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(57) ABSTRACT 

The present invention pertains to a process for automatically 
analyzing nucleic acid Samples. Specifically, the process 
comprises the Steps of forming electrophoretic data of DNA 
Samples with DNA ladders, comparing these data; trans 
forming the coordinates of the DNA sample's data into DNA 
length coordinates, and analyzing the DNA sample in length 
coordinates. This analysis is useful for automating fragment 
analysis and quality assessment. The automation enables a 
business model based on usage, Since it replaces (rather than 
assists) labor. This analysis also provides a mechanism 
whereby data generated on different instruments can be 
confidently compared. Genetic applications of this invention 
include gene discovery, genetic diagnosis, and drug discov 
ery. Forensic applications include identifying people and 
their relatives, catching perpetrators, analyzing DNA 
mixtures, and exonerating innocent Suspects. 
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METHOD FOR DNA MIXTURE ANALYSIS 

FIELD OF THE INVENTION 

The present invention pertains to a proceSS for analyzing 
a DNA molecule. More specifically, the present invention is 
related to performing experiments that produce quantitative 
data, and then analyzing these data to characterize a DNA 
fragment. The invention also pertains to Systems related to 
this DNA fragment information. 

BACKGROUND OF THE INVENTION 

With the advent of high-throughput DNA fragment analy 
sis by electrophoretic Separation, many useful genetic assays 
have been developed. These assays have application to 
genotyping, linkage analysis, genetic association, cancer 
progression, gene expression, pharmaceutical development, 
agricultural improvement, human identity, and forensic Sci 
CCC. 

However, these assays inherently produce data that have 
Significant error with respect to the size and concentration of 
the characterized DNA fragments. Much calibration is cur 
rently done to help overcome these errors, including the use 
of in-lane molecular weight Size Standards. In spite of these 
improvements, the variability of these properties (between 
different instruments, runs, or lanes) can exceed the desired 
tolerance of the assayS. 

Recently, advances have been made in the automated 
Scoring of genetic data. Many naturally occurring artifacts in 
the amplification and Separation of nucleic acids can be 
eliminated through calibration and mathematical processing 
of the data on a computing device (MW Perlin, MB Burks, 
R C Hoop, and E P Hoffman, “Toward fully automated 
genotyping allele assignment, pedigree construction, phase 
determination, and recombination detection in Duchenne 
muscular dystrophy, Am. J. Hum. Genet., Vol. 55, no. 4, pp. 
777-787, 1994; M W Perlin, G Lancia, and S-K Ng, 
“Toward fully automated genotyping: genotyping microSat 
ellite markers by deconvolution,” Am. J. Hum. Genet., vol. 
57, no. 5, pp. 1199–1210, 1995; S-K Ng, “Automating 
computational molecular genetics: Solving the microSatellite 
genotyping problem,” Carnegie Mellon University, Doctoral 
dissertation CMU-CS-98-105, Jan. 23, 1998), incorporated 
by reference. 

This invention pertains to the novel use of calibrating data 
and mathematical analyses to computationally eliminate 
undesirable data artifacts in a nonobvious way. Specifically, 
the use of allelic ladders and coordinate transformations can 
help an automated data analysis System better reduce mea 
Surement variability to within a desired assay tolerance. This 
improved reproducibility is useful in that it results in greater 
accuracy and more complete automation of the genetic 
assays, often taking less time at a lower cost with fewer 
people. 
Genotyping Technology 

Genotyping is the process of determining the alleles at an 
individual's genetic locus. Such loci can be any inherited 
DNA sequence in the genome, including protein-encoding 
genes and polymorphic markers. These markers include 
Short tandem repeat (STR) sequences, Single-nucleotide 
polymorphism (SNP) sequences, restriction fragment length 
polymorphism (RFLP) sequences, and other DNA 
Sequences that express genetic variation (G Gyapay, J 
Morissette, A Vignal, C Dib, C Fizames, P Millasseau, S 
Marc, G Bernardi, M. Lathrop, and J. Weissenbach, “The 
1993-94 Genethon Human Genetic Linkage Map,” Nature 
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Genetics, vol. 7, no. 2, pp. 246–339, 1994; P W Reed, J L 
Davies, J B Copeman, S T Bennett, S M Palmer, L E 
Pritchard, S C L Gough, Y Kawaguchi, H J Cordell, KM 
Balfour, SC Jenkins, E E Powell, A Vignal, and J A Todd, 
“Chromosome-specific microSatellite Sets for fluorescence 
based, Semi-automated genome mapping.” Nature Genet., 
vol. 7, no. 3, pp. 390–395, 1994; L Kruglyak, “The use of a 
genetic map of biallelic markers in linkage Studies,” Nature 
Genet., vol. 17, no. 1, pp. 21-24, 1997; D Wang, J Fan, C 
Siao, A Berno, P Young, R Sapolsky, G Ghandour, N 
Perkins, E Winchester, J Spencer, L Kruglyak, L. Stein, L 
Hsie, TTopaloglou, E Hubbell, E Robinson, M Mittmann, M 
Morris, N. Shen, D. Kilburn, J Rioux, C Nusbaum, S Rozen, 
T Hudson, and E Lander, "Large-scale identification, 
mapping, and genotyping of Single-nucleotide polymor 
phisms in the human genome,” Science, vol. 280, no. 5366, 
pp. 1077–82, 1998; PVos, R Hogers, M Bleeker, M Reijans, 
T van de Lee, M Hornes, A Friters, J Pot, J Peleman, M 
Kuiper, and M Zabeau, “AFLP: a new technique for DNA 
fingerprinting, Nucleic Acids Res, Vol. 23, no. 21, pp. 
4407-14, 1995; J Sambrook, E F Fritsch, and T Maniatis, 
Molecular Cloning, Second Edition. Plainview, N.Y.: Cold 
Spring Harbor Press, 1989), incorporated by reference. 
The polymorphism assay is typically done by character 

izing the length and quantity of DNA from an individual at 
a marker. For example, STRS are assayed by polymerase 
chain reaction (PCR) amplification of an individual’s STR 
locus using a labeled PCR primer, followed by size separa 
tion of the amplified PCR fragments. Detection of the 
fragment labels, together with in-lane size Standards, gen 
erates a Signal that permits characterization of the size and 
quantity of the DNA fragments. From this characterization, 
the alleles of the STR locus in the individual's genome can 
be determined (J Weber and P May, “Abundant class of 
human DNA polymorphisms which can be typed using the 
polymerase chain reaction, Am. J. Hum. Genet., Vol. 44, pp. 
388-396, 1989; J S Ziegle, Y Su, K P Corcoran, L. Nie, PE 
Mayrand, LB Hoff, L J McBride, M N Kronick, and S R 
Diehl, "Application of automated DNA sizing technology 
for genotyping microsatellite loci, Genomics, Vol. 14, pp. 
1026-1031, 1992), incorporated by reference. 
The labels can use radioactivity, fluorescence, infrared, or 

other nonradioactive labeling methods (F M Ausubel, R 
Brent, R E Kingston, DD Moore, J G Seidman, J A Smith, 
and K Struhl, ed., Current Protocols in Molecular Biology. 
New York, N.Y.: John Wiley and Sons, 1995; NJ Dracopoli, 
J L Haines, B R Korf, C C Morton, C E Seidman, J G 
Seidman, DT Moir, and D Smith, ed., Current Protocols in 
Human Genetics. New York: John Wiley and Sons, 1995; L 
J Kricka, ed., Nonisotopic Probing, Blotting, and 
Sequencing, Second Edition. San Diego, Calif.: Academic 
Press, 1995), incorporated by reference. 

Size Separation of fragment molecules is typically done 
using gel or capillary electrophoresis (CE); newer methods 
include mass spectrometry and microchannel arrays (R A 
Mathies and X C Huang, “Capillary array electrophoresis: 
an approach to high-Speed, high-throughput DNA 
sequencing.” Nature, vol. 359, pp. 167-169, 1992; K J Wu, 
A Stedding, and C H Becker, “Matrix-assisted laser desorp 
tion time-of-flight mass spectrometry of oligonucleotides 
using 3-hydroxypicolinic acid as an ultraViolet-Sensitive 
matrix, Rapid Commun. MaSS Spectrom., Vol. 7, pp. 
142-146, 1993), incorporated by reference. 
The label detection method is contingent on both the 

labels used and the size Separation mechanism. For example, 
with automated DNA sequencers such as the PE Biosystems 
ABI/377 gel, ABI/310 single capillary or ABI/3700 capillary 
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array instruments, the detection is done by laser Scanning of 
the fluorescently labeled fragments, imaging on a CCD 
camera, and electronic acquisition of the Signals from the 
CCD camera. Flatbed laser Scanners, Such as the Molecular 
Dynamics Fluorimager or the Hitachi FMBIO/II acquire 
floureScent Signals Similarly. Li-Cor's infrared automated 
Sequencer uses a detection technology modified for the 
infrared range. Radioactivity can be detected using film or 
phosphor Screens. In mass Spectrometry, the atomic mass 
can be used as a Sensitive label. See (A. J. Kostichka, 
Bio/Technology, vol. 10, pp. 78, 1992), incorporated by 
reference. 

Size characterization is done by comparing the Sample 
fragment's Signal in the context of the Size Standards. By 
Separate calibration of the Size Standards used, the relative 
molecular size can be inferred. This size is usually only an 
approximation to the true size in base pair units, Since the 
Size Standards and the Sample fragments generally have 
different chemistries and electrophoretic migration patterns 
(S-K Ng, "Automating computational molecular genetics: 
Solving the microSatellite genotyping problem,” Carnegie 
Mellon University, Doctoral dissertation CMU-CS-98-105, 
Jan. 23, 1998), incorporated by reference. 

Quantitation of the DNA signal is usually done by exam 
ining peak heights or peak areas. One inexact peak area 
method simply records the area under the curve; this 
approach does not account for band overlap between differ 
ent peaks. It is often useful to determine the quality (e.g., 
error, accuracy, concordance with expectations) of the size 
or quantity characterizations. See (D R Richards and MW 
Perlin, “Quantitative analysis of gel electrophoresis data for 
automated genotyping applications,” Amer. J. Hum. Genet., 
vol. 57, no. 4 Supplement, pp. A26, 1995), incorporated by 
reference. 

The actual genotyping result depends on the type of 
genotype, the technology used, and the Scoring method. For 
example, with STR data, following Size Separation and 
characterization, the sizes (exact, rounded, or binned) of the 
two tallest peaks might be used as the alleles. Alternatively, 
PCR artifacts (e.g., Stutter, relative amplification) can be 
accounted for in the analysis, and the alleles determined 
after mathematical corrections have been applied. See (MW 
Perlin, “Method and system for genotyping,” U.S. Pat. No. 
5,541,067, Jul. 30, 1996; M W Perlin, “Method and system 
for genotyping.” U.S. Pat. No. 5,580,728, Dec. 3, 1996), 
incorporated by reference. 
Genotyping Applications 

Genotyping data can be used to determine how mapped 
markers are shared between related individuals. By corre 
lating this sharing information with phenotypic traits, it is 
possible to localize a gene associated with that inherited 
trait. This approach is widely used in genetic linkage and 
association Studies (J Ott, Analysis of Human Genetic 
Linkage, Revised Edition. Baltimore, Md.: The Johns Hop 
kins University Press, 1991; N Risch, “Genetic Linkage and 
Complex Diseases, With Special Reference to Psychiatric 
Disorders,” Genet. Epidemiol., vol. 7, pp. 3-16, 1990; N 
Risch and K Merikangas, “The future of genetic studies of 
complex human diseases,” Science, Vol. 273, pp. 
1516–1517, 1996), incorporated by reference. 

Genotyping data can also be used to identify individuals. 
For example, in forensic Science, DNA evidence can connect 
a Suspect to the Scene of a crime. DNA databases can provide 
a repository of such relational information (CP Kimpton, P 
Gill, A Walton, A Urquhart, E S Millican, and M Adams, 
"Automated DNA profiling employing multiplex amplifica 
tion of short tandem repeat loci,” PCR Meth. Appl., vol. 3, 
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4 
pp. 13–22, 1993; J E McEwen, “Forensic DNA data banking 
by state crime laboratories,” Am. J. Hum. Genet., vol. 56, 
pp. 1487–1492, 1995; K Inman and N Rudin, An Introduc 
tion to Forensic DNA Analysis. Boca Raton, Fla.: CRC 
Press, 1997; CJ Fregeau and R M Fourney, “DNA typing 
with fluorescently tagged Short tandem repeats: a Sensitive 
and accurate approach to human identification,” 
Biotechniques, vol. 15, no. 1, pp. 100-119, 1993), incorpo 
rated by reference. 

Linked genetic markers can help predict the risk of 
disease. In monitoring cancer, STRS are used to assess 
microsatellite instability (MI) and loss of heterozygosity 
(LOH)-chromosomal alterations that reflect tumor pro 
gression. (ID Young, Introduction to Risk Calculation in 
Genetic Counselling. Oxford: Oxford University Press, 
1991; LCawewell, LDing, F A Lewis, I Martin, MFDixon, 
and PQuirke, “Microsatellite instability in colorectal cancer: 
improved assessment using fluorescent polyterase chain 
reaction,” Gastroenterology, vol. 109, pp. 465-471, 1995; F 
Canzian, A Salovaara, P Kristo, R B Chadwick, L. A 
Aaltonen, and Adela Chapelle, "Semiautomated assessment 
of loSS of heterozygosity and replication error in tumors,” 
Cancer Research, vol. 56, pp. 3331-3337, 1996; S 
Thibodeau, G Bren, and D Schaid, “Microsatellite instability 
in cancer of the proximal colon, Science, Vol. 260, no. 
5109, pp. 816-819, 1993), incorporated by reference. 

For crop and animal improvement, genetic mapping is a 
very powerful tool. Genotyping can help identify useful 
traits of nutritional or economic importance. (HJ Vilkki, D 
J de Koning, K Elo, R. Velmala, and A Maki-Tanila, “Mul 
tiple marker mapping of quantitative trait loci of Finnish 
dairy cattle by regression, J. Dairy Sci., vol. 80, no. 1, pp. 
198-204, 1997; S M Kappes, J W Keele, R T Stone, R A 
McGraw, T S Sonstegard, T P Smith, NL Lopez-Corrales, 
and CW Beattie, “A Second-generation linkage map of the 
bovine genome,” Genome Res., vol. 7, no. 3, pp. 235-249, 
1997; M Georges, D Nielson, M Mackinnon, A Mishra, R 
Okimoto, A T Pasquino, L S Sargeant, A Sorensen, M R 
Steele, and X Zhao, "Mapping quantitative trait loci con 
trolling milk production in dairy cattle by exploiting prog 
eny testing,' Genetics, vol. 139, no. 2, pp. 907-920, 1995; 
GA Rohrer, d J Alexander, Z Hu, TPSmith, J W Keele, and 
C W Beattie, “A comprehensive map of the porcine 
genome,” Genome Res., vol. 6, no. 5, pp. 371-391, 1996; J 
Hillel, “Map-based quantitative trait locus identification,” 
Poult. Sci., vol. 76, no. 8, pp. 1115-1120, 1997; H H Cheng, 
“Mapping the chicken genome,” Poult. Sci., vol. 76, no. 8, 
pp. 1101-1107, 1997), incorporated by reference. 
Other Sizing ASSayS 

Fragment analysis finds application in other genetic meth 
ods. Often fragment sizes are used to multiplex many 
experiments into one shared readout pathway, where size (or 
Size range) serves an index into post-readout demultiplex 
ing. For example, multiple genotypes are typically pooled 
into a single lane for more efficient readout. Quantifying 
information can help determine the relative amounts of 
nucleic acid products present in tissues. (G R Taylor, J S 
Noble, and R F Mueller, “Automated analysis of multiplex 
microsatellites,” J. Med. Genet, vol. 31, pp. 937–943, 1994; 
L S Schwartz, J Tarleton, B Popovich, W K Seltzer, and E 
P Hoffmn, “Fluorescent multiplex linkage analysis and 
carrier detection for Duchenne/Becker muscular dystrophy,” 
Am. J. Hum. Genet., vol. 51, pp. 721-729, 1992; C P 
Kimpton, P Gill, A Walton, AUrquhart, E S Millican, and M 
Adams, “Automated DNA profiling employing multiplex 
amplification of short tandem repeat loci.” PCR Meth. Appl., 
vol. 3, pp. 13–22, 1993), incorporated by reference. 



