SNPs). In these assays, 
each component biallelic marker has just two alleles: one of 
two bases that terminate the reaction. 

With minisequencing protocols, SNPs are detected by 
primer extension of one nucleotide that is a labeled ddNTP 
terminator. One allele has its base identified with a comple 
mentary terminator labeled in a first color (say, blue), while 
the second allele has its (different) base identified with a 
complementary terminator labeled in a second color (say, 
red). Clearly, up to four alleles (one color for each possible 
nucleic acid base) can be accommodated in this way. 

Suppose that after PCR (in the linear range), primer exten 
sion is performed on the PCR product with the two differently 
colored ddNTPs. Considera single marker having two alleles. 
A homozygote for the blue allele would produce two blue 
units and no red units, a homozygote for the red allele would 
produce two red units and no blue unit, and a heterozygote 
would produce one blue unit and one red. Thus, the possible 
genotypes at this locus can be written as {|20), 1 1 02, 
where the first vector element describes the blue allele, and 
the second one the red allele. This case is isomorphic to the 
two allele STR situation. 
A mixture of J individuals would produce a continuous 

valued signal that would be a linear combination of the pure 
genotypes, according to their DNA template proportion, with 
the simplex constraint that the Sum of the (nonnegative) 
weight values totaled to unity. Suppose there are I SNP loci, 
JDNA contributors to the mixture, and Kalleles present. Note 
that K=2I in the biallelic case (and KsaI when more than two 
alleles per locus are permitted), with one entry for each 
detected color. Then one obtains the linear mixture analysis 
model: 
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where d is the observed KX1 data vector, G is KXJ matrix of 
genotype column vectors, w is the Jx1 mixture weight vector, 
and e is the error. With multiple experiments, d becomes a 
matrix (not a vector) of observations, and the equation 
changes accordingly. 
The mixture deconvolution invention is therefore quite 

applicable to SNP data. This is because the mathematical 
form of the problem, and the linear nature of the data, are 
identical to the problem solved above for any linear mixture 
model, as illustrated in depth for STRs. 
SNP assays can be done by gel or capillary electrophoresis 

(which permits highly multiplexed one dimensional analy 
sis), and by DNA arrays (which can pack a large number of 
Zero dimensional experiments into a two dimensional format) 
such as microwell titre plates, and DNA chips or other sur 
face-based DNA comparison technologies. They are attrac 
tive for human (and other species) identification because a 
large amount of data can be obtained at a relatively lower cost 
per unit of information. This was demonstrated in the data 
simulations described above. 
The mixture analysis methods described will work with 

any marker system, as long as the detected allele signals vary 
linearly (or in a similarly monotonically predictable way) 
with the amount of DNA template that is effectively present. 
This is because once the linearity condition is met, the data 
from one or more markers from two or more DNA contribu 
tors can linearly modeled as: 

which is a mixture problem that the invention completely 
Solves. 

Achieving this linearity condition may require adapting the 
experiment to the linear analysis method. For example, some 
molecular biologists prefer to bias their experiments to 
achieve an all-or-none response, e.g., by Saturating the system 
Somehow (say, by using a very large number of PCR cycles). 
The linear adaptation in this case would entail moving the 
system away from the saturating parameters, into a linearly 
(or monotonicly) behaving range (say, by reducing the num 
ber of PCR cycles). 
Other Genotypes 

There are valid genotypes other than those used in the 
above embodiments. One case involves extra alleles (i.e., 
more than two at a locus). For example, if trisomy 21 is a 
likely event, then the valid genotypes of a single individual 
can be extended to handle the three expected chromosomes. 
This is done by adding to the valid genotype set all possible 
combinations for the observed alleles that sum to three. With 
two alleles, for example, the original set 

{2O), 1 1), O2) 
is expanded to 

{2O), 1 1), O2), 3 O), 1 2), 2 1, 3 O}, 
which then accommodates the feasible two and three chro 
OSO CaSS. 

Another case involves missing alleles. With LCN applica 
tions, allele dropout may occur due to the observable ampli 
fication of only one chromosome. If this is expected, then 
simply augment the valid genotype set with the possibilities 
of alleles that sum to one. With two alleles, for example, the 
original set 

{2O), 11), O2 
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is expanded to 

{2O), 11), O2), 1 O), O 1 }, 

which then accommodates both feasible one and two chro 
OSO CaSS. 