US 6,807,490 B1 
S 

Differential display is a gene expression assay. It performs 
a reverse transcriptase PCR (RT-PCR) to capture the state of 
expressed mRNA olecules into a more robust DNA form. 
These DNAS are then size separated, and the size bins 
provide an indeX into particular molecules. Variation at a 
Size bin between two tissue assays is interpreted as a 
concommitant variation in the underlying mRNA gene 
expression profile. A peak quantification at a bin estimates 
the underlying mRNA concentration. Comparison of the 
quantitation of two different Samples at the same bin pro 
vides a measure of relative up- or down-regulation of gene 
expression. (S W Jones, D Cai, O S Weislow, and B 
Esmaeli-Azad, “Generation of multiple mRNA fingerprints 
using fluorescence-based differential display and an auto 
mated DNA sequencer, BioTechniques, Vol. 22, no. 3, pp. 
536–543, 1997; P Liang and A Pardee, “Differential display 
of eukaryotic messenger RNA by means of the polymerase 
chain reactions,” Science, vol. 257, pp. 967–971, 1992; KR 
Luehrsen, L L Marr, Evan der Knaap, and S Cumberledge, 
“Analysis of differential display RT-PCR products using 
fluorescent prime rS and Gene Scan Software,” 
BioTechniques, vol. 22, no. 1, pp. 168-174, 1997), incor 
porated by reference. 

Single stranded conformer polymorphism (SSCP) is a 
method for detecting different mutations in a gene. Single 
base pair changes can markedly affect fragment mobility of 
the conformer, and these mobility changes can be detected 
in a size Separation assay. SSCP is of particular use in 
identifying and diagnosing genetic mutations (M Orita, H 
Iwahana, H Kanazawa, K Hayashi, and T Sekiya, “Detection 
of polymorphisms of human DNA by gel electrophoresis as 
single-strand conformation polymorphisms,” Proc Natl 
AcadSci USA, Vol. 86, pp. 2766-2770, 1989), incorporated 
by reference. 

The AFLP technique provides a very powerful DNA 
fingerprinting technique for DNAS of any origin or com 
plexity. AFLP is based on the selective PCR amplification of 
restriction fragments from a total digest of genomic DNA. 
The technique involves three steps: (i) restriction of the 
DNA and ligation of oligonucleotide adapters, (ii) Selective 
amplification of Sets of restriction fragments, and (iii) gel 
analysis of the amplified fragments. PCR amplification of 
restriction fragments is achieved by using the adapter and 
restriction site Sequence as target Sites for primer annealing. 
The Selective amplification is achieved by the use of primers 
that extend into the restriction fragments, amplifying only 
those fragments in which the primer extensions match the 
nucleotides flanking the restriction sites. Using this method, 
sets of restriction fragments may be visualized by PCR 
without knowledge of nucleotide Sequence. The method 
allows the Specific co-amplification of high numbers of 
restriction fragments. The number of fragments that can be 
analyzed Simultaneously, however, is dependent on the 
resolution of the detection system. Typically 50-100 restric 
tion fragments are amplified and detected on denaturing 
polyacrylamide gels. (P Vos, R Hogers, M Bleeker, M 
Reijans, T Van de Lee, M Hornes, A Frijters, J Pot, J 
Peleman, M Kuiper, and M Zabeau, “AFLP: a new tech 
nique for DNA fingerprinting.” Nucleic Acids Res, vol. 23, 
no. 21, pp. 4407-14, 1995), incorporated by reference. 
Data Scoring 
The final Step in any fragment assay is Scoring the data. 

This is typically done by having people visually review 
every experiment. Some Systems (e.g., PE Informatics 
Genotype program) perform an initial computer review of 
the data, to make the manual visual review of every geno 
type easier. More advanced Systems (e.g., Cybergenetics 
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6 
True Allele technology) fully automate the data review, and 
provide data quality Scores that can be used to identify data 
artifacts (for eliminating Such data from consideration) and 
rank the data scores (to focus on just the 2%-25% of suspect 
data calls). See (B Palsson, F Palsson, M Perlin, H 
GubartSSon, KStefansson, and J Gulcher, "Using quality 
measures to facilitate allele calling in high-throughput 
genotyping,' Genome Research, Vol. 9, no. 10, pp. 
1002-1012, 1999; M W Perlin, “Method and system for 
genotyping.” U.S. Pat. No. 5,876,933, Mar. 2, 1999), incor 
porated by reference. 

However, even with Such advanced Scoring technology, 
artifacts can obscure the results. More importantly, insuffi 
cient data calibration can preclude the achievement of very 
low (e.g., <1%) data error rates, regardless of the Scoring 
methods. For example, in high-throughput STR genotyping, 
differential migration of a sample's PCR fragments relative 
to the Size Standards can produce Subtle shifts in detected 
size. This problem is worse when different instruments are 
used, or when size Separation protocols are not entirely 
uniform. The result is that fragments can be incorrectly 
assigned to allele bins in a way that cannot be corrected 
without recourse to additional information (e.g., pedigree 
data) completely outside the STR sizing assay. 
Whole System 

This invention centers on a new way to greatly reduce 
sizing and quantitation errors in fragment analysis. By 
designing data generation experiments that include the 
proper calibration data (e.g., internal lane Standards, allelic 
ladders, uniform run conditions), most of these fragment 
analysis errors can be eliminated entirely. Moreover, com 
puter Software can be devised that fully exploits these data 
calibrations to automatically identify artifacts and rank the 
data by quality. The result is a largely error-free System that 
requires minimal (if any) human intervention. 

SUMMARY OF THE INVENTION 

The present invention pertains to a method for analyzing 
a nucleic acid Sample. The method comprises the Steps of 
forming labeled DNA sample fragments from a nucleic acid 
Sample. Then there is the Step of Size separating and detect 
ing Said Sample fragments to form a Sample Signal. Then 
there is the step of forming labeled DNA ladder fragments 
corresponding to molecular lengths. Then there is the Step of 
Size Separating and detecting Said ladder fragments to form 
a ladder Signal. Then there is the Step of transforming the 
Sample signal into length coordinates using the ladder Sig 
nal. Then there is the Step of analyzing the nucleic acid 
Sample signal in length coordinates. 
The present invention also pertains to a System for ana 

lyzing a nucleic acid Sample. The System comprises means 
for forming labeled DNA sample fragments from a nucleic 
acid Sample. The System further comprises means for size 
Separating and detecting Said Sample fragments to form a 
Sample signal, Said Separating and detecting means in com 
munication with the Sample fragments. The System further 
comprises means for forming labeled DNAladder fragments 
corresponding to molecular lengths. The System further 
comprises means for Size Separating and detecting Said 
ladder fragments to form a ladder Signal, Said Separating and 
detecting means in communication with the ladder frag 
ments. The System further comprises means for transform 
ing the Sample signal into length coordinates using the 
ladder Signal, Said transforming means in communication 
with the Signals. The System further comprises means for 
analyzing the nucleic acid Sample signal in length 
coordinates, Said analyzing means in communication with 
the transforming means. 
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The present invention also pertains to a method for 
generating revenue from computer Scoring of genetic data. 
The method comprises the Steps of Supplying a Software 
program that automatically Scores genetic data. Then there is 
the Step of forming genetic data that can be Scored by the 
Software program. Then there is the Step of Scoring the 
genetic data using the Software program to form a quantity 
of genetic data. Then there is the Step of generating a 
revenue from computer Scoring of genetic data that is related 
to the quantity. 

The present invention also pertains to a method for 
producing a nucleic acid analysis. The method comprises the 
Steps of analyzing a first nucleic acid Sample on a first size 
Separation instrument to form a first signal. Then there is the 
Step of analyzing a Second nucleic acid Sample on a Second 
Size Separation instrument to form a Second Signal. Then 
there is the Step of comparing the first signal with the Second 
Signal in a computing device with memory to form a 
comparison. Then there is the Step of producing a nucleic 
acid analysis of the two Samples from the comparison that is 
independent of the size Separation instruments used. 

The present invention also pertains to a method for 
resolving DNA mixtures. The method comprises the steps of 
obtaining DNA profile data that include a mixed Sample. 
Then there is the Step of representing the data in a linear 
equation. Then there is the Step of deriving a Solution from 
the linear equation. Then there is the Step of resolving the 
DNA mixture from the Solution. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 shows the Steps of creating sized profiles. 
FIG. 2 shows unimodal plots, each corresponding to a 

fluorescent dye, within each plot, intensity is plotted against 
the Sampled Spectrum. 

FIG. 3 shows the unimodality constraint determining the 
function Space geometry of the Spectrum Sampling vectors. 

FIG. 4 shows the results of Signal processing, size 
tracking, and Size transformation. 

FIG. 5 shows the Steps of quantitating and analyzing 
genetic data. 

FIG. 6 shows the results of ladder processing, peak 
quantitation and allele calling. 

FIG. 7 shows a graphical user interface for navigating 
prioritized genotyping results. 

FIG. 8 shows a textual interface for displaying useful 
genotype results. 

FIG. 9 shows a visualization that is customized to a data 
artifact. 

FIG. 10 shows a system for analyzing a nucleic acid 
Sample. 

FIG. 11 shows the result of a differential display gene 
expression analysis. 

FIG. 12 shows the flow graph of automated software 
assembly. 

FIG. 13 shows a spreadsheet for calculating the labor cost 
of Scoring genetic data. 

FIG. 14 shows a heuristic function dev(g(w)) which has 
an umbiguous local minimum. 

DESCRIPTION OF THE PREFERRED 
EMBODIMENT 

Data Generation 
In the most preferred embodiment, genotyping data is 

generated using STR markers. These tandem repeats include 
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8 
mono-, di-, tri-, tetra-, penta-, hexa-, hepta-, octa-, nona-, 
deca- (and So on) nucleotide repeat elements. STRS are 
highly abundant and informative marker distributed 
throughout the genomes of many species (including human). 
Typically, STRs are labeled, PCR amplified, and then 
detected (for size and quantity) on an electrophoretic gel. 
The laboratory processing Starts with the acquisition of a 

sample, and the extraction of its DNA. The extraction and 
purification are typically followed by PCR amplification. 
Labelling is generally done using a 5" labeled PCR primer, 
or with incorporation labeling in the PCR. Prior to loading, 
multiple marker PCR products in k-1 different fluorescent 
colors are pooled, and size standards (preferably in a k" 
different color) is added. Size separation and detection is 
preferably done using automated fluorescent DNA 
Sequencers, with either slab gel or capillary technology. The 
detected Signals represent the progression of DNA bands as 
a function of time. These signals are transmitted from the 
Sequencer to a computing device with memory, where they 
are stored in a file. (NJ Dracopoli, J L Haines, B R Korf, C 
C Morton, C E Seidman, J G Seidman, DT Moir, and D 
Smith, ed., Current Protocols in Human Genetics. New 
York: John Wiley and Sons, 1995), incorporated by refer 
CCC. 

To create STR allelic ladders, the most preferred embodi 
ment entails PCR amplification of pooled samples. This can 
be done by preparing DNA from N (preferably, N is between 
2 and 200, depending on the application) individuals in 
equimolar 3 ng/ul concentrations. These DNAS are then 
pooled. After dilution, each PCR template contains contains 
48 ng of DNA in an 18 ul volume, and is included in a 
standard 50 lul PCR containing 2.5 units of Amplitaq Gold, 
1.25ul of each primer, 200 uM dNTPs, and 2.5 mM MgCl. 
This mixture is then PCR amplified with its STR primers 
(one labeled) on a thermocycler (e.g., with an MJ Research 
PTC-100, use 30 cycles of 94° C. for 1.25", 55° C. for 1', and 
72°C. for 1"). Size separation of the PCR products on an ABI 
sequencer includes internal lane size standards (GS500 
ROX-labeled 50 bp sizing ladder, Perkin-Elmer, Foster City, 
Calif.; 20 bp MapMarkers sizing ladder, BioVentures, 
Murfreesboro, Tenn.). Files are similarly recorded from this 
experiment. 

In an alternative preferred embodiment, multiplexed SNP 
data is generated using Size Standards with Standard proto 
cols. Typically, each Size bin in the electrophoretic Signal 
corresponds to one marker or polymorphism. Presence in the 
Size bin of a signal of Sufficient Strength and correct color 
indicates the presence of an allele; absence of the Signal 
indicates allele absence. Signal size and color establish the 
allele, while signal strength determines the amount of DNA 
present (if any). (NJ Dracopoli, J L Haines, B R Korf, C C 
Morton, C E Seidman, J G Seidman, DT Moir, and D Smith, 
ed., Current Protocols in Human Genetics. New York: John 
Wiley and Sons, 1995), incorporated by reference. 

In another alternative preferred embodiment, differential 
display data is generated, preferably as follows: Making 
cDNA. The mRNA differential display reverse transcription 
polymerase chain reaction (DDRT-PCR) is performed using 
reagents supplied in a RNAimage"M kit (GeneHunter Corp, 
Nashville, Tenn.). RNA duplicates from two tissue samples 
are reverse-transcribed using oligo(dT) primers and MMLV 
reverse transcriptase (RTase). For a 20 ul reaction, adding (in 
order) 9.4 ul of HO, 4 ul of 5xreaction buffer, 1.6 ul of 250 
uM each dNTPs, 2 ul of 2 uM one oligo(dT) primer 
(H-T11 M: M is G, C, or A), and 2 ul of 0.1 ug/ul DNA-free 
total RNA. The RT reactions are run on a thermocycler (e.g., 
NJ Research, 65 C. for 5 min, 37° C. for 60 min, and 75 
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C. for 5 min). MMLV RTase (1 ul, 100 units) are added in 
the reaction after incubation for 10 min at 37 C. A control 
is included without adding RTase. Amplification and label 
ing. For a 20 ul PCR reaction, add 9.2 ul of HO, 4 ul of 
10XPCR buffer, 1.6 ul of 25 uM each dNTPs, 2 ul of 2 uM 
H-T11M oligo(dT) primer, 2 ul of 2 uM of arbitrary primer 
(AP), 2 ul of corresponding H-T11M reverse transcribed 
cDNA, and 0.2 ul (1 unit) of AmpliTaq DNA polymerase 
(PerkinElmer, Norwalk, Conn.). Each of the three different 
H-T11M PCR primers are labeled with its own spectrally 
distinct fluorescent dye, such as FAM, HEX, and NED. The 
cDNAS are randomly amplified by low-stringency PCR (40 
cycles with temperature at 94 C. for 15 sec, 40 C. for 2 
min, and 72° C. for 2 min) in an MJR PCT/100 thermocy 
cler. A final extension is performed at 72 C. for 10 min. 
Samples (without added RTase or CDNA) are simulta 
neously tested as controls. Multiple primer Sets can be used. 
For example, 24 sets of primers (8 APx3 H-T11M) are used 
in each kit; using 10 kits for Screening differentially 
expressed cDNA tags produces 240 reactions per tissue. Size 
Separation. Size Standards in another dye are then added to 
the amplified labeled products, and then Size Separated on a 
manual or automated Sequencing gel (or capillary) instru 
ment. Differential display data generation protocols have 
been well described (NJ Dracopoli, J L Haines, B R Korf, 
C C Morton, C E Seidman, J G Seidman, DT Moir, and D 
Smith, ed., Current Protocols in Human Genetics. New 
York: John Wiley and Sons, 1995), incorporated by refer 
CCC. 

There are other alternative preferred embodiments for 
generating DNA fragment data whose assay includes a size 
separation, such as Amplification Refractory Mutation Sys 
tem (ARMS), Single-Strand Conformation Polymorphism 
(SSCP), Restriction Fragment Length Polymorphism 
(RFLP), and Amplified Fragment Length Polymorphism 
(AFLP). These have been enumerated, with associated pro 
tocols (NJ Dracopoli, J L Haines, B R Korf, C C Morton, 
C E Seidman, J G Seidman, DT Moir, and D Smith, ed., 
Current Protocols in Human Genetics. New York: John 
Wiley and Sons, 1995; ABI/377 and ABI/310 GeneScan 
Software and Operation Manuals, PE Biosytems, Foster 
City, Calif.), incorporated by reference. 
Extracting Profiles 
Once DNA fragment sizing data have been generated, the 

data are then analyzed to characterize the and quantity of the 
component fragments. 
Referring to FIG. 1, Step 1 is for acquiring the data. 
The process begins by reading in the generated data from 

their native file formats, as defined by the DNA sequencer 
manufacturer. Let n be the number of lanes or capillaries, 
and m be the number of frequency acquisition channels. 
Capillary machines typically produce files where each file 
represents either all m channels of one capillary, or one 
channel of one capillary. Gel-based instruments typically 
produce files where one file represents either all m channels 
of the entire image, or one channel of one image. Interme 
diate cases, with the number of channels per file between 1 
and m, can occur as well. Once the Signals have been readin, 
capillary input data Signals are preferably Stored in an nxm 
Structure of one dimensional arrays in the memory of a 
computing device. This structure contains the Signal profiles, 
with each array element corresponding to one channel of one 
capillary. Gel data are preferably Stored as m two dimen 
Sional data arrays, one for each acquisition frequency. 

The computer Software preferably integrates with current 
Sequencer and CE technology. It preferably has two 
manufacturer-independent input modules: one for Sequencer 
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10 
gel data (e.g., PE Biosystems ABI/377, Molecular Dynamics 
Fluorimager), and one for CE data (e.g., PE BioSystems 
ABI/310, SpectruMedix SCE/9600). These modules are 
extensible and flexible, and preferably handle any known 
Sequencer or CE data in current (or future) file formats. 
Referring to FIG. 1, Step 2 is for processing the Signal. 

In this step, basic Signal processing is done, Such as 
baseline removal or filtering (e.g., Smoothing) the data. 

In the preferred embodiment for one dimensional Signals, 
baseline removal is done using a sliding window technique. 
Within each window (of, say, 10 to 250 pixels, depending on 
the average number of pixel Samples per base pair units), a 
minimum value is identified. Using overlapping windows, a 
cubic spline is fit through the minimum points, creating a 
new baseline function that describes the local minima in 
each window neighborhood. To remove the baseline, this 
new baseline function is Subtracted away from the original 
function. 

In the preferred embodiment for two dimensional images, 
the baseline is removed as follows. A local neighborhood 
overlapping tiling is imposed on the image, and minimum 
values identified. Create a baseline Surface from these local 
minima, and Subtract this baseline Surface from the image to 
remove the baseline from the image. 

In the preferred embodiment, filtering and other Smooth 
ing is done using convolution. A convolution kernel (Such as 
a gaussian or a binomial function) is applied across the one 
dimensional capillary Signal, or the two dimensional 
Scanned gel image. The radius of Smoothing depends on 
number of pixels per base pair unit-denser Sampling 
requires less Smoothing. However, with overly dense 
Sampling, the data Size can be reduced by filtering out 
redundant points. 
Referring to FIG. 1, Step 3 is for separating the colors. 
A key element of fluorescent genetic analysis is Separating 

the fluorescent dye signals. In the current art, this is done by: 
(1) Performing a dye standard calibration experiment 

using known dyes, often in Separate lanes. A (dye color 
VS. frequency detection) classification matrix C is 
known directly from which dye is used. Each column 
of C contains a “1” in the row corresponding to the 
known color, with all other entries set to “0”. 

(2) Measuring the Signals at separate fluorescent detection 
frequencies. These frequencies correspond to the “filter 
Set' of the Sequencer. For each pure dye peak, the 
Signals that are measured acroSS all the detection fre 
quencies reveal the "bleedthrough' pattern of one dye 
color into its neighboring frequencies. Each pattern is 
normalized, and Stored as a column in a data matrix D. 
The j" column of D is the “spectral bleedthrough” 
System response to the impulse input function repre 
sented in the j" column of C. 

(3) The relationship between C and D is described by the 
linear response dye calibration matrix M as: 

To determine the unknown dye calibration matrix M (or 
its inverse matrix M') from the data, apply matrix 
division, e.g., using Singular value decomposition 
(SVD), to the matrices C and D. For example, this SVD 
operation is built into the MATLAB programming 
language (The MathWorks, Inc., Natick, Mass.), and 
has been described (W H Press, S A Teukolsky, WT 
Vetterling, and B P Flannery, Numerical Recipes in C: 
The Art of Scientific Computing, Second Edition. Cam 
bridge: Cambridge University Press, 1992), incorpo 
rated by reference. 
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(4) Thereafter, the spectral overlap is deconvolved on new 
unknown data D' to recover the original dye colors C". 
This is done by computing: 

While the current art enables the color Separation Step, it 
is not ideal. Slight variations in the gel (e.g., thickness, 
composition, temperature, chemistry) and the detection unit 
(e.g., laser, CCD, optics) can contribute to larger variations 
in fluorescent response. An operator may encounter the 
following problems: 

Calibrating the correction matrix M on one gel run does 
not necessarily model the “spectral bleedthrough' pat 
tern accurately on future runs. 

With 96 (or other multi-) capillary electrophoresis, each 
of the capillaries forms its own gel System, whose 
different properties may necessitate a separate calibra 
tion matrix. 

Accurate dye calibration is technically demanding, labor 
intensive, time consuming, and expensive. Moreover, it 
can introduce considerable error into the System, par 
ticularly when the manual procedure is not carried out 
correctly. In Such cases, the correction is imperfect and 
artifacts can enter the System. 

Such color “bleedthrough” (also termed “crosstalk” or 
"pullup’) artifacts can severely compromise the utility of the 
acquired data. In Some cases, the gels must be rerun. Often 
Scientific personnel waste considerable time examining 
highly uninformative data. 

In one preferred embodiment, the color matrix is cali 
brated directly from the data, without recourse to separate 
calibration runs. This bleedthrough artifact removal is done 
using computer algorithms for the calibration, rather than 
manually conducting additional calibration experiments. 
This can be done using methods developed for DNA 
Sequence analysis based on general data clustering. While 
Such clustering methods require relatively large amounts of 
data, they can be effective (WHuang, ZYin, D Fuareann, D 
States, and L Thomas Jr., “A method to determine the filter 
matrix in four-dye fluorescence-based DNA sequencing.” 
Electrophoresis, vol. 18, no. 1, pp. 23-5, 1997; Z Yin, J 
Severin, M Giddings, W Huang, M Westphall, and L Smith, 
"Automatic matrix determination in four dye fluorescence 
based DNA sequencing.” Electrophoresis, Vol. 17, no. 6, pp. 
1143-50, 1996), incorporated by reference. 

It would be desirable to use the least amount of most 
certain data when determining a color matrix for Separating 
dye colors. Note that in the matrix relation “D=MXC, the 
data columns D are known from experiment. When a 
calibration run is used, the 0/1 classification columns C are 
known; from these known values, the unknown M can be 
computed. However, when there is no calibration run, the 
classification matrix C must be dynamically determined 
from the data in order to compute M. This can be done 
manually by a user identifying peaks, or automatically by 
the general clustering embodiment. However, there is a more 
refined and novel approach to automatically classifying 
certain data peaks to their correct color. 

The most preferred embodiment finds a {C, D matrix 
pair using minimal data. Thus, M (a nd M) can be 
determined, and the rest of the new data color Separated. 
This embodiment exploits a key physical fact about Spectral 
emission curves: they are unimodal. Referring to FIG. 2, 
Such curves monotonically rise up to a maximum value, and 
then monotonically decrease from that maximum. 
Therefore, when a peak is generated from a Single dye color, 
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Spectrally Sampled acroSS a range of frequencies, and the 
intensities plotted as a function of frequency, the plotted 
curve demonstrates unimodal behavior-the curve rises up 
to a maximum intensity, and then decreases again. This 
physical “unimodality constraint on Single color peaks can 
Serve as a useful choice function for automatically (and 
intelligently) choosing peak data for the classification matrix 
C. 
The function Space equivalent of a unimodal function 

has a very useful property. Suppose that m different 
frequency channels are sampled. That is, there are m 
frequencies X={x1, x2, . . . , X, Sampled in the Spectral 
domain. An equivalent representation of the m-point func 
tion film >9 is as an m-vector V=<X1, X2,..., X2 in the 
vector Space SR". Now, Select an appropriate norm on this 
vector space (say, L or L), and normalize the vector V 
relative to its length, forming 

. 
w 

In an L normalization, w lives on a flat simplex (in the 
all-positive simplex facet). In L, w lives on a corresponding 
curved Surface. 
The unimodality constraint on X imposes additional geo 

metrical constraints on W. Because X is unimodal, note that 

x, six-s. . . six, 

and that 

x2x12. . . 2x, 

where k is the index of the maximum value of X. 
These inequality constraints determine the exact Subfacet 

in which w must reside on the simplex facet. Consider the 
case of three spectral Sampling points, where the three 
dimensional vector <x, y, Z>eSt, and Suppose that the 
unimodal constraint is Xeye Z, corresponding to the first 
dye color. Referring to FIG. 3, the locations x, y, and Z 
designate the unit locations on the axes in SR (i.e., at 
<1,0,0>, <0,1,0>, and <0,0,12, respectively). Here, the xey 
constraint produces one region (horizontal shading), the 
yeZ constraint another (vertical shading), and their inter 
Section corresponds to the full constraint (crosshatch 
shading). Good calibration points for use as columns in a {C, 
D} matrix pair will cluster (white circle) around the dye's 
actual sampling point ratio vector (black cross). Conversely, 
poor candidate calibration points will tend to lie outside the 
cluster, and can be rejected. This geometry in the function 
Space permits Selection of only the most consistent calibra 
tion data. 
The procedure Starts by gathering likely unimodal data 

(e.g., those with highest intensities) for a given observed 
color k. After normalization, these candidate calibration data 
{w} will cluster within the same subfacet of a flat (m-1)- 
dimensional facet; this facet is the all-positive face of the 
m-dimensional Simplex. This geometric constraint follows 
directly from the physical unimodality constraint of pure 
Spectral curves. An entire class of Simple and effective 
clustering algorithms are based around exploiting this geo 
metric constraint. 

In one preferred embodiment, choose as cluster center 
point wo, the mean vector location of {w}; vector wo also 
lies on the simplex subfacet (FIG. 3). Then, a small inner 
product <WWodvalue tends to indicate close proximity of 
w, and wo. Taking a small Set (e.g., 1s SS20) of the closest 
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vectors w near Wo Selects good calibration data points, all 
pre-classified to Q color k. To determine M", for each color 
k, take at most S. Such clustering points {w}, and use the 
corresponding {v} as columns in D, where V, is normalized 
with respect to the maximum element in W. Form a vector 
u that is all Zeros, except for a 1 in the k" entry; places 
copies of u as columns in matrix C. This produces the 
required calibration matrices C and D, from which M and its 
inverse are immediately computed using SVD or another 
matrix inversion algorithm. 

In the most preferred color Separation algorithm, the 
criterion for peak Selection is based on minimizing the 
Spectral width of the peaks. A good measure of peak width 
is the variance acroSS the Spectral Sampling frequency 
points. The variance calculation can take into account the 
Sampling frequencies actually used, if desired. In this 
procedure, the variances of candidate peaks for a given color 
frequency are computed. Those peaks having the Smallest 
Spectral variance indicate the best calibration points. In an 
alternative implementation, a best fit of the observed fre 
quency curve with a known frequency curve (e.g., via a 
correlation or inner product maximization) can indicate the 
best points to use. 

The method applies not only to raw data, but also to data 
that has been previously color separated by other (possibly 
inaccurate) color correction matrices. This is because the 
unimodality constraint generally applies to Such data. 
A useful feature of the unimodality approach is that the 

model can automatically Select good calibration peaks, even 
with very sparse data. This is because the function Space 
geometry effectively constrains the clustering geometry. 
Such sparse-data clustering algorithms are particularly use 
ful with capillary data, where one capillary may only have 
1 or 2 useful calibration peaks corresponding to a given 
color. Despite this data limitation, the method easily finds 
these peaks, and effectively Separates the colors. Such 
automation enables customization of the dye Separation 
matrix to each capillary on each run, which Virtually elimi 
nates the bleedthrough artifact. 

It is useful to have a quality Score that measures how well 
the computed matrix correction actually corrects the data. 
This can be done by comparing the expected VS. observed 
results; this comparison can be computed either the Sepa 
rated or unseparated domain. Using the computer-Selected 
calibration data vectors D, if the computed correction matrix 
M' is correct, then the 0/1 calibration matrix of column 
vectors C will be recomputed exactly from the data matrix 
D: 

where, theoretically, C'=C. Measuring the deviation between 
C and C" measures how well the correction worked. One 
Straightforward deviation measure Sums the normed La 
deviations between each column of C" and its corresponding 
column in C. When the deviation is too great (e.g., due to 
failed PCR amplification), a matrix based on a more confi 
dent (manual or automatic) calibration can be used. 
Referring to FIG. 1, Step 4 is for removing the primers. 
When the separated DNA fragments are formed from 

labeled PCR primers, it useful to remove the intense primer 
Signal prior to initiating quantitative analyses. There are 
many Standard Signal processing methods for removing a 
Singularity from a signal, or a row of Such large peaks from 
an image. 

For one dimensional data, first detect the primer Signal. 
This can be done, in one embodiment, by Smoothing (i.e., 
low pass filtering) the signal to focus on broad variations, 
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and then fitting the largest peak (i.e., the primer peak) to an 
appropriate function, Such as a Gaussian. Determining the 
variance of the peak from the function fit provides the 
domain interval on which the primer peak should be 
removed. On this domain, it is most preferrable to set the 
values on this interval to an appropriate background value 
(e.g., Zero, if background Substracted, or an average of 
neighboring values outside the interval). Alternatively, one 
can crop the interval from the Signal. 

For two dimensional data, a projection of the pixel data 
onto the vertical axis of DNA separation finds the row of 
peaks. Determine the Spread of this peak signal by curve 
fitting (e.g., with a Gaussian). Remove the primer peaks by 
either cropping the Signal from the image, or Setting the 
values in that domain to Zero (or Some other appropriate 
background value). Referring to FIG. 1, Step 5 is for 
tracking the sizes. 

In the preferred embodiment, Size Standards are run in the 
Same lane as the Sample data, and are labeled with a label 
different from the label used for the sample data. The task is 
to find these size Standards peaks, confirm which peaks 
represent good size Standard data, and then align the 
observed size Standards peaks with the expected sizes of the 
Size Standards. This process creates a mapping between the 
Size Standard peak data Sampled in the pixel domain, and the 
known sizes (say, in base pair or molecular weight units) of 
each peak. 

For one dimensional data, there are no lateral lanes to help 
determine which of the peaks observed in the size Standard 
Signal represent good data. Therefore, a preferred procedure 
uses prior information about the size Standards (e.g., the 
Size) to ensure a proper matching of data peaks to known 
sizes. In the preferred embodiment, use the following Steps: 

0. Find Some good candidate peaks to get Started. 
1. Identify the best peaks to use by filtering poor candi 

dates. This can be done by performing quality checks 
(e.g., for the height, width, or peak fit) on the candidate 
peaks. 