Other Formats 
The invention is not dependent on any particular arrange 

ment of the experimental data. In the DNA amplification, 
same DNA template is used throughout. For efficiency and 
consistency of the amplification conditions, a multiplex reac 
tion is preferred. There is no requirement on the specific label 
or detector used. It is preferred that the experiment be con 
ducted in the linear range of the DNA analysis system. 

There is no restriction on the dimensionality of the labora 
tory system. It can accommodate dimensions of Zero (tubes, 
wells, dots), one (gels, capillaries, mass spectrometry), two 
(gels, arrays, DNA chips), or higher. There is no restriction on 
the markers or the marker assay used. The only requirement is 
that 

can be made to be a reasonable model of the systems behav 
ior. For then, the mixture weight can become a constraint on 
the data that leads to rapid, robust and accurate solutions. 
General Solution 
The general solution for I markers, J individuals, and K 

alleles was given above. With 0 unknowns, the mixture 
weight w can be determined by least squares minimization. 
With 1 unknown genotype, the missing genotype b can also 
be determined using mixture deconvolution. With 2 unknown 
genotypes, the missing genotypes band b can be also deter 
mined using mixture deconvolution together with bootstrap 
resampling simulation. With more than 2 unknown geno 
types, additional search on the genotype solution space is 
required, but can be solved with brute force computation, 
integer programming, or computational geometry minimiza 
tion techniques. Thus the linear mixture analysis provides a 
general solution framework for effectively solving any DNA 
mixture search problem, and providing statistical estimates of 
the quality of the Solution. 

With any number of unknowns, bootstrap simulation tech 
niques based on the linear mixture analysis method permit the 
computation of a null distribution. Any genotype configura 
tion can be statistically assessed against this null distribution. 
For example, Suppose the hypothesis is that J particular indi 
viduals are the contributors to a particular mixtured. Then, 
least squares projection into the J-1 simplex finds the weight 
parameter Solution having the best confidence score. This 
optimal score can be compared against the sampled null dis 
tribution to assess the validity of the hypothesis. Alterna 
tively, the minimal solution can be used to estimate variance 
in probability calculations, or other statistics (e.g., the sample 
variance S) for use in statistical tests (e.g., x or F). Thus, the 
linear mixture analysis invention provides a general Solution 
framework for effectively evaluating any DNA mixture 
hypothesis, and providing useful statistical estimates. 
Three Person Mixture 
The most preferred embodiment for solving a three person 

mixture (J-3) with one unknown genotype was described 
above (i.e., simplex search for error minimization). An alter 
native embodiment for resolving Such a case comprised of 
one woman and two men is described here using Y-chromo 
Some markers. It entails two data sets and two one dimen 
sional optimizations, instead of the most preferred one data 
set with one two dimensional optimization. 
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For known female victim a, and the two male components 
b and b, write: 

Using Y-chromosome markers, such as (Y-PLEX 6. Reli 
aGene, New Orleans, La.), type the mixture, obtaining data 
on the two male components. Use mixture deconvolution on 
this Y-chromosome data to determine the mixture weight fo 
between them. 
Now write the genotype estimate function for bas: 

d - a 
1 - a. b2(a) = -- - Bob 

1 

1 - fo 

and the error vector as 

where b. is the closest valid genotype to b(C). Use the mix 
ture deconvolution algorithm to minimize elf, and to find b. 
and Co. 
Additional Data 

In forensic casework, it is often possible to perform only a 
single PCR amplification on a sample, due to limited DNA 
material. However, in many cases the PCR can be repeated. In 
Some circumstances, particularly when the initial mixture 
deconvolution suggests a high variance or low confidence in 
a unique Solution, it is useful to repeat the experiment (pos 
sibly multiple times) to obtain additional data. 

In the linear system d=Gw--e, d, w and e are column 
vectors. With repeated experiments, one can write instead the 
matrix relationships 

This can confer several advantages: 
The additional data permits more accurate estimation of the 

variances. 
The search algorithm can be adjusted to force all columns of 
W to be equal, so that a common mixing weight in the 
template is assumed. If this is done, then it is best to 
amplify all replicates from the same DNA template. 

Mixture deconvolution may provide more accurate Solutions, 
particularly when the data are problematic. 

Multiple experiments permit the calculation of sample cova 
riances across the alleles. This can reveal correlations 
between allelic quantities within (or between) loci. 

The covariance matrix V can be computed, and used in the 
modeling of the data. As described above, V appears in the 
weight variance estimation, the probability distributions, 
and thus the likelihood calculations. 

Experiment repetition is most helpful in certain applications, 
such as low copy number DNA analysis. 

PCR Artifacts 
In the most preferred embodiment, PCR artifacts are 

removed (or attenuated) mathematically by calibrations such 
“stutter deconvolution” (Martens, H. and T. Naes, Multivari 
ate Calibration 1992, New York: John Wiley & Sons 438: 
Perlin, M. W. G. Lancia, and S.-K. Ng, Toward fully auto 
mated genotyping: genotyping microsatellite markers by 
deconvolution, Am. J. Hum. Genet., 1995, 57(5): p. 1199 
1210), incorporated by reference. The mixture analysis is 
preferably done after Such signal preprocessing. Advantages 
include a reduction in the dimensionality of the search space, 
and the use of an integer lattice for search algorithms. 

In an alternative embodiment, Stutter is not removed prior 
to mixture deconvolution or LMA. In that case, the dimen 
sionality of the data space is increased by the additional 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

44 
alleles formed by artifactual stutter bands. In such analyses, it 
is best to include stutter data in the representation of all 
genotypes, including reference and target genotypes. This 
will move the genotypes off the integer lattice, and into the 
quantitative allele measurement space. The effect is that 
genotype matrix G can assume continuous (rather than purely 
discrete) values. By the linearity of the stutter transformation, 
the mixture model and deconvolution will still work well. 
However, this embodiment has a more complex representa 
tion than using the Stutter calibrated data. 

In an alternative embodiment, relative amplification is not 
adjusted for prior to mixture deconvolution or LMA. In that 
case, heterozygotes are better represented by points that are 
not on the integer lattice, but instead fall along the line 
between the pure homozygotes at a position based on their 
relative amplification. This can put continuous (rather than 
discrete) valued entries in the genotype matrix G. The meth 
ods described will operate well in this alternative, if more 
complex, representation. 
Nonforensic Applications 

Linear modeling, regression and mixture analysis are well 
established in the prior art (Christensen, R., Plane Answers to 
Complex Questions: A Theory of Linear Models, 1996, New 
York: Springer-Verlag; Martens, H. and T. Naes, Multivariate 
Calibration, 1992, New York:John Wiley & Sons. 438: Seber, 
G. A. F., Linear Regression Analysis, 1977, New York: John 
Wiley & Sons), incorporated by reference. However, the mix 
ture deconvolution methods (for the J-1 knowns case) are 
novel. They use integer constraints on the genotype to deter 
mine a column in the design matrix G by a global minimiza 
tion. Moreover, the bootstrap simulation methods (for the J-2 
knowns case) are novel. They use integer constraints on the 
genotype, together with an information source (e.g., a data 
base of candidate genotypes), to determine two columns in 
the design matrix G by multiple global minimizations. 

These novel and nonobvious optimization methods have 
utility in the analysis of data formed by linear combinations 
and other transformations of discrete data. Initial preprocess 
ing inverts the other transformations, leaving a mixture 
deconvolution problem. This is solved using the methods 
described above. 
One nonforensic application is cryptography. Consider 

Some binary string (e.g., ASCII) representation T of some text 
or other discretizable information having length K. Next, 
consider another discrete string U, also of length (at least) K. 
(In alternative embodiments, more than one such Uare used.) 
Such Us of arbitrary length are readily available, given the 
amount of on-line content accessible on the Internet. Each 
element of Tand U is comprised of a 0 or a 1. Choose a weight 
w (between 0 and 1), and form V as the continuous mixing of 
T and U, defined by 

Round the values V(k) to several decimal places, and intro 
duce additional noise, if desired. That is: 

Each V(k) element can be represented numerically in at most 
8 bits as a byte character, providing natural round-off error. 
The vector V has entries that assume values between 0 and 