2. Match the expected peak locations to the observed data 
peaks. This is done by applying a "Zipper match' 
algorithm to the best candidate data peaks and the 
expected sizes. This matching uses local eXtension to 
align the peaks with sizes, and includes the following 
Steps: 
2a. Match the boundary, that is, a Subset of Smallest size 

data peaks or largest size data peaks. The algorithm 
can be rerun Several times, shifting the boundary 
data peaks or the expected sizes. The best boundary 
shift can be found by heuristic minimization. One 
good heuristic assesses the uniformity (e.g., by mini 
mizing the variance) of the ratios across matching 
local intervals of the expected Size Standard differ 
ence to the observed data peak difference. 

2b. Fixa tolerance interval that includes unity (different 
tolerance intervals can be tried). 

2c. Starting with the (possibly truncated) boundaries of 
the expected sizes and observed peaks aligned, 
extend this boundary. 

2d. Compute the ratio p of the difference between the 
next expected peak size and the current expected 
peak size, to the difference between the next 
observed peak Size and the current observed peak 
size. 

2e. Compute the ratio q of the difference between the 
current expected peak size and the previous expected 
peak size, to the difference between the current 
observed peak size and the previous observed peak 
SZC. 
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2f. If the ratio (p/q) is greater than the tolerance 
interval's greatest value, then the observed data peak 
falls short. Reject the observed data peak, advance to 
the next observed data peak, and continue. 

2g. If the ratio (p/q) is less than the tolerance intervals 
least value, then the expected data Size falls short. 
Reject the expected data Size, advance to the next 
expected data Size, and continue. 

2h. If the ratio (p/q) lies within the tolerance interval, 
then the expected data size is well matched to the 
observed data peak. Accept the size and the peak, 
record their match, and advance to the next size and 
peak. 

3. If desired, fill in any missing data peaks by interpola 
tion with expected sizes from the Zipper matching 
result. 

4. Compute a quality Score for the matching result. Useful 
Scores include: 
4a. Fitting the matching of the expected sizes (in base 

pair, or other expected unit) with the peak sizes (in 
pixels, or other observed data unit). The relationship 
is monotonic and typically slowly varying, So a 
deviation from a fitted function (e.g., linear, cubic, or 
Southern mobility relationship) works well. 

4b. Another quality Score is the number of Size 
mismatches, adjusted by the boundary shift. 

5. Report the peak positions, matched with Size Standards. 
It is also useful to include the quality Score of the 
match. 

For two dimensional gel data, proceed by tracking on the 
color-Separated size Standard image. To track Simulta 
neously both the sizes and lanes, first focus on a boundary 
row (e.g., the top row) of size Standards. Model the row 
geometry (e.g., curvature, size, location) and each of the 
peaks (e.g., height, shape, angle). Then use this pattern as a 
Set of geometrical constraints for analyzing the next row. 
Use global Search to find the next row, and more localized 
Search to identify the peaks, refine the local peak locations 
using center-of-mass calculations. Continue this proceSS 
iteratively until the size Standard data are completely 
analyzed, and a final grid is produced. It is possible to use 
a prior analysis of the loading/run pattern as calibration data 
in order to Speed up Subsequent tracking. The output of this 
lane/size tracking is a mapping between the expected (lane, 
base pair size) coordinate grid, and the observed (X pixel, y 
pixel) gel data image coordinate grid. 

The quality of the tracking result can be Scored by 
comparing the expected grid locations with the observed 
data peak locations-Straight data grids indicate a high 
quality result, whereas large distortions indicate a lower 
quality result. One useful quality Score measures the curva 
ture of the observed peaks by forming the sum of local 
neighbor distances, and normalizing relative to the nieghbor 
distances in a Straight idealized grid. This grid is preferably 
formed from the known lane loading pattern, the known size 
Standard positions, and observed grid data (e.g., mean 
boundary positions). 

With two dimensional gel image data f(x,y,z), Zdenoting 
the color plane, there also is the Step of extracting lane 
profiles from the gel image to form a Set of one dimensional 
profiles. The lane tracking result is used in this step. For each 
lane, form the mapping from y-pixel values to the (x,y) pixel 
locations indicated by the Size Standard location found for 
the lane. Create a spline function (e.g., cubic) that interpo 
lates through the mapped V:y->X pixel pairs to all other (x,y) 
pixel values. Then, extract a one dimensional profile (for 
each colork), where the domain values down the lane are the 
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desired Sequential pixels y, and the range values are com 
puted from the function f(v(X),y,z). This procedure is done 
for each data image plane Z, extracting either color Separated 
data (by applying the correction matrix) or unseparated data. 
Referring to FIG. 1, Step 6 is for extracting the profiles. 
The signal profile of a capillary or lane is f(x,z), where 

Z denotes the label color (or channel). This function is 
available for capillary data available after processing Step 2, 
and for gel data after extracting profiles in Step 5. 
The pixel Sampling of the electrophoresis distorts the 

sizing of the raw data. The size tracking result from Step 5 
provides as set of (X,x,t) pairs. Use these matched pairs 
to form the coordinate transformation u:X->x... Com 
bining the functions f and u via a double interpolation to 
form: 

fou'(x,..., Z), 
a new function that describes the Signal as a function of size 
Standard units (instead of pixel units), preferably in base pair 
Size units. If color Separation has not yet been done, the 
correction matrix is applied at this time. These transformed 
(capillary or gel data) profiles are then preferably Stored in 
an nxk data Structure of sized profiles, where n is the number 
of pixel Samples, and k is the number of dye colors. 

Note that the fou'(x,z) transformation which maps 
vsize file(sic) 

can be usefully understood as the commutative diagram: 

*size - size(size) 
SZC. 

-1 
l identity 

ixel pixel 'pixel- pixel (pixel) 

The transformation is preferably implemented by per 
forming a double interpolation. In MATLAB, this operation 
can be readily computed using the interp1 function where: 

Y1=interp1(X,Y,XI, method) 

interpolates to find YI, the interpolated values of the under 
lying function Y at the points in the vector XI; the vector X 
Specifies the points at which the data Y is given. 
With interp1, interpolate the desired size domain points 

into computed pixels using the monotonic bijection between 
expected sizes and observed peak pixels: 

pixels=interp1 (sizes, peaks, domain, spline) 

Cubic spline interpolation is done by Setting the method to 
spline. Then, interpolate the function f on the desired size 
domain points (i.e., the computed pixels) using the mono 
tonic bijection f(i) between indices {i} and data values f{i}: 

indices=1:length (data): 

profile=interp1 (indices, data, pixels, spline); 

Computing profile completes the commutative diagram, and 
produces the new function ft (x,-). 

Referring to FIG. 4, visualizations are shown for the 
results of processing Steps 1-6. 
The computer Software preferably extracts and analyzes 

data automatically, without human intervention (if So 
desired). The Software separates colors using a matrix, 
which is either precalibrated or created from the data, 
depending on which module is used. The Software tracks 
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lanes and Size Standards on two-dimensional gel data auto 
matically by mapping the expected two dimensional lane/ 
Size grid to the observed size Standard data, on one 
dimensional CE data, Size tracking is done separately for 
each capillary. The user interface Software makes manual 
retracking, Zooming, and Single-click access to the chemis 
try panel (or Sample data used on a run) available to the user 
throughout. 
A chain of custody is maintained in that the user prefer 

ably cannot move to the next Step without Saving results 
(manually or automatically) from the current step. Changes 
are Saved, not discarded; moreover, the Software records 
these changes incrementally, So that the audit trail cannot be 
lost by early program termination. 

Backtracking capability and flexibility are preferably 
included in the software. For example, should fully auto 
mated lane tracking fail due to low-quality data, the user can 
choose to: (a) edit the results, and have the program re-track, 
(b) edit the results without re-tracking, (c) manually track 
the lanes and sizes, or (d) reject the low-quality gel. A 
“revert” operation provides a universal Undo operation for 
automatically rolling back major processing Steps. 
Data Scoring 

Referring to FIG. 5, Step 7 is for deriving an allelic ladder. 
It is useful to have a set of reference peaks that (a) 

correspond to the actual locations of DNA molecules on the 
gel, (b) have known lengths (in base pair units), and (c) 
cover a large part of the Sizing window. This reference Set 
can be developed for any fragment sizing genetic assay; 
without loSS of generality, the preferred embodiment is 
described for STR genotyping. 

Construct a partial allelic ladder by PCR amplifying a 
pool of DNA samples. This allelic ladder, and optionally a 
known Sample, are preferably loaded into the electrophoretic 
System as separate signals (i.e., in different lanes or colors). 
After the gel is run, referring to FIG. 1, Steps 1-6 are 
performed to initially process the Signals. Then, preferably 
in size coordinates (rather than in pixel coordinates), a peak 
finding algorithm locates and sizes the peaks in these two 
lanes with respect their in-lane Size Standards. The known 
Sample's sized peaks are then compared with the Similarly 
sized peaks found in the ladder lane. Following this 
comparison, the known DNA lengths are then assigned to 
the allelic ladder. The DNA length labels of these DNA 
lengths are then propagated to the unlabeled ladder peaks. 
A preferred peak labeling procedure is: 
1. In the ladder Signal, find the domain positions (i.e., the 

sizes relative to the size standards) of the allelic peaks. 
2. Perform a relational labeling from the known signal to 

the allelic ladder Signal, as follows. Find the peaks of the 
known signal, and assign to them their known sizes (in 
allelic sizes units, Such as base pairs). Then, match (in size 
Standard units) these known allele peaks to the peaks in the 
ladder Signal having corresponding size. Designate these 
ladder peaks with the allelic size labels of the known peaks. 

3. Extend these allelic label assignments from the allelic 
ladder peaks designated with known labels to the rest of the 
ladder peaks. 

3a. When the expected size pattern of the alleles on the 
allelic ladder is known (as with previously characterized 
forensic ladders), a robust method for assigning size labels 
to data peaks uses a Standard open/closed Search Set artificial 
intelligence (AI) algorithm. Start from the most confident 
data (i.e., the knowns) as the closed set, with all remaining 
peaks in the open set. Each cycle, (ii) Select an open ladder 
allele that is nearest in allele Size to a closed ladder allele, 
(ii) predict the calibrated size (from the size Standards) of 
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this allele using interpolation relative to the closed peaks, 
(iii) find the allelic ladder peak whose calibrated size is 
closest to the predicted size in (ii), and (iv) if the quality 
Score (based on size deviation) is good enough, move this 
candidate open peak to the closed Set. On termination, only 
the most confident ladder peaks in the observed data have 
been matched to expected ladder alleles. See (NJ Nilsson, 
Principles of Artificial Intelligence. Palo Alto, Calif.: Tioga 
Publishing Co., 1980), incorporated by reference. 

3b. When expected ladder alleles are not available (e.g., 
with uncharacterized pooled DNA samples), the ladder 
pattern alone (peak spacing or peak heights) usually contains 
Sufficient information for designating the labeling. Start with 
the most confident data-known allele peaks, or tallest 
ladder peaks. Then, locally extend the allele labels to the size 
peaks. Since there is more uncertainty without a known 
ladder pattern, more Search is useful. One preferred method 
is to (i) find the tallest (most confident) peak, (ii) match size 
with nearest (bp Size) allele, (iii) locally align iteratively for 
Smaller and larger peaks, (iv) assign a quality Score to the 
alignment, (v) repeat the preceding three steps, but shifted 
one or two sizes up or down, and (vi) Select the alignment 
with the highest quality Score. 

4. Optionally, fill in any missing ladder peaks with inter 
polation by reference to past ladder data. 

5. Fill in the virtual points on the ladder. These are 
expected ladder alleles that are believed to exist in the 
population, but that are not represented as peaks in the allelic 
ladder. This is done by interpolation. 

6. Return the results assigning allele labels (e.g., in base 
pair or other integer units) to data ladder peaks (e.g., in size 
Standard units). It is preferable to report the quality Score of 
the assignment. 

In nonforensic STR applications, where previously char 
acterized ladders are generally unavailable, pooled alleles of 
a given marker can be used as a reference ladder. This novel 
approach can help eliminate the size binning problem that 
plagues microSatellite and other STR genetic methods. It is 
preferable to use the same allelic ladder acroSS multiple runs. 
The ladder can be comprised of either pooled DNAS that are 
PCR amplified together, or post-PCR amplified products that 
are then pooled together. It may be desirable to visually 
inspect the ladders. In one preferred embodiment, previously 
uncharacterized ladders are checked the first time that they 
are encountered, with a human editor identifying the best 
peaks to use and matching them against their expected sizes. 
Recording quantitative peak data for a ladder can enable the 
use of quantitative computer-based matching of reference 
ladders and new unknown ladders (e.g., for peak and size 
alignment) by correlation or other inner product methods. 
When the interpolation and extrapolation have finished, 

the allele sizes that were actually present as peaks in the 
ladder data, as well as desired allele sizes that were not 
present as peaks, have all been allocated to Size positions. 
SNP ladders can be developed in a similar way to STR 

ladders. With multiplexed SNPs, it is useful to run allelic 
sizing ladders comprised of actual SNP data for the markers 
of interest in a signal. Then, comparison of the unknown 
SNP sample data with the SNP allelic ladder can remove 
uncertainty regarding the correct size (hence, allele) assign 
ment. The Same reasoning applies to any size-based assay 
for which a (partial or complete) ladder of candidate Solu 
tions can be developed. 
With gel electrophoresis, it is preferable to include on the 

gel at least one allelic ladder for every marker used. For 
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example, one lane can be dedicated to ladders for the marker 
panel used in the other lanes; this lane can be loaded in 
duplicate on the gel. It is also desirable to include at least one 
known reference allele lane on every gel; this signal can be 
one or more positive PCR controls. The advantage of 
duplicate control lanes (for ladders and reference controls) is 
that when there is a PCR, loading, detection, or other failure 
in one lane, the Signal in the other lane can be used. 
Moreover, a comparison of the two (or more) signals can 
Suggest when Such a failure may have occurred. 

With capillary electrophoresis, it is similarly preferrable 
to use ladder and reference controls. 

With single capillary systems (such as the ABI/310), these 
controls should be run at Some point during the lifefime 
of the capillary. Preferably, the controls should be run 
as often as the temporal variation in the sizing System 
(i.e., differential Sample and size standard migration) 
Warrant. 

With a multiple capillary instrument (e.g., ABI/3700, 
MegaBACE, etc.) each capillary can form its own 
electrophoretic Separation System. In the most preferred 
embodiment, the allelic ladder, known reference 
Samples, and any other capillary controls (for fragment 
sizing, color separation, etc.) are run at least once for 
every capillary, with the calibration results then applied 
Specifically to that capillary. For example, consider the 
case of using one panel comprised of a Set of markers, 
with this panel applied to a set of S Samples, run out on 
an n-capillary instrument that achieves r Sequential runs 
per capillary with acceptable sizing fidedility. Suppose 
(for high-throughput Studies) that, approximately, 
nxrs S. Then, one of the runs (e.g., run number 1 or r?2) 
should have allelic ladders in all in capillaries, and 
another run (e.g., run number 2 or 1+r/2) should have 
allele references in all in capillaries. 

Generating data containing these allelic ladder Sizing 
controls, and analyzing the data as described in this Step, 
reduce run-to-run sizing variation. Such reduction in gels or 
capillaries is crucial for achieving reproducible sizing 
assays. Variable run conditions (e.g., temperature, gel 
consistency, formamide concentration, Sample purity, 
concentration, capillary length, gel thickness, etc.) can 
induce differential sizing between the PCR products in the 
Sample and the internal size Standards. These allelic ladder 
comparison methods help correct for Such variation. 
Referring to FIG. 5, Step 8 is for transforming coordinates. 

In the preferred embodiment, size comparisons used in 
the analysis are performed in the allelic ladder Size coordi 
nate System, rather than in the size Standard coordinate 
system. While the latter approach is also workable, the 
former method has the advantages that the reference System 
is comprised of DNA bands size calibrated to actual integer 
DNA molecule lengths, rather than to artibrary fractional 
molecular weight sizing units. Using integer DNA lengths 
(e.g., true base pairs) is closer to the physical reality, and can 
Simplify the data analysis, logical inference, communication 
with the user, quality assurance, and error checking. 

In one preferred embodiment, the Signals are kept in Size 
Standard units, but comparisons are made in the allelic 
ladder frame of reference. For example, in comparing 
Sample peaks with allelic ladder reference peaks, the Sample 
peaks can first be interpolated into a domain based on the 
allelic ladder peak sizes, prior to comparing the Sample 
peaks with any other reference sizes. 
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Aladder-based peak sizing method can establish a direct 

connection between observed peak sizes and actual DNA 
fragment lengths (possibly up to a constant shift). Trans 
forming data sizes into DNA lengths overcomes size binning 
problems. For example, rounding number to the nearest 
integer in DNA length (i.e., ladder) coordinates permits the 
assigning of consistent labels to each peak; this consistency 
is not achieved when round fractional peak size estimates. 
Moreover, the peak's deviation from the integer ladder 
provides a quality measure for how consistently the peaks 
are sizing on a particular size Separation run. 

In the most preferred embodiment, the Sample signals are 
transformed from size standard units into allelic ladder DNA 
length units. Step 6 provides the sized signal profile of a lane 
(or capillary): 

fou 1. (xsie) 
Step 7 provides a characterized allelic ladder that matches 
the alleles of the ladder in size standard units with corre 
sponding DNA molecule lengths in base pairs (or other 
Suitable integer-spaced units). This pairing defines a coor 
dinate transformation for that ladder: 

visie Viength 

Combining the function fou' together with the function . 
(this can be done using a double interpolation) forms: 

fou 1. O 1. (Xiength) s 

which represents the signal intensity f in terms of DNA 
length X. The relevant mathematics and computer 
implementations are detailed above in Step 6, extracting the 
profiles. For each marker, with n lanes or capillaries, and k 
colors, these transformed profiles can be preferably Stored in 
an nxk data structure (e.g., in memory, or in a file). 

This procedure provides a method for analyzing a nucleic 
acid sample. The steps included: (a) forming labeled DNA 
Sample fragments from a nucleic acid Sample; (b) Size 
Separating and detecting Said Sample fragments to form a 
Sample signal; (c) forming labeled DNA ladder fragments 
corresponding to molecular lengths; (d) Size separating and 
detecting said ladder fragments to form a ladder signal; (e) 
transforming the Sample Signal into length coordinates using 
the ladder signal; which in turn permit (f) analyzing the 
nucleic acid Sample Signal in length coordinates, as follows. 
Referring to FIG. 5, Step 9 is for quantitating Signal peaks. 

In addition to Sizing DNA peaks, it is also useful to 
quantitate the relative amount of DNA present. To do this 
accurately requires taking account of band overlap. Few 
Systems currently perform this band overlap analysis, those 
that do (e.g., Cybergenetics' True Allele Software), use a 
combinatorial approach that increases analysis time greatly 
as the number of adjacent peaks increases. This combina 
torial cost can impede analyses of large allelic ladders or of 
differential display data. In the preferred embodiment, as 
described herein, the DNA quantitation Step for resolving 
band overlap should computationally scale (e.g., at linear or 
Small polynomial cost) with the number of bands analyzed. 

In DNA length coordinates, as developed in Step 8, a peak 
has a natural shape that Stems from band broadening as it 
migrates down the gel or capillary. (For accurate peak 
quantitation, DNA length coordinates are preferrable to size 
Standard coordinates, and size Standard coordinates are 
preferrable to pixel Scan coordinates.) Centered at location 
X, this peak shape can be described as a Normal function 
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d;(x) & e : (of 

on the leading edge, and a Cauchy function 

(b (x) cc 

on the receding edge; the functions share the same heighth 
at X. Band broadening implies that as X increases, the width 
parameters O and C. will increase, the heighth will decrease, 
while the area remains constant. This is confirmed by fitting 
peak spread data as a function of DNA length with a third 
order exponential function. 

Using the changing band shapes as a set of basis 
functions, write the trace f (in DNA length coordinates) as: 

where basis function (p depends on <X, O, O, h>, i.e., the 
center position X, Normal Spread O., Cauchy Spread C, and 
center height h. 
From the data f(x), Solving for the coefficients {c} 

provides an estimate of the DNA concentration at each peak. 
Less efficient approaches (e.g., True Allele) currently Solve 
this equation by a least-Squares Search of the 4n coefficients 
to the data f, with combinatorial computing time propor 
tional to exp(4n). However, by exploiting the model func 
tions (p, together with function space mathematics, this 
computing time can be reduced to roughly linear cost, 
proportional to n. See (F Riesz and B Sz.-Nagy, Functional 
Analysis. New York: Frederick Ungar Publishing at Co., 
1952), incorporated by reference. 

Normalize the basis functions (p. So that 

and note that the band overlap coefficients be can be 
numerically estimated from the model functions as 

Then observe that with initial estimates of X (assuming one 
peak per bp size k), rewrite the inner product <f, pa as: 

(f. 9-3, e-Saco-), by 
Setting the data derived values {d,=<f, pa}, and using 
appropriate vector-matrix notation, yields the relation: 

With sparse peak data that has little band overlap (e.g., 
tetranucleotide repeat data) B=I, (the identity matrix), and 
ca-d immediately yields the DNA concentrations at every 
peak k. More generally, B is largely an identity matrix (i.e., 
primarily ZeroS off-diagonal), but has a few Small near 
diagonal elements (the band overlaps) added in. Solve for c 
from the observed data vector d and the band overlap matrix 
Busing a very fast matrix inversion algorithm (e.g., SVD) 
that exploits the Sparse nature of the local overlap coeffi 
CentS. 
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In the most preferred embodiment, the overlap matrix B 

is used to rapidly estimate the DNA concentrations {c} at 
the peaks. This is done by computationally exploiting the 
functional analysis. Since 

and So the DNA concentrations c can be estimated imme 
diately from the values {d,=<f, (p&} derived from data signal 
f once the p, and their overlap integrals B=<p, pa are 
known. 

In the preferred embodiment, estimate the p, basis func 
tions and their overlaps. Each basis function (p depends on 
<X, O, O, h>. To reduce this four dimensional Search to 
one dimension, proceed as follows. 
X can be estimated from the peak center. 
h is not a factor, Since each p is normalized to integrate 

to 1. 

O, and C, are empirically observed to be in a fixed ratio 
to one another (at least in local neighborhoods), due to 
the relatively constant peak shapes. 

Therefore, a computationally efficient approach is to per 
form a one dimensional Search for O, and C, keeping their 
ratio fixed. Then, if So desired, perform a quick local two 
dimensional Search to in the Solution neighborhood to refine 
the values of O and C. 
To find the peak width parameters O and C, first fix a 

value of O in a local neighborhood; in 1D Search, Set C. to a 
fixed r proportion of O, in 2D Search, Set the value of C. as 
well. For each observed peak, Set the center X of (p to the 
peak's center location. Following normalization, the basis 
functions {{p} are determined. Then, for j’s in the 
neighborhood, compute d=<f, p-, or: 

d=<f, p> 
Determine B by numerical (or closed form) integration of 

the basis functions (p, and (p.: 

Compute B' by inverting B, or: 

B = (d), , (b)] 

Note that terms far from the diagonal are essentially Zero. 
These local neighborhood calculations of d and B are 
rapid, and are used in the inner loop of the following 
minimization procedure. 

Minimize the difference between the observed data signal 
f and the expected model function: 

by Substituting the c computed from: 
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Minimization (e.g., using an L2 norm) of the expression: 

in the neighborhood as O (and possibly C) vary, finds the best 
estimate of the widths of the basis function. These widths 
can be modeled locally, interpolated by fitting with a cubic 
exponential function, and then used to generate appropriate 
basis functions acroSS the full range of sizes. 

Application of these modeled basis functions to the data 
function f produces robust estimates of the DNA concen 
tration c at each DNA peak k, Since, after convergence, 

2 

In the current art, workers use the heights or areas of the data 
peaks. Because-of the extensive peak shape modeling done 
here, it is preferrable to use the heights (i.e., c) or areas 
(determined from c. and the p peak shape, e.g., by closed 
form evaluation) of the computationally modeled peaks. 

The match-based quantitation described herein is very 
well Suited to highly multiplexed data, such as SNPs, 
differential display, DNA arrays, and pooled Samples. This is 
because the inner product operations (and local band overlap 
corrections) can be applied accurately and in constant time, 
regardless of the number of data peaks in the Signal. 

It is useful to assess the quality of the individual peak 
quantitation results. This assessment can be done by com 
paring the modeled data function 

with the observed data signal f. A normalized L. deviation 
(computed, e.g., via a correlation) between expected and 
observed based on the minimization Search function above 
can be used as the comparison measure. 
Referring to FIG. 5, Step 10 is for analyzing the data, 
preferably by calling the alleles. 

In the preferred embodiment, allelic (or other) DNA 
ladder data is available, and the alleles can be called by 
matching Sample peaks relative to the ladder peaks. This 
match operation is fast, reliable, Very accurate, and accounts 
for inter-gel or inter-capillary variations. Depending on the 
application, a window (typically --O.5 bp) is set around a 
ladder peak of calibrated DNA length. When a sample peak 
(preferably in ladder coordinates) lies within this bp size 
window, it can be reliably designated as having the length of 
that ladder peak. Zero Size deviation between the centers of 
Sample and ladder peaks indicates a perfect match; greater 
deviations indicate a leSS reliable match. 

In an alternative preferred embodiment, the data profiles 
can be Stored in Size coordinates, and brought into length 
coordinates only when needed. This is done by retrieving a 
Sample's size coordinate profile, as well as and the ladder 
peaks. The Sample's peaks are found in size coordinates, and 
then interpolated in into length coordinates using the ladder 
Size to peak mapping, as described previously. The Sample's 
peaks are then in length coordinates, and can be rounded to 
the nearest integer, or matched against integers representing 
valid allele designations. The deviation from Such integers 
(e.g., the fractional component) can be used a measure of 
quality, accuracy, or concern. 

In other embodiments, found in the current arts fragment 
sizing Software, the peak sizes (e.g., the alleles in genotyp 
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ing applications) are analyzed in a size Standard coordinate 
System, and ladder calibration data is not used by the 
computer. This analysis entails a bottom-up collection and 
comparison of data from many Samples to form data 
directed bins. These bin distributions are then used to 
designate Sample peak size. However, the distribution vari 
ance acroSS multiple electrophoresis runs on different 
Samples can be quite high. When these bins have overlap 
ping sizes, allele size designation becomes quite uncertain. 

In the preferred embodiment, both DNA length and 
amount are used in Scoring the data. With STR genotyping, 
for example, where there can be multiple peaks, the DNA 
concentration (e.g., modeled peak height or area) is used as 
measure of confidence in the observed peak. With a het 
erozygote genotype, two peaks are expected, and with a 
homozygote, only one. Since other peaks may be present 
from mixtures, PCR artifacts, or other DNA Sources, the 
analysis will focus on the higher concentration peaks, par 
ticularly those peaks residing in allelic ladder windows. 
Most of the peak signal mass should be concentrated in the 
most confident peaks: high DNA amount, and in a ladder 
window. When this is not the case, confidence in the data is 
lower. Once the peaks have been quantitated at known DNA 
lengths, the data can be further analyzed. Such analyses 
include Stutter deconvolution, relative amplification 
correction, allele calling, allele frequency determination 
(from pooled Samples), differential display comparisons, 
and mutation detection. In genotyping applications, allele 
calling should be done on the Signals only after corrections 
(e.g., for Stutter or relative amplification) have been made. 
See (MW Perlin, “Method and system for genotyping.” U.S. 
Pat. No. 5,541,067, Jul 30, 1996; M W Perlin, “Method and 
system for genotyping.” U.S. Pat. No. 5,580,728, Dec. 3, 
1996; S-K Ng, "Automating computational molecular genet 
CS 

Solving the microSatellite genotyping problem,” Carnegie 
Mellon University, Doctoral dissertation CMU-CS-98-105, 
Jan. 23, 1998), incorporated by reference. 

In one preferred embodiment, allele calling on quantitated 
corrected data is done by: 

1. Finding the largest peak (area or height), and ensuring 
that is within a window on the allelic ladder. 

2. Removing all peaks from the Signal that either (a) have 
a DNA length that is not in a window of the allelic 
ladder, or (b) have a DNA amount that is not within 
Some minimum percentage of the largest peak. 

3. Calling the alleles by matching the DNA lengths of 
each Sample peak to the DNA sizing windows on the 
allelic ladder. 

4. Applying rules to check for possible data artifacts. 
Typical rules are described below. 

5. Computing a quality Score, particularly for those data 
apparently free of data artifacts. Various quality Score 
components are discussed below. 

6. Recording the designated alleles, and the quality of the 
result. 

Referring to FIG. 6, the results of ladder processing, peak 
quantitation and allele calling can be visualized. 

There are many "junk-detecting rules that can be 
designed and applied to data. Critical to all Such rules is the 
ability to compare observed measures against expected 
behaviors. By modeling the Steps of the processing, com 
puting appropriate quality Scores at each Step, and compar 
ing these observed data features with normative results, the 
invention enables a precise computer diagnosis of problems 
with data Signals and their quality. Some example rules 
include: 
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Noise only. Using measures (such as Wilcoxon's signed 
rank Statistic) to test for randomness, a computer pro 
gram can decide that an experiment produced primarily 
noise (BW Lindgren, Statistical Theory, Fourth Edi 
tion. New York, N.Y.: Chapman & Hall, 1993), incor 
porated by reference. 

Low Signal. The peaks should have heights over a certain 
(user-defined) minimum threshold. When a profile's 
highest peak does not reach that threshold, flag the 
problem. 

High Signal. The peaks should not be over a certain 
(user-defined) maximum threshold. When a profile's 
highest peak does exceeds that threshold, flag the 
problem. 

Peak dispersion. The designated peaks Should comprise a 
certain percentage of the total Signal. If a profile's 
designated peaks contain leSS than that percentage, fire 
the rule. 

Algorithm conflict. When multiple Scoring algorithms are 
used, they should agree on the Scoring results. Report 
any conflicts. 

Relative height. For Some applications (e.g., forensic STR 
analysis) the relative peak heights should be within a 
predefined ratio of each other. Indicate when a geno 
type has a Second peak with a relative height that is too 
low. 

Third peak. One (homozygote) or two peaks 
(heterozygote) should contain most of the DNA signal. 
Indicate when a genotype has a third peak that contains 
too much DNA signal. 

Off ladder. All the allele peaks should be close to their 
ladder peaks. When one (or more) of the alleles are too 
far away from their ladder peak, inform the user. 

Uncorrelated. When there are two allele peaks, their 
centers should deviate Similarly from their respective 
ladder peaks. When a genotype has deviations that do 
not correlate (i.e., their difference exceeds Some 
threshold), flag the problem. 

Control check. The calls computed for a control experi 
ment should be consistent with the known results. 
When they are not, flag the result. 

Note that some of these rules (e.g., “off-ladder”) make use 
of allelic ladders, when they are present. 

To better understand the decision Support role of each 
numerical quality Score (Such as those used in rules), and 
their decision thresholds, it is useful to collect the scores for 
a large Set of data and analyze them. Collection proceeds by 
recording the Set of Scores for each applicable genotype 
result, and indexing the genotypes (say, by Sample, gel, and 
locus). Consider each Such numerical score as a mapping 
from the genotypes to St. Classify the genotypes by how 
they were Scored; one preferred classification includes 
unscorable (e.g., noise), low quality (e.g., rule firings), 
correctly called good data (e.g., human agreement), and 
incorrectly called good data (e.g., human agreement). The 
result classification can be obtained by comparing the com 
puter calls (and rule firings) with human edited (or otherwise 
independently scored) data. On Some useful Subset of geno 
types (e.g., each locus examined separately), the numerical 
quality Scores can be collated and histogrammed for each 
result classification; this produces a set of distributions, one 
for each classification. Comparing (numerically, visually, 
statistically, etc.) the different distribution profiles for the 
different classifications provides insight into the utility and 
Scaling of a numerical quality Score, permitting the deriva 
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tion of decision thresholds or probability models. In a 
preferred embodiment, a decision threshold is Statistically 
determined by distinguishing two score distributions (e.g., 
correct and incorrect results) according to a determined 
Sensitivity or Specificity. In another preferred embodiment, 
linear or logistic regression is used to model the probability 
of an accurate allele call. These thresholds or probabilities 
can be displayed to a user for enhanced confidence or 
decision Support. 