1. The message T is entirely unknowable from V alone. Yet, 
by having U in hand, mixture deconvolution can instantly 
recover the information T. In this way, the function 

serves as a trapdoor one-way function, for random wande. It 
is easy to compute in one direction, and hard to compute in the 
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other. However, given the secret information U, it becomes 
easy to compute X. Such trapdoor one-way functions are at 
the heart of modern cryptography (Schneier, B., Applied 
Cryptography, second ed., 1996, New York: John Wiley & 
Sons), incorporated by reference. So the methods described 
herein clearly have utility that goes well beyond forensics and 
personal identification. 
Medicine and Agriculture 

There are many settings in biology, medicine, and agricul 
ture where mixed DNA (or RNA) samples occur. These 
samples can be mixed intentionally, or unintentionally, but 
the problem remains of determining one or more genotype 
components. 

In biology, mixtures of DNA sequences occur. For 
example, when sequencing DNA, it is useful to first sequence 
the two chromosome sample and then somehow determine 
the component DNA sequences, rather than subclone to first 
separate and then sequence them. As described in the preced 
ing cryptography example, LMA can deconvolve mixed 
sequences of discrete information, Such as DNA sequences. 
In HLA typing, for example, the known combinations of 
sequences permit quantitative information to be resolved 
using mixture deconvolution. 

In medicine, cancer cells are a naturally occurring form of 
DNA mixtures. In tumors that exhibit microsatellite instabil 
ity (e.g., from increased STR mutation) or loss of heterozy 
gosity (e.g., from chromosomal alterations), a different 
typable DNA (the tumor) is mixed in with the normal tissue. 
By determining the precise amount of the individuals normal 
DNA, versus the amount of any other DNA (e.g., a diverse 
tumor population), cancer patients can be diagnosed and 
monitored using mixture deconvolution. This is done by 
using the many alleles possibly present at a locus. With 
diverse tumor tissue Subtypes, there may be many alleles 
present. Quantitative data are collected for d, the individuals 
known alleles are then used as reference a, and the pattern of 
the tumor contribution b is determined, along with the mix 
ture weight W and the standard deviation. 

In agriculture, animal materials can be mixed, e.g., in food, 
plant or livestock products. LMA can resolve the mixed 
samples into their individual components. 
Business Model 

There are many situations in which automated linear mix 
ture analysis confers economic and other benefits to the user 
community. At each of these, the natural model is a usage 
based fee that reflects a reasonable percentage of the value 
added provided. This business model of providing DNA mix 
ture data analysis is novel, and not obvious. It is reasonable 
and useful because the technology delivers clear benefits and 
enabling functionalities that cannot be done in any other way 
in the current art. 

In a first preferred embodiment, crime or service laborato 
ries generate their own data from DNA samples. The data 
quantitation and mixture analysis is then done at their site, or, 
preferably (from a quality control standpoint) at a separate 
data service center (DSC). This DSC can be operated by a 
private for-profit entity, or by a centralized government 
agency. The case is analyzed, and a report then generated (in 
whole or part) using the software. The report is provided to 
the originating laboratory. Usage fees are applied on a per 
case basis, with surcharges for additional work. The DSC 
may provide quality assurance services for provider labora 
tories to ensure that the data is analyzable by quantitative 
methods. 

In a second preferred embodiment, the DSC generates the 
data, and analyzes it as well. This has the advantage of 
ensured quality control on the data generation. This can be 
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important when the objective is quantitative data that reflects 
the output of properly executed data generation. After data 
analysis, the customer receives the report, and is billed for the 
CaSC. 

There are several feasible customers for database work. 
When entering mixed samples onto a database, it is the data 
base curators and owners (e.g., a centralized government 
related entity) that is most concerned about the quality of the 
entered data for future long-term forensic use. This suggests 
a usage-based contract with said entity for cleaning up the 
data. A value added by the invention is the capability of 
finding criminals at a lower cost. 
When analyzing a mixed DNA sample, law enforcement 

agencies (e.g., prosecutors, police, crime labs) may be inter 
ested in identifying genotypes in the mixed sample which are 
unknown, preferably to match them against a database of 
possible Suspects. In this case, a value added by the invention 
is the reduced cost, time, and effort of mixture analysis and 
report generation. There is additional value added in obtain 
ing a higher quality result that can more effectively serve the 
law enforcement needs of the agency. 
When matching against a DNA database, a single correct 

match will lead to minimal and Successful investigative work 
by the police or other parties. Having a multiplicity of largely 
incorrect matches creates far greater work, for far less benefit. 
That is the current art. The invention can (in many cases) 
reduce this work by over an order of magnitude. The value 
added in this case is the savings in cost and time in the pursuit 
of justice. 
When using mixed DNA evidence in court, the goal is to 

obtain a conviction or exoneration, depending on the evi 
dence. The current art produces imprecise, qualitative results 
that are ill-suited to this purpose. Current assessments often 
vastly understate the true weight of the evidence. The value 
added in this situation is the capability of the technology to 
convict the guilty (and keep them off the street) and to exon 
erate the innocent (and return them to Society). The financial 
model in this case preferably accounts for the benefit to soci 
ety of appropriately reduced crime and increased productiv 
ity. 
System 
The LMA invention includes a system for resolving a DNA 

mixture comprising: (a) means for amplifying a DNA mix 
ture, said means producing amplified products; (b) means for 
detecting the amplified products, said means in communica 
tion with the amplified products, and producing signals; (c) 
means for quantifying the signals that includes a computing 
device with memory, said means in communication with the 
signals, and producing DNA length and concentration esti 
mates; and (d) means for automatically resolving a DNA 
mixture into one or more component genotypes, said means 
in communication with the estimates. 

Although the invention has been described in detail in the 
foregoing embodiments for the purpose of illustration, it is to 
be understood that such detail is solely for that purpose and 
that variations can be made therein by those skilled in the art 
without departing from the spirit and scope of the invention 
except as it may be described by the following claims. 

What is claimed is: 
1. A method of analyzing a DNA mixture comprised of the 

steps: 
(a) obtaining a DNA mixture that contains genetic material 

from at least two contributing individuals; 
(b) amplifying the DNA mixture in a DNA amplification 

process to produce an amplification product comprising 
DNA fragments: 
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(c) producing from the amplification product a signal com 
prising signal peaks from the DNA fragments; 

(d) detecting signal peak amounts in the signal, and quan 
tifying the amounts to produce DNA lengths and con 
centrations from the mixture to form quantitative geno 
typing data; 

(e) assuming a genotype value of alleles for a contributor to 
the quantitative genotyping data at a genetic locus; 

(f) setting a mixture weight value for a relative proportion 
of the contributors to the quantitative genotyping data; 

(g) forming a linear combination of the genotype values 
based on the mixture weight value; 

(h) deriving with a computer a data variance of the ampli 
fication process from a model that includes both the 
quantitative genotyping data and the linear combination; 

(i) determining with the computer a probability of the 
quantitative genotyping data corresponding to a set of 
suspects from the DNA mixture at the locus using both 
the linear combination and the data variance value; () 
computing a probability of a genotype for one of the 
contributing individuals using the determined probabil 
ity of the quantitative genotyping data; and (k) compar 
ing the genotype probability with a set of Suspect geno 
types to identify a likely suspect. 

2. The method as described in claim 1 wherein the ampli 
fying step at a locus generates relative amounts of DNA 
fragments that are proportional to relative amounts of DNA 
template present in the DNA mixture. 

3. The method as described in claim 2 wherein the detect 
ing step generates relative amounts of signal that are propor 
tional to the relative amounts of DNA fragments. 

4. The method as described in claim 1 wherein the forming 
step includes a mathematical operation based on a linear 
model that relates the quantitative genotyping data to a prod 
uct of a genotype matrix multiplied by a weight vector that 
describes the relative contribution of each individual that is 
considered in the DNA mixture. 

5. The method as described in claim 4 wherein after the 
determining step there is the step of using a computing device 
to generate a visualization that shows the genotype matrix and 
the weight vector. 

6. The method as described in claim 4 wherein the forming 
step includes iteratively determining the genotype matrix 
based on the weight vector, and the weight vector based on the 
genotype matrix. 

7. The method as described in claim 4 wherein the geno 
type matrix contains entries that are not integer values. 

8. The method as described in claim 7 wherein the nonin 
teger values represent an efficiency of the amplification. 

9. The method as described in claim 4 wherein the math 
ematical operation computes a genotype of an individual by 
Subtracting from the data genotypes of otherindividuals in the 
mixture in proportion to the weight vector. 