It is useful to compute a quality Score on the good data; 
one criterion for "good data' is that the experiment does not 
trigger any "junk detecting rules. Quality Scores enable the 
ranking of experiment results for Selective review, as well as 
the computation of accuracy probabilities. Many possible 
quality Scores can be developed, depending on the applica 
tion and the available data. In all cases, there is Some kind 
of comparison between expected behavior and an observed 
result-Small deviations indicate high quality, whereas large 
deviations Suggest lower quality. Example quality Scores 
include: 
Domain measures. When ladder data is present, it is 

possible to compute the deviation between a candidate 
allele peak center and its associated ladder peak center. 
When ladder data is not present, a Similar comparison 
can be made relative to a precalibrated bin center, rather 
than a ladder peak center. One useful Score is the 
maximum (over the scored alleles) of the absolute 
value of the deviations. When this number is close to 
Zero, the confidence is high. AS it increases to 0.5 bp, 
the result becomes less confident. 

Range measures. A sizing data result pertains to an 
particular number of peaks, any additional peaks rep 
resent a dispersion of the Signal mass away from the 
hypothesized Score. Ideally, all the Signal mass should 
be present in the called peaks, which can be measured 
by the peak centering ratio=(called peaks)/(all peaks). 
When this ratio is near unity, the confidence is high. AS 
it decreases to Zero, the result becomes less confident. 

Product measures. A product of a domain measure with a 
range measure can be a Sensitive indicator of quality. In 
one preferred embodiment, let a result Scale with 1 as 
the highest quality, and 0 as the lowest quality. Rescale 
the domain measure above to map the Score interval 
0.0.5 to the quality interval 10, with all scores 
above 0.5 set to 0. Rescale the range measure above to 
map the score interval 0,1 to the quality interval 1,0). 
Then form the product of these two rescaled Scores, So 
that the result lies in the interval 0,1). 

Function measures. Once all data corrections have been 
made (e.g., for PCR Stutter, relative amplification, peak 
shapes, peak sizes, peak center deviations, band 
Overlap, etc.) on the fully quantitated and modeled 
Signal, the inverse of these corrections can be applied 
to the size result to resynthesize the Signal. Comparison 
of the resynthesized Signal with the data Signal provides 
a measure of how completely the analysis modeled the 
data-the residual deviation can measure lack of con 
fidence in the result. One Such comparison is a corre 
lation between the Synthesized and data Signals. This 
correlation can be computed So that Small values indi 
cate confidence (e.g., using a normalized La deviation), 
or So that larger values indicate confidence (e.g., using 
a normalized inner product or Statistical correlation 
measure). 

The development of Some quality Scores has been described 
(MW Perlin, “Method and system for genotyping.” U.S. 
Pat. No. 5,876,933, Mar. 2, 1999; S-K Ng, “Automating 
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computational molecular genetics: Solving the microSatellite 
genotyping problem,” Carnegie Mellon University, Doctoral 
dissertation CMU-CS-98-105, Jan. 23, 1998; B Pálsson, FP 
alsson, M Perlin, H GubartsSon, K Stefánsson, and J 
Gulcher, “Using quality measures to facilitate allele calling 
in high-throughput genotyping,' Genome Research, Vol. 9, 
no. 10, pp. 1002-1012, 1999), incorporated by reference. 

Probabilities can be computed from quality scores. The 
individual components of the quality Scores generally lie on 
a numerical Scale. Histogramming and multivariate regres 
Sion analysis can provide insight into the distribution of the 
correctly Scored “Success” data population relative to the 
distribution of the incorrectly scored “failure' data popula 
tion along each of these measures. A logit transformation of 
this dichotomous outcome variable is useful, and provides 
0,1) bounds for probability estimates, and the use of a 
binomial (rather than normal) distribution for the error 
analysis. By applying Standard logistic regression, the key 
underlying independent variables can be elucidated. This 
logistic regression analysis can help determine the thresh 
olds used in the "junk-detection' rules, and, for each 
experiment, can compute the probability of an accurate Score 
from the observed variables. For example, the domain and 
range measures used above can be used as two independent 
variables, with the outcome being Success or failure in the 
computer correctly calling the allele results. Logistic regreS 
Sion on these variables with a preanalyzed data Set can be 
used to construct a correctness probability for allele calls on 
further data sets. See (AAgresti, Categorical Data Analysis. 
New York, N.Y.: John Wiley & Sons, 1990; D W Hosmer 
and S Lemeshow, Applied Logistic Regression. New York: 
John Wiley & Sons, 1989; Statistical Analysis Software, 
SAS Institute, Cary, N.C.; Statistical Package for the Social 
Sciences, SPSS Inc., Chicago, Ill.), incorporated by refer 
CCC. 

Data Review 
Once the automated computer Scoring has completed, it is 

often useful to have a perSon assess the results. Since 
reviewing perfectly Scored data is an inessential Step, the 
data review should optimally focus on reviewing the least 
confident (but scorable) data. The outcome of this focused 
review is typically a decision for each experiment's result: 
accept the result, modify the result, reject the result, plan to 
redo the experiment in the laboratory, and So on. 

In order to focus the data review, it is helpful to have a 
prioritization. In the preferred embodiment, the quality Score 
or accuracy probability is used to rank the experiments. The 
review may arrange the Suspect experiments in different 
Subsets, e.g., grouped by marker, Sample, equipment, 
perSonnel, time, location, etc. By reviewing the worst data 
first (i.e., rule firings, least quality Scores), the user is 
enabled to focus on evaluation and repair of only the Suspect 
data. Not reviewing highly confident data frees up human 
operator time for other process tasks. Moreover, not review 
ing unscorable data is similarly useful. 

Using these methods, low quality data can be identified 
and classified. At the Single datum level, individual results 
can be examined and better understood. At the data set level, 
problematic loci, Samples or runs can be identified by 
examining percentages of outcome indicators (e.g., rule 
firings, low quality Scores, calling errors) relative to data 
Stratifications. For example, the number of miscalls of 
known Samples (arranged by locus and gel run) can identify 
problematic data trends early on. This information can 
provide useful quality control feedback to the laboratory, 
which can help improve the overall quality of future data 
generation. 
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Referring to FIG. 7, it is useful to present the results 

graphically. Visualizations of the experiments (e.g., gel lane 
tracking or color separation) and the signal traces help the 
user understand potential problems with the data, and pos 
sibilities for their correction (both for the particular 
experiment, as well as for the overal data generation 
process). In the preferred embodiment, multiple graphical 
Visualizations for inspecting and reviewing genotype data 
include interfaces for: 

inspecting and annotating the raw gel data; 
inspecting and editing the automated lane tracking and 

Sizing; 
assessing data quality and marker size windows; 
reviewing and editing automatically called alleles (by 

quality Score priority, or other user-Selected data 
rankings), preferably with all data and inferences visu 
ally presented in the context of the marker's allelic 
ladder; 

Visually examining the data Signal, preferably overlaid 
upon an allelic ladder; 

flexible examination of bleedthrough (or “pull-up”) arti 
fact, 

reviewing computed DNA quantitations and sizes, pref 
erably in the context of the allelic ladder. A more 
detailed window explores the quantitation results. 

showing the allele calls, 
providing access to a more detailed textual window 

presenting a Summary of useful allele calling informa 
tion in tabular form; 

focusing on the allelic ladder data Signals, when available; 
and 

displaying Selected multiple lane Signals graphically in 
one view. 

Such multiple representations visually show the quality of 
the data, and provide diverse, focused insights into the data 
and their processing. Such graphical interfaces are generally 
used on only a small fraction (e.g., less than 5%-10%) of the 
data, Since most high-throughput users do not care to revisit 
high-quality allele calls on high-quality data. 

Referring to FIG. 8, it is also useful to present the results 
textually. Textual information can facilitate a more detailed 
understanding of a particular experiment. It is helpful for the 
user to have rapid access to both graphical and text presen 
tation formats. The preferred embodiment provides infor 
mation on allele designations, ladder comparisons, molecu 
lar weight sizes, and genotype quality. This display also 
gives explanations of rules that may have fired. The table 
includes peak size, peak height, peak area, and peak fit 
quality. The display is extensible, permitting modifications 
to the display that can draw from the expected and observed 
values that are computed for each Scored genotype. 
The preferred embodiment provides very flexible naviga 

tion between the graphical and textual view. A gel display 
permits viewing of any combination of gel image, Size 
Standard peak centers, or lane/size tracking grid, as well as 
editing capability. An allele call display provides navigation 
facilities (e.g., buttons and menus) for rapidly Selecting 
Samples and loci, including Zoom, Slider, overlay, and rela 
tional options. With a single click, the user can examine the 
peak and ladder Sizes of any designated allele. The interface 
also automates many of the mundane display aspects (e.g., 
Signal resizing, quality prioritization), thereby enabling 
rapid user navigation. 

For maximum flexibility, the preferred embodiment 
reports results to computers and people in multiple ways. 
Preferred modalities include: 
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Providing a flexible format (e.g., tabbed text files, or SQL 
queries) for seamless interaction with database, 
Spreadsheet, laboratory information management Sys 
tem (LIMS), text editing, and other computer Software. 

Providing such a flexible format for input information. 
Providing such a flexible format for output results. 
Providing Such a flexible format for logging, audit, and 

error meSSageS. 
Recording rule firings and quality Scores (along with 

allele calls) in result files (e.g., tabbed text) in Such a 
flexible format. The rule firing representation is exten 
Sible and backwardly compatible, So that it is easy to 
add more rules over time as more cases are observed. 

When a window focused on a genotype, displaying the 
fired rules (if any), thereby setting the context for why 
particular low quality data were rejected. 

Listing or explaining the fired rules in plain English in a 
textual window for the human operator. 

Listing the designations, allelic ladder information, 
molecular weight deviations (between the designation 
and its allelic ladder), quality Score, or a table of peak 
Sizes, areas, heights, and qualities. 

Different data artifacts are typically associated with their 
own specific visualizations. For example, a Signal containing 
size-designated Standard peaks do not overlay properly on a 
different Signals size-designated Standard peaks, referring 
to FIG. 9, this improper overlay can be visualized by 
Superimposing the Signals in different colors. For most data 
artifacts, human data reviewers painstakingly (a) contruct an 
appropropriate Visual representation (e.g., an overlay of 
specific signals) to (b) confirm or disconfirm the presence of 
the artifact. The more efficient approach of the preferred 
embodiment is to reverse this order. First (b), have the 
computer automatically determine (from rules or other qual 
ity Scores) what data artifacts are present, and then (a) 
automatically construct visualizations that are customized to 
each Specific artifact. These data-directed Visualizations can 
be opened up automatically, or displayed upon request. 

Referring to FIGS. 4, 6, and 9, to efficiently develop a 
library of Such data artifact customized displayS, the inven 
tion includes a graphical language interpreter. An element of 
the display library is a message template that operationally 
characterizes how to display the artifact. This template is 
filled in by applying it to specific data. A message for the 
interpreter includes a set of n-tuples that describe the type of 
display, the Source of data, a size range, fluorescent dye, or 
other useful display information. The data Source preferably 
refers to the nxk representation of data Signals. This inter 
preter then dispatches on the display type (e.g., data signal, 
vertical line, fitted curve, annotation, etc.) and possible 
Subtype (e.g., main data, Size ladder, allelic ladder, known 
control, negative control, etc.) of each tuple to Supply 
additional display information (e.g., drawing color, line 
Style, line thickness, etc.) that is specific to that display type. 
Execution of the Set of messages contructs and presents the 
customized display to the user for its corresponding data 
artifact. 
Analysis System 

Referring to FIG. 10, the present invention pertains to a 
System for analyzing a nucleic acid Sample 102, as Specified 
above. The system comprises a means 104 for forming 
labeled DNA sample fragments 106 from a nucleic acid 
sample. The system further comprises means 108 for size 
Separating and detecting Said Sample fragments to form a 
Sample Signal 110, Said Separating and detecting means in 
communication with the Sample fragments. The System 
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further comprises means 112 for forming labeled DNA 
ladder fragments 114 corresponding to molecular lengths. 
The System further comprises means 116 for Size Separating 
and detecting Said ladder fragments to form a ladder Signal 
118, Said Separating and detecting means in communication 
with the ladder fragments. The System further comprises 
means 120 for transforming the Sample Signal into length 
coordinates 122 using the ladder Signal, Said transforming 
means in communication with the Signals. The System 
further comprises means 124 for analyzing the nucleic acid 
Sample Signal in length coordinates, Said analyzing means in 
communication with the transforming means. 
Special Applications 

For many applications, it is useful to generate sizing 
results that are comparable acroSS different DNA sequencer 
instruments. This platform interoperability is essential, for 
example, when creating a reference DNA database (e.g., for 
human identification in forensics, or multi-laboratory 
genetic analyses) with data comparisons from multiple labo 
ratories. Should different instruments at different laborato 
ries yield different sizing results for PCR products relative to 
the size Standards, then Such DNA reference resources 
become almost useleSS. The present invention uses sizing 
ladders based on Such sample fragments (e.g., allelic 
ladders, with or without known reference samples) in order 
to assure that sizing results are based on Sample fragment 
sizes. Specifically, said sizing results are not based Solely on 
electrophoretic migration of DNA fragments relative to size 
Standard moledules, Such relative migration can be highly 
variable acroSS different instruments, and even on the same 
instrument when different run conditions are employed. The 
present invention overcomes this limitation in the current 
art, uses novel computer-based Scoring of properly cali 
brated data to provide automated Sizing of DNA fragments, 
and enables true interoperability between different sizing 
instruments. 

Via this interoperability, the invention provides a method 
for producing a nucleic acid analysis. Steps include: (a) 
analyzing a first nucleic acid Sample on a first size separation 
instrument to form a first signal; (b) analyzing a second 
nucleic n acid Sample on a Second size Separation instrument 
to form a Second Signal; (c) comparing the first signal with 
the Second Signal in a computing device with memory to 
form a comparison; and (d) producing a nucleic acid analy 
sis of the two Samples from the comparison that is indepen 
dent of the Size Separation instruments used. 

In forensic applications, it useful to match a sized-based 
genotype (e.g., STR or SNP) of a Sample against a reference 
genotype. In making Such forensic match comparisons, it is 
preferable to have a computer Scoring program designate 
alleles relative to an allelic ladder, rather than using an 
“exact size relative to Sizing Standards. This is because of 
the highly variable differential migration of the sizing Stan 
dards relative to the PCR products. An allelic ladder 
(whether precharacterized or dynamically characterized) 
provides standard reference DNA molecule lengths. By 
comparing and reporting Sample DNA fragment lengths 
relative to these constant reference DNA lengths (and not to 
variable size Standard comigration units), it is possible to 
reliably match genotypes of a given Sample with those of a 
reference Sample. This comparison and reporting is enabled 
by the present invention. Moreover, this reliability is essen 
tial for human identification applications where near Zero 
error is required. In criminal comparisons, the Sample DNA 
profile may be from a stain at a crime Scene, whereas the 
reference DNA profile is from a Suspect or a preexisting 
DNA database, with the goal of establishing a connection 
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between a Suspect and a crime Scene. In civil applications, 
the sample and reference DNA profiles may be used to 
determine degree of relatedness, as in a paternity case. (IW 
Evett and BS Weir, Interpreting DNA Evidence Statistical 
Genetics for Forensic Scientists. Sunderland, Mass.: Sinauer 
Assoc, 1998), incorporated by reference. 
PCR artifacts can complicate DNA fragment sizing. With 

STRS, PCR stutter, relative amplification (also termed “pref 
erential amplification”), and constant bands are common 
artifacts. Using computer-based Scoring methods, these arti 
facts can be resolved by Stutter deconvolution, adjusting 
relative peak heights based on fragment size, detecting and 
Suppressing artifactual bands, and other quantitative meth 
ods. (M W Perlin, “Method and system for genotyping.” 
U.S. Pat. No. 5,541,067, Jul 30, 1996; MW Perlin, “Method 
and system for genotyping.” U.S. Pat. No. 5,580,728, Dec. 
3, 1996; S-K Ng, “Automating computational molecular 
genetics: Solving the microSatellite genotyping problem,” 
Carnegie Mellon University, Doctoral dissertation CMU 
CS-98-105, Jan. 23, 1998), incorporated by reference. 