10. The method as described in claim 4 wherein the geno 
type matrix is a design matrix of the linear model. 

11. The method as described in claim 4 wherein the weight 
vector is a regression parameter of the linear model. 

12. The method as described in claim 4 wherein the data 
variance is a parameter of the linear model. 

13. The method as described in claim 4 wherein the linear 
combination of genotypes is represented in a linear model. 

14. The method as described in claim 1 wherein the com 
puting step includes determining a probability of each geno 
type in a set of genotypes of an individual whose DNA is in 
the DNA mixture. 
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15. The method as described in claim 1 wherein the com 

puting step includes determining a relative weight of an indi 
vidual’s DNA in the DNA mixture. 

16. The method as described in claim 1 wherein the com 
puting step includes determining a statistical confidence in 
the genotype of the DNA mixture. 

17. The method as described in claim 1 wherein the com 
puting step includes recording a genotype likelihood or prob 
ability of an individual in a report. 

18. The method as described in claim 1 wherein the set of 
Suspect genotypes contains a genotype of a convicted 
offender individual. 

19. The method as described in claim 1 wherein the deter 
mining step can process at least one DNA mixture per hour. 

20. The method as described in claim 1 wherein the deter 
mining step can determine a genotype using a computing 
device with memory. 

21. The method as described in claim 20 in performing the 
determining step does not exceed one hour. 

22. The method as described in claim 20 wherein the deter 
mining step is performed entirely by computer, without any 
human intervention during the determining step. 

23. The method as described in claim 1 wherein the ampli 
fication includes a single nucleotide polymorphism (SNP) 
marker. 

24. The method as described in claim 1 wherein the analy 
sis includes more than one DNA experiment. 

25. The method as described in claim 1 wherein the DNA 
mixture contains genetic material from more than two indi 
viduals. 

26. The method as described in claim 1 wherein the assum 
ing step includes a candidate genotype selected from a data 
base of previously determined genotypes. 

27. The method as described in claim 26 wherein the deter 
mining step produces a set of ranked genotypes that are in the 
database and match the data. 

28. The method as described in claim 1 wherein the ampli 
fying step includes a low copy number PCR protocol. 

29. The method as described in claim 1 wherein the data 
variance model in the deriving step includes an inverse chi 
square probability distribution. 

30. The method as described in claim 1 wherein the prob 
ability of the quantitative genotyping data in the determining 
step is a multivariate normal distribution. 

31. The method as described in claim 1 wherein the prob 
ability of the quantitative genotyping data is combined with a 
genotype prior distribution to form aposterior genotype prob 
ability distribution. 

32. The method as described in claim 31 wherein the prior 
distribution is computed from population allele frequency 
information. 

33. The method as described in claim 31 wherein the prior 
distribution is uniformly distributed. 

34. A method as described in claim 1, where the quantita 
tive genotyping data obtained in Step (d) is from a short 
tandem repeat (STR) locus. 

35. A method as described in claim 1, where the quantita 
tive genotyping data obtained in Step (d) is from a Y chromo 
some short tandem repeat (Y-STR) locus. 

36. A method as described in claim 1, where the quantita 
tive genotyping data obtained in Step (d) is low copy. 

37. A method as described in claim 1, where the quantita 
tive genotyping data obtained in Step (d) is derived from 
allele peak height or area. 

38. A method as described in claim 1, where the quantita 
tive genotyping data obtained in Step (d) is derived from 
repeated experiments. 
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39. A method as described in claim 1, where the quantita 
tive genotyping data obtained in Step (d) entails fewer loci. 

40. A method as described in claim 1, where the genotype 
value assumed in Step (e) has an allele count that is continu 
ous, rather than discrete. 

41. A method as described in claim 1, where the genotype 
value assumed in Step (e) accounts for allele dropout. 

42. A method as described in claim 1, where the genotype 
value assumed in Step (e) includes a representation of PCR 
Stutter. 

43. A method as described in claim 1, where the genotype 
value assumed in Step (e) includes a representation of relative 
amplification. 

44. A method as described in claim 1, where the mixture 
weight value set in Step (f) is related to a mixture weight 
probability distribution. 

45. A method as described in claim 1, where the linear 
combination formed in Step (g) contains one genotype. 

46. A method as described in claim 1, where the linear 
combination formed in Step (g) contains two genotypes. 

47. A method as described in claim 1, where the linear 
combination formed in Step (g) contains three genotypes. 

48. A method as described in claim 1, where the linear 
combination formed in Step (g) contains more than three 
genotypes. 

49. A method as described in claim 1, where the data 
Variance value derived in Step (h) is conditioned on a geno 
type value. 

50. A method as described in claim 1, where the data 
variance value derived in Step (h) is a data covariance matrix. 

51. A method as described in claim 1, where the data 
variance value derived in Step (h) is obtained from a calibra 
t1On. 

52. A method as described in claim 1, where the data 
variance value derived in Step (h) is related to a data variance 
probability distribution. 

53. A method as described in claim 1, where the data 
variance value derived in Step (h) scales with peak height or 
aCa. 

54. A method as described in claim 1, where the probability 
of the quantitative genotyping data determined in Step (i) 
involves a simulated genotype. 

55. A method as described in claim 1, where the probability 
of the quantitative genotyping data determined in Step (i) uses 
a function with continuous, rather than binary, values. 

56. A method as described in claim 1, where the probability 
of the quantitative genotyping data determined in Step (i) 
includes a hierarchical Bayesian model. 

57. A method as described in claim 1, where the probability 
of the quantitative genotyping data determined in Step (i) uses 
Markov chain Monte Carlo methods. 

58. A method as described in claim 1, where a computer 
draws a visualization of the computed genotype probability. 

59. A method as described in claim 1, where genotypes are 
ranked in the order of their computed probability values. 

60. A method as described in claim 1, where DNA mixture 
data is separated into component genotypes having computed 
probability. 
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61. A method as described in claim 1, where a computer 

generates a genotype report from the computed probability 
that includes a figure or a table. 

62. A method as described in claim 1, where computed 
genotype probabilities are stored on a DNA database. 

63. A method as described in claim 1, where separated 
genotypes of contributors to a mixture are stored on a DNA 
database, along with their computed probability. 

64. A method as described in claim 1, where the computed 
genotype probabilities provide more specific investigative 
leads. 

65. A method as described in claim 1, where a service 
center computes the genotype probabilities from the quanti 
tative genotyping data. 

66. A method of analyzing a DNA mixture comprised of 
the steps: 

(a) obtaining a DNA mixture that contains genetic material 
from at least two contributing individuals; 

(b) amplifying the DNA mixture in a DNA amplification 
process to produce an amplification product comprising 
DNA fragments; 

(c) producing from the amplification product a signal com 
prising signal peaks from the DNA fragments; 

(d) detecting signal peak amounts in the signal, and quan 
tifying the amounts to produce DNA lengths and con 
centrations from the mixture to form quantitative geno 
typing data; 

(e) assuming a genotype value of alleles for a contributor to 
the quantitative genotyping data at a genetic locus; 

(f) setting a mixture weight value for a relative proportion 
of the contributors to the quantitative genotyping data; 

(g) forming a linear combination of the genotype values 
based on the mixture weight value: 

(h) deriving with a computer a data variance of the ampli 
fication process from a model that includes both the 
quantitative genotyping data and the linear combination; 

(i) determining with the computer a probability of the 
quantitative genotyping corresponding to a set of sus 
pects data from the DNA mixture at the locus using both 
the linear combination and the data variance value; 

(j) calculating a likelihood ratio of a hypothesis using the 
determined probability of the quantitative genotyping 
data; and 

(k) comparing with a set of suspect genotypes using the 
likelihood ratio to identify a likely suspect. 

67. A method as described in claim 66, where the likeli 
hood ratio is calculated from a plurality of genetic loci. 

68. A method as described in claim 66, where the likeli 
hood ratio hypothesis is related to identifying an individual. 

69. A method as described in claim 66, where the likeli 
hood ratio is calculated on genotypes on a DNA database to 
find genotype association strength. 

70. A method as described in claim 66, where the calcu 
lated likelihood ratio provides greater certainty in human 
identification. 