Differential display is a Sensitive assay for relative gene 
expression. In automated computer data analysis of differ 
ential display gene expression profiles, the objective is to 
identify size bins at which there is a demonstrable difference 
between the DNA amounts present in the two profiles. In a 
preferred embodiment, to compare: 

Transform the expression profiles So that each resides in 
a uniform DNA sizing coordinate System, referring to 
FIG. 1, Step 6. When the pixel representation is highly 
reproducible (e.g., when running Serially on a single 
capillary), this transforming step can be omitted. 

Identify the peaks in each profile, and record their X 
domain (DNA size) and y height (estimated DNA 
concentration) values. 

Compare the domain values of the peaks in each profile, 
and form a set of matching paired peaks (one from each 
profile). Retain those paired peaks with close X values. 

In the preferred embodiment, the difference between the 
X Values is less than or equal to /2 base pair. 

Retain the cross-profile peak pairs having relatively close 
y value ratioS. Compute the Standard deviation of the 
ratio of the y values for peak pairs, and remove those 
peak pairs whose y-value ratioS lie outside a certain 
Standard deviation range (e.g., one standard deviation). 

ReScale the profile ranges So that they approximately 
Superimpose. Normalize the first profile by dividing by 
its maximum y Value. Model the y-value ratioS poly 
nomially (e.g., linearly) as a function of X. Normalize 
the second profile by dividing by the modeledy-value 
ratio function. 

Refine the peak matching by a two dimensional compari 
Son that requires the matching peak pairs to Satisfy both 
a certain X-tolerance (e.g., 0.5 bp) and certain y toler 
ance (e.g., 5% relative height). When the 1D peak 
matching does not produce Spurious results, this refin 
ing Step may be omitted. 

Use the matched peaks as a peak ladder, and transform the 
coordinates of one profile into the coordinates of the 
second profile, referring to FIG. 1, Step 8. When the 
peaks are very close (preferably less than 0.25 bp 
deviation), this transforming step may be omitted. 

Compare the Superimposed profiles, and identify peak 
pairs whose calculated y-value differences or ratioS are 
outliers, relative to the paired y value Standard devia 
tions. These outlying peak pairs represent possibly 
Significant up- or down-regulation of gene expression. 
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Report the identified outlying peak pairs. This can be done 

as two lists (one for up-regulation, and one for down 
regulation). Within each list, rank the results by the y 
value deviation. 

The results of Such an analysis are shown in FIG. 11, which 
in demonstrates no evident variation in the repeated running 
of one differential display Sample. 
Software Description 

Referring to FIG. 12, the data scoring software is prefer 
ably maintained in a version control System. After testing at 
has completed, program changes are committed. For each 
Supported platform (Macintosh, Windows, Unix, etc.), an 
automated assembly computer retrieves the updated Soft 
ware and Supporting data from the version control Server, 
preferably over a computer network. Then, this computer 
compiles the Software and data for run time operation on the 
Specific target platform, and follows automation Scripts to 
assemble the materials into an installer process, preferably 
for CD-ROMs or internet installation (e.g., MindVision's 
VISE for the Macintosh, or InstallShield for Windows). 
Hypertext documentation for the Software is maintained, 
updated, and compiled in a cross-platform format, Such as 
bookmarked PDF files, preferably using automated docu 
ment authoring Software (e.g., Adobe's Frame Maker 
program). For each Supported platform, the application 
program, associated data, and documentation are included 
on the web or disk installers. Users preferably download or 
update their Software using the web internet installer; 
alternatively, a disk installer can be used locally on a 
computer or local area network. 
The automated Scoring Software maintains an audit trail of 

its actions, operation, and decisions as it processes the data 
according the steps of FIGS. 1 and 5. The data formats are 
kept operational for Specific platforms by automatically 
checking and transforming certain files (e.g., text 
representations) prior to the programs using these files on 
that platform. The data format permits multiple instrument 
data acquisition runs (e.g., gel or capillary loadings) to be 
processed together in a Single computer analysis run. These 
Software features reduce human intervention and error. 

User feedback on the program's operation is preferably 
entered at a designated web site onto a reporting HTML 
form that includes expected and observed program behavior. 
Via CGI Sripts, these reports are automatically logged onto 
a database (e.g., FileMaker Pro on a Macintosh over a local 
area network), and appropriate personnel may be automati 
cally notified via email of potential problems. 
Business considerations 
The automated quality maintenance System described 

herein for generating and analyzing DNA fragment data has 
a nonobvious busineSS model. It is desirable for groups to 
generate and analyze their own data, Since the users of the 
data often have the greatest incentive to maintain data 
quality. Moreover, people involved in the data generation 
task require continual feedback from the data analysis 
results. By generating data that includes proper calibration 
reference standards (e.g., internal size Standards, allelic 
ladders, reference traces, etc.), high quality data can be 
automatically analyzed in ways that lower quality data 
Cannot. 

The cost of manual Scoring of data is quite high. The 
preferred busineSS model includes a spreadsheet that permits 
an end-user to calculate their labor costs. Referring to FIG. 
13, a prospective or current customer can enter parameters 
related to the cost of labor, the data generation throughput, 
and how effectively the labor force analyzes the generated 
data. From these factors, the Spreadsheet can calculate the 
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total labor cost, as well as the labor cost per experiment, for 
the Specific customer requirements. This calculating tool is 
preferably made available to customers in Spreadsheet form 
(e.g., as a platform-independent Microsoft Excel 98 
spreadsheet) as a computer file that can be distributed on 
disk, Via email attachment, or downloadable from the inter 
net. In a complementary embodiment, the spreadsheet func 
tionality can be provided as an interative form on a web 
page. By better understanding the labor costs of data 
Scoring, a customer can develop insight into the role of 
quality data and automated computer-based data Scoring as 
a direct replacement for labor. 

Error is another significant cost in the human Scoring of 
genetic data. In genetics, error Severely compromises the 
power of linkage and other association measures, So that 
despite considerable research time, cost, and effort, genes 
are less likely to be discovered. In forensics, error can lead 
to incorrect identification of Suspects, failed convictions of 
criminals, or failure in exonerating the innocent. Thus, 
methods that reduce error or improve data quality confer 
Significant advantages to the user. 

Since automated computer-based Scoring of DNA sizing 
data is equivalent to human labor that performs the same 
task, the pricing model of Such automated Scoring is pref 
erably based on usage. A fee is charged for every genotype 
Scored. This fee preferably includes components for intel 
lectual property, Software Support, and user customizations. 
With very high levels of usage, Some components Such as 
user customization can be reduced in line with the associated 
business expense reduction. 

Forbetter market penetration, pricing levels should be set 
near or below the equivalent human labor cost. The result is 
an automated computer-based Scoring process that is faster, 
better and cheaper than the equivalent human review of data. 
Specifically, the computer-based proceSS can produce more 
consistent results with lower error, leading to more produc 
tive use of the Scored data. 

Additional Services (including user training, System setup, 
Software modifications, quality audits) are best charged 
Separately. Preferably, there is a mandatory initial interaction 
with the customer group (for which the user pays) to train 
new users in the quality data generation and computer-based 
analysis process. 

Quality assurance is an integral part of the proceSS and the 
business model. A quality entity (e.g., a corporation) can 
help Support this quality maintenance System (QMS). This 
entity can provide quality assurance by Spot checking the 
user's data generation or Scoring of the DNA fragment size 
data. This quality assurance can be done by (a) the entity 
providing the user with Samples (characterized by the entity) 
for data generation or analysis, and then comparing the 
user's results with the entity's results, (b) the user providing 
the entity with Samples (characterized by the user) for data 
generation or analysis, and then having the entity comparing 
the entity's results with the user's results, (c) a comparison 
of data results involving a third party, or (d) a double-blind 
comparison Study. 

The quality entity can use these quality assurance meth 
ods to conduct quality audits for different Sites, and dissemi 
nate the results (e.g., by internet publication). Then, different 
data generation sites can compete with one another for 
busineSS based on their quality and cost-effectiveness. 
Beyond a certain critical mass, it would be highly desirable 
for such DNA analysis sites to have certification provided by 
the quality entity on the basis of Such audits. Those Sites with 
the highest quality data and using the best automation 
Software should be the most competitive. The quality entity 
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can also provide a Service (e.g., at regular time intervals, say 
annually) for quality checks on sites that desire to achieve 
and maintain the best possible data results. 

This procedure describes a method for generating revenue 
from computer scoring of genetic data. The steps include: (a) 
Supplying a Software program that automatically Scores 
genetic data; (b) forming genetic data that can be Scored by 
the Software program; (c) scoring the genetic data using the 
Software program to form a quantity of genetic data; and (d) 
generating a revenue from computer Scoring of genetic data 
that is related to the quantity. Moreover, additional process 
Steps include: (e) defining a labor cost of Scoring the quantity 
of genetic data when not using the Software program, (f) 
providing a calculating mechanism for estimating the labor 
cost from the quantity; (g) determining the labor cost based 
on the quantity; and (h) establishing a price for using the 
Software program that is related to the labor cost. 
Mixture Analysis 

In forensic science, DNA samples are often derived from 
more than one individual. With the advent of quantitative 
analysis of STR data, there is the possibility of computer 
based analysis that can resolve these data. Specifically, there 
is a need to find or confirm the identity of component DNA 
profiles, as well as determine mixture ratios. In the preferred 
embodiment, the quantitation of the DNA samples is accom 
plished by performing Steps 1-6 of FIG. 1, and Steps 7-9 of 
FIG. 5. The accurate quantitation conducted in Step 9 
enables accurate analysis of quantitative mixture data, and 
improves on the prior art that uses unmodeled peak area or 
peak height (GeneScan Software, PE Biosystems, Foster 
City, Calif.) which provide potentially inaccurate estimates 
of DNA concentration. The invention's quantitative mixture 
analysis is part of Step 10 of FIG. 5 in the case of DNA 
mixtures. 
The present invention is distinguished over the prior art in 

that it uses a linear mathematical problem Solving formula 
tion that combines information acroSS loci, and can com 
pletely integrate this information automatically on a com 
puting device. By inherently using all the information from 
all the loci in the formulation, robust solutions can be 
achieved. The prior art uses manual or Bayesian methods on 
a per locus basis that entail human intervention in generating 
or combining partial results. Such prior forensic mixture 
analysis methods have been described (PGill, R Sparkes, R 
Pinchin, T M Clayton, J P Whitaker, and J Buckleton, 
“Interpreting simple STR mixtures using allele peak area, 
Forensic Sci. Int., vol. 91, pp. 41–53, 1998; IW Evett, P Gill, 
and J A Lambert, “Taking account of peak areas when 
interpreting mixed DNA profiles,” J. Forensic Sci., vol. 43, 
pp. 62-69, 1997; T M Clayton, JPWhitaker, R Sparkes, and 
R Gill, “Analysis and interpretation of mixed forensic Stains 
using DNA STR profiling.” Forensic Sci. Int., vol. 91, pp. 
55-70, 1998), incorporated by reference. 

There are different formulations of the mixture problem. 
With a mixture profile derived from two individuals, prob 
lems include: 

Verifying the mixture and computing the mixture ratio, 
given the profiles of both individuals; 

determining the profile of one individual and the mixture 
ratio, given the profile of another individual; and 

determining the profiles of both individuals and the mix 
ture ratio, given no other DNA profiles. 

These problems can be similarly extended to a number of 
individuals greater than two. The STR mixture method 
described herein addresses all of these problem formula 
tions. 

In the PCR amplification of a mixture, the amount of each 
PCR product Scales in rough proportion to relative weight 
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ing of each component DNA template. This holds true 
whether the PCRs are done separately, or combined in a 
multiplex reaction. Thus, if two DNA samples A and B are 
in a PCR mixture with relative concentrations weighted as 
wA and wb (0s wAwBs1, WA+wB=1), their correspond 
ing Signal peaks after detection will generally have peak 
quantitations (height or area) showing roughly the same 
proportion. Therefore, by observing the relative peak 
proportions, one can estimate the DNA mixture weighting. 
Note that mixture weights and ratios are interchangeable, 
Since the 

mixture weight is in one-to-one corresponce with the 
A + B 

A 
mixture ratO 

B 

To mathematically represent the linear effect of the DNA 
Sample weights (WA, WB, wC, . . . ), write the linear 
equation: 

where p is the pooled profile column vector, each columni 
of genotype matrix G represents the alleles in the genotype 
of individual i (taking allele values 0, 1, 2, with a total of 2 
alleles), and w is the weight column vector that reflects the 
relative proportions of template DNA or PCR product. To 
illustrate this coupling of DNA mixture weights with pre 
dicted pool weights, if there are three individuals A, B, C 
represented in a mixture with weighting wA=0.5, wb=0.25, 
wC=0.25, and at one locus the genotypes are: 
A has allele 1 and allele 2, 
B has allele 1 and allele 3, and 
C has allele 2 and allele 3, 

then combining the vectors via the linear equations: 

alleles alleles TT alleles Talleles wA 

in of of of X wiB 

mixture A B C C 

and representing each allele as a position in a column vector, 
produces the linear relationship: 

0.75 1 10 0.50 

0.75 - 1 1 x 0.25 

0.50 O || 1 || 1 0.25 

Note that the Sum of alleles in each allele column vector is 
normalized to equal two, the number of alleles present. 

With multiple loci, the weight vector w is identical across 
all the loci, since that is the underlying mixture in the DNA 
template. This coupling of loci can be represented in the 
linear equations by extending the column vectors p and G 
with more allele information for additional loci. To illustrate 
this coupling of DNA mixture weights acroSS loci, add a 
Second locus to the three individuals above, where at locus 
two the genotypes are: 
A has allele 1 and allele 2, 
B has allele 2 and allele 3, and 
C has allele 3 and allele 4, 
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then combining the vectors via the partitioning: 

locus1 locus1 i? locus 1 locus 1 

mixture A's B's C's 

alleles alleles alleles alleles wA 

- - - - --- --- X wiB 

locus2 locus2 locus2 locus2 C 

mixture A's B's C's 

alleles alleles alleles alleles 

and representing each allele as a position in a column vector, 
produces: 

0.75 

0.75 

0.50 

0.50 X 

0.75 

0.50 

0.25 

0.50 

0.25 

0.25 

With multiple loci, there is more data and greater confidence 
in estimates computed from the linear equations. 
More precisely, write the vector/matrix equation p=Gxw 

for mixture coupling (of individual and loci) as coupled 
linear equations that include the relevant data: 

PiX. giik Wii, 
i 

where for locus i, individual j, and allele k 
P is the pooled proportion in the observed mixture of 

locus i, allele k, 
g is the genotype of individual j at locus i in allele k, 

taking values 0 (no contribution), 1 (heterozyote or 
hemizygote contribution), or 2 (homozygote 
contribution), though with anomalous chromosomes 
other integer values are possible; and 

w, is the weighting in the mixture of individual j. 
Given partial information about equation p=GXW, other 

elements can be computed by Solving the equation. Cases 
include: 

When G and w are both known, then the data profile p can 
be predicted. This is useful in Search algorithms. 

When G and pare both known, then the weights w can be 
computed. This is useful in confirming a Suspected 
mixture, and in Search algorithms. 

When p is known, inferences can be made about G and W, 
depending on the prior information available (Such as 
partial knowledge of G). This is useful in human 
identification applications. 

The DNA mixture is resolved in different ways, depending 
on the case. 
ASSume throughout that the mixture profile data vector p 

has been normalized for each locus. That is, for each locus, 
let NumAlleles be the number of alleles found in data for 
that locus (typically Numalleles=2, one for each 
chromosome). For each allele element of the quantitation 
data within the locus, multiply by Numalleles, and divide 
by the sum (over the alleles) of all the quantitation values for 
that locus. Then, the Sum of the normalized quantitation data 
is Numalleles, as in the illustrative example above. 
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To resolve DNA mixtures, perform the steps: (a) obtain 
DNA profile data that include a mixed sample; (b) represent 
the data in a linear equation; (c) derive a Solution from the 
linear equation; and (d) resolve the DNA mixture from the 
Solution. This procedure is illustrated in the following cases. 

First consider the case where all the genotypes G and the 
mixture data pare known, and the mixture weights w need 
to be determined. This problem is resolved by solving the 
linear equations p=Gxw for w using SVD or some other 
matrix inversion method. Specifically, w can be estimated 
S. 

using the SVD matrix division operation in MATLAB. 
Next consider the case of two individuals A and B where 

one of the two genotypes (say, A) is known, the mixture 
weights w are known, and the quantitative mixture data 
profile p is available. Expand p=GXW in this case as: 

where gA and g3 are the genotype column vectors of 
individuals A and B, and WA and wb=(1-WA) are their 
mixture weights. Then, to resolve the genotype, rewrite this 
equation as 

and Solve for g3 by matrix operations. The computed g3 is 
the normalized difference of the mixture profile minus A's 
genotype. The accuracy of the Solution increases with the 
number of loci used, and the quality of the quantitative data. 

Next consider the case of making inferences about the 
genotype matrix G Starting from a mixture profile p. This 
case has utility in forensic Science. In one typical Scenario, 
a stain from a crime Scene may contain a DNA mixture from 
the victim and an unknown individual, the victim's DNA is 
available, and the investigator would like to connect the 
unknown individual's DNA profile with a candidate perpe 
trator. This Scenario typically occurs in rape cases. The 
perpetrator may be a Specific Suspect, or the investigator 
may wish to check the unknown individual's DNA profile 
against a DNA database of possible candidates. If the 
mixture weight WA were known, then the genotype g3 could 
be computed immediately from the matrix difference opera 
tion of the preceding paragraph. 

Since WA is not known, a workable approach is to Search 
for the best w in the 0,1 interval that satisfies additional 
constraints on the problem, Set WA equal to this best W, 
compute the genotype g(WA) as a function of this optimized 
wA value, and set g3=g(WA). A Suitable constraint is the 
prior knowledge of the form that possible Solution genotype 
vectors g can take. It is known that Solutions must have a 
valid genotype Subvector at each locus (e.g., having alleles 
taking on values 0, 1 or 2, and Summing to 2). This 
knowledge can be translated into a heuristic function of g(w) 
which evaluates each candidate genotype Solution g against 
this criterion. 

In the preferred embodiment, the heuristic is a function of 
W, the profile p, and the known genotype gA. Since p and gA 
are fixed for any given problem, in this case the function 
depends only on the variable W. For any given win (0,1), 
compute g(w) as (p-wgA)/(1-w). Then, at each locus, 
compute and record the deviation devi (g(w)). The dev 

function at one locus is defined as: ioctas 

ASSume the genotype comprises one allele. Compute the 
deviation by finding the index of the largest peak, and 
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38 
forming a vector oneallele that has the value 2 at this 
index and is 0 elsewhere. Let dev1 be the L norm of 
the difference between g(w) and oneallele. 

ASSume the genotype comprises two alleles. Compute the 
deviation by finding the index of the two largest peaks, 
and forming a vector twoallele that has the value 1 at 
each of these two indices and is 0 elsewhere. Let dev2 
be the L norm of the difference between g(w) and 
twoallele. 

Return the the lesser of the two deviations as minimum 
(dev1, dev2). 

To compute dev(g(w)), Sum the component devi(g(w)) at 
each locus. That is, the heuristic function is the Scalar value 

dev(g(w) =X devels (g(w)) 
loci 

Appropriately optimize (e.g., minimize) this function over w 
in 0,1 to find wb, and determine gB as g(wb). In one 
alternative preferred embodiment, the Summation terms can 
be normalized to reflect alternative preferred weightings of 
the loci or alleles. In a different alternative preferred 
embodiment, various heuristic functions can be used that 
reflect other reasonable constraints on it the genotype 
vectors, as in (PGill, R Sparkes, R Pinchin, T M Clayton, J 
P Whitaker, and J Buckleton, “Interpreting simple STR 
mixtures using allele peak area,” Forensic Sci. Int., Vol. 91, 
pp. 41-53, 1998), incorporated by reference. 

Referring to Step 10 of FIG. 5, further quality assessment 
can be performed on the computed STR profile derived from 
the mixture analysis. AS described, rule checking can iden 
tify potentially anomalous allele calls, particularly when 
peak quantities or sizes do not conform to expectations. 
Quality measures can be computed on the genotypes, which 
can indicate problematic calls even when no rule has fired. 
One preferred quality Score in mixture analysis is the 
deviation dev(gb) of the computed genotype. Low devia 
tions indicate a good result, whereas high Scores Suggest a 
poor result. These deviations are best interpreted when 
Scaled relative to a set of calibration data which have been 
classified as correct or incorrect. Of particular utility is the 
partitioning of the deviations by locus, using the locus 
deviation function devi(gB). When a locus has an unusu 
ally high deviation, it can be dropped from the profile, and 
the resulting partial profile can be used for human identity 
matching. 
The most preferred embodiment is demonstrated here on 

data generated using the 10 STR locus SGMplus panel (PE 
BioSystems, Foster City, Calif.), and size separated and 
detected on an ABI/310 genetic analyzer Sequencing instru 
ment. A mixture proportion of 30% sample A and 70% 
sample B was used. Referring to FIG. 14, a minimization 
Search for weight W by computing dev(g(w)) gave a weight 
ing of 29.73%, which is very close to the true 30%. The L. 
deviation dev(g(w)) of the computed genotype from the 
closest (and correct) feasible solution was 0.3199. The 
computed genotype for all the loci is shown in the columns 
PROFILE (exact) and GENO B (rounded) in the table 
below. 

Data and results are shown in the table below, where 
MIXTURE is the normalized peak quantitation data from 
the mixed sample, GENO A is the known genotype of 
individual A, PROFILE is the numerical genotype computed 
for determining B's genotype, GENO B is the resulting 
integer genotype (and, in this case, the known genotype as 
well), and DEVS are the square deviations of the PROFILE 
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from GENO B. Quality assessment of the computed PRO 
FILE shows uniform peaks that are consistent with a correct 
genotype. Examination of the Square deviation components 
for each allele reveals no significant problem, and the largest 
within locus Sum of Squares deviation was the Small value 
0.16 (for locus D21S11). 

LOCUS- MDX 
ALLELE TURE GENO A PROFILE GENO B DEVS 

D3S1358-14 1.0365 OOOO 1.052O 1.OOOO O.OO27 
D3S1358-15 O.9635 OOOO O.948O 1.OOOO O.OO27 
wWA-17 14755 O 2.O999 2.OOOO O.O1OO 
wWA-18 O.5245 2.OOOO -O.O999 O O.O1OO 
D16S539-11 1.4452 O 2.0567 2.OOOO O.OO32 
D16S539-13 O.2889 OOOO -O.O12O O O.OOO1 
D16S539-14 O.2660 OOOO -O.O447 O O.OO2O 
D2S1338-16 O.3190 OOOO O.O3O8 O O.OO10 
D2S1338-18 O.6339 O O.9021 OOOO O.OO96 
D2S1338-2O O.3713 OOOO O.1052 O O.O111 
D2S1338-21 0.6758 O O.9618 OOOO O.OO15 
D8S1179-9 O.7279 O 1.0359 OOOO O.OO13 
D8S1179-12 O.2749 OOOO -O.O32O O O.OO10 
D8S1179-13 O6813 O O.9696 OOOO O.OOO9 
D8S1179-14 O3160 OOOO O.O265 O O.OOO7 
D21S11-27 O.2787 OOOO -0.0265 O O.OOO7 
D21S11-29 O.7876 O 1.1208 OOOO O.O146 
D21S11-30 O.9337 OOOO O.9057 OOOO O.OO89 
D18S51-12 O3443 OOOO O.O669 O O.OO45 
D18S51-13 O.6952 O O.9894 OOOO O.OOO1 
D18S51-14 0.6755 O O.9613 OOOO O.OO15 
D18S51-17 O.28SO OOOO -O.O176 O O.OOO3 
D19S433-12.2 O.6991 O O.9949 OOOO OOOOO 
D19S433-14 O6060 2.OOOO O.O161 O O.OOO3 
D19S433-15 O.6949 O O.9890 OOOO O.OOO1 
THO1-6 O.3178 OOOO O.O291 O O.OOO8 
THO1-7 1.OO74 OOOO 1.O105 OOOO O.OOO1 
THO1-9 O.6749 O O.9605 OOOO OOO16 
FGA-19 1.058O OOOO 1.0826 OOOO O.OO68 
FGA-24 O.2830 OOOO -O.O2O3 O OOOO4 
FGA-25.2 O.6589 O O.9378 OOOO O.OO39 

In an alternative preferred embodiment, the heuristic 
function can be extended to account for the curvature of 
deviations (as a function of w), so that only local minima are 
considered and not boundary points. Genotype elimination 
constraints can be applied when there is extra knowledge, 
Such when the mixture weight (hence proportion of Sample 
B) is low and Sample A's genotype can be excluded in 
certain cases. It is also possible to provide for interactive 
human feedback, So that expert assessments can work 
together with the computing method. 
When Stutter peaks are a concern, use Stutter deconvolu 

tion to mathematically remove the stutter artifact from the 
quantitative signal (M W Perlin, G Lancia, and S-K Ng, 
“Toward fully automated genotyping: genotyping microSat 
ellite markers by deconvolution,” Am. J. Hum. Genet., vol. 
57, no. 5, pp. 1199-1210, 1995), incorporated by reference. 
The prior forensic art uses Bayesian approaches to account 
for stutter (P Gill, R Sparkes, and J S Buckleton, “Interpre 
tation of Simple mixtures when artefacts Such as Stutters are 
present-with Special reference to multipleX STRS using by 
the Forensic Science Service,” Forensic Sci. Int., vol. 95, pp. 
213-224, 1998), incorporated by reference. However, direct 
Stutter removal from the Signal can be highly robust, Since 
it is working directly at the level of the Stutter artifact, prior 
to any mixture computation. 

In the case when both genotypes are unknown, use 
additional Search. Start from the linear equations p=GXW. AS 
necessary, form feasible Submatrices H(locus) of G, where 
each H is an Kx2 matrix, representing Kalleles (rows) for 
2 individuals (columns). Here, H={g}, where locus i is 
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fixed, individual je 1,2}, and allele ke 1, 2, . . . , K}. For 
example, the Six feasible four allele (K=4) genotype pairs 
are represented by the six genotype matrices {Hi=1,2,..., 

8* 32 1 0 1 0 1 0 1 0 1 0 1 0 1 

8- 2 - 22 1 O 0 1 0 1 1 0 1 0 O 1 
H = 6 

3-13 9-23 O 1 1 0 || 0 1 1 0 || 0 1 1 O 

814 3 24 O 1 || || 0 1 1 0 || || 0 1 1 0 1 0 

Matrix division (e.g., SVD) is performed using these H 
Submatrices. The mixture profile data at each individual 
locus p(locus) is also used. Proceed as follows: 

1. Normalize the mixture data p to Sum to 2 at each locus. 
2. Find the best two element weighting vector w. On the 

Subset of most informative loci (typically those loci 
having four allele loci): 
For each locus, 

For every valid genotype Submatrix H at that locus, 
compute w(locus,H)=p(locus)\H 
normalize w(locus,H) to Sum to 1 
Set dev(locus.H) to norm{p(locus)-Hxw(locus, 
H)} 

Set ww(locus.H) having the smallest dev(locus,H). 
3. Derive the genotype H of each locus as follows: 

For every valid genotype matrix H at that locus, 
compute dev(H)=norm{p(locus)-HXw' 

Set H(locus) to that H, having the Smallest dev(H). 
4. ASSeSS the quality of the genotype result G formed by 

combining the H(locus) at each locus. This is pref 
erably done by: 
(a) using the matrix operation wiG\p to estimate a 

Second mixture weight W, and comparing with the 
first w found in Step 2, or 

(b) by examining the computed deviations dev(H 
(locus)) found in Step 3. 

Note that the operation “w(locus.H)=p(locus)\H” in this 
procedure for computing the best weight uses a matrix 
operation (i.e., matrix division). This procedure is preferable 
to finding w by minimizing norm{p(locus)-Hxw(locus,H)} 
over W using brute force computation. 

Herein, means or mechanism for language has been used. 
The presence of means is pursuant to 35 U.S.C. S112 
paragraph and is Subject thereto. The presence of mechanism 
is outside of 35 U.S.C. S 112 and is not Herein, means or 
mechanism for language has been used. The presence of 
means is pursuant to 35 U.S.C. S 112 paragraph and is 
subject thereto. The presence of mechanism is outside of 35 
U.S.C. S 112 and is not subject thereto. 

Although the invention has been described in detail in the 
foregoing embodiments for the purpose of illustration, it is 
to be understood that Such detail is Solely for that purpose 
and that variations can be made therein by those skilled in 
the art without departing from the Spirit and Scope of the 
invention except as it may be described by the following 
claims. 
What is claimed is: 
1. A method for analyzing a DNA mixture comprised of 

the Steps: 
(a) obtaining DNA profile data of a sample that comprises 

a DNA mixture of two or more individuals; 
(b) representing the data and a genotype of the individuals 

contained in the DNA mixture in a Set of linear equa 
tions, 

(c) deriving a mathematical Solution by performing a 
matrix operation on the linear equations, and 
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(d) determining the genotype at a locus of an individual 
contained in the DNA mixture from the mathematical 
Solution. 

2. A method as described in claim 1 wherein the obtaining 
step (a) includes the step of performing a PCR on an STR 
locus of an individual. 

3. A method as described in claim 1 wherein the repre 
Senting step (b) includes a matrix or vector representation of 
the Set of linear equations. 

4. A method as described in claim 3 wherein the matrix 
representation has a term that includes a matrix multiplica 
tion of a genotype matrix and a weight matrix. 

5. A method as described in claim 1 wherein the deriving 
Step (c) includes an optimization procedure. 

6. A method as described in claim 5 wherein the optimi 
Zation procedure includes a minimization Step. 

7. A method as described in claim 5 wherein the optimi 
Zation procedure includes an arithmetic operation. 

8. A method as described in claim 1 wherein the deter 
mining step (d) produces an estimate of the genotype of an 
individual. 
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9. A method as described in claim 8 wherein after the 

determining step (d), the estimated genotype is matched 
against a Suspect genotype. 

10. A method as described in claim 9 wherein the suspect 
genotype is drawn from a database of candidate Suspect 
genotypes. 

11. A method as described in claim 9 wherein the suspect 
is a likely perpetrator of a crime. 

12. A method as described in claim 1 wherein the deter 
mining step (d) produces an estimate of a proportion or 
weight of an individual's DNA contained in the DNA 
Structure. 

13. A method as described in claim 1 wherein the deter 
mining step (d) produces an estimate of the quality of the 
determined Solution. 

14. A method as described in claim 1 wherein the deter 
mining step (d) jointly produces both an estimate of a 
proportion or weight of an individual's DNA contained in 
the DNA mixture and an estimate of the genotype of the 
individual. 


