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(57) ABSTRACT 

The present invention pertains to a process for automatically 
analyzing mixed DNA samples. Specifically, the process 
comprises the Steps of obtaining a mixed DNA sample; 
amplifying the DNA sample to produce a product; detecting 
the product to produce a signal; and analyzing the Signal to 
determine information about the composition of the mixed 
DNA sample. This DNA mixture analysis is useful for 
finding criminals and convicting them. This mixture analysis 
provides high quality estimates, and can determine geno 
types, mixture weights, and likelihood ratios. This analysis 
provides confidence measures in the results it computes, and 
generates reports and intuitive visualizations. The proceSS 
automates a tedious manual procedure, thereby reducing the 
cost, time, and effort involved in DNA forensic analysis. The 
System can greatly accelerate the rate of DNA crime analy 
sis, and be used to exonerate innocent people. 
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METHOD AND SYSTEM FOR DNA MIXTURE 
ANALYSIS 

FIELD OF THE INVENTION 

0001. The present invention pertains to a process for 
analyzing mixtures of DNA molecules. More specifically, 
the present invention is related to performing experiments 
that produce quantitative data, and then analyzing these data 
to characterize a DNA component of the mixture. The 
invention also pertains to systems related to this DNA 
mixture information. 

BACKGROUND OF THE INVENTION 

0002 With the advent of PCR-based STR typing sys 
tems, mixed Samples can be separated into their individual 
DNA profiles. Quantitative peak information can help in this 
analysis. However, despite Such advances, forensic mixture 
analysis Still remains a laborious art, with the high cost and 
effort often precluding timely reporting. 

0003. This invention describes a new automated 
approach to resolving forensic DNA mixtures. This “linear 
mixture analysis” (LMA) is a straightforward mathematical 
approach that can integrate all the quantitative PCR data into 
a single rapid computation. LMA has application to diverse 
mixture problems. AS demonstrated herein on laboratory 
STR data, LMA can assess the quality and utility of its 
Solutions. Such rapid and robust methods for computer 
based analysis of DNA mixtures are helpful in reducing 
crime. 

0004. In forensic science, DNA samples are often derived 
from more than one individual. In Such cases, key objectives 
include elucidating or confirming a mixed DNA sample's 
component DNA profiles, and determining the mixture 
ratios. Current manual qualitative peak analysis of mixed 
DNA samples is slow, tedious, and expensive. These diffi 
culties can generate considerable delay in the casework 
analysis of forensic DNA mixtures, underscored by the 
current USAbacklog comprised of over 100,000 unanalyzed 
rape kits. 
0005 Under appropriate data generation conditions, STR 
peak data can be quantitatively analyzed. Such quantitative 
approaches have spawned heuristic and computer-based 
methods that can potentially resolve these complex data. 
These prior art Statistical computer programs are limited in 
that they typically analyze each STR locus Separately, and 
may require human intervention when combining the locus 
results into a complete nonoptimized Solution (Clayton TM, 
Whitaker JP, Sparkes R, Gill P. Analysis and interpretation 
of mixed forensic stains using DNASTR profiling. Forensic 
Sci. Int. 1998;91:55-70; Evett I W. Gill P, Lambert J. A. 
Taking account of peak areas when interpreting mixed DNA 
profiles. J. Forensic Sci. 1998;43(1):62-69; Gill P, Sparkes 
R, Pinchin R, Clayton T M., Whitaker J. P. Buckleton J. 
Interpreting Simple STR mixtures using allele peak area. 
Forensic Sci. Int. 1998;91:41-53), incorporated by refer 
CCC. 

0006 The present invention includes a quantitative 
analysis method that describes the mixture problem as a 
linear matrix equation. One name for this novel DNA 
analysis approach is “Linear Mixture Analysis,” or “LMA'. 
Unlike previous methods, the mathematical LMA model 
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uses STR data from all the loci simultaneously for greater 
robustness. The linear mathematics permits rapid computer 
calculation, and provides a framework for Statistical analy 
Sis. An associated error analysis can measure the quality of 
the overall solution, as well as the utility of each contrib 
uting locus. 
0007. This specification details the generation of linear 
mixture data, novel methods of linear mixture analysis, a 
nonobvious mixture deconvolution technology for determin 
ing unknown mixture components, an associated error 
analysis, the computation of probability distributions, a Set 
of Statistical tests, useful bootstrap Simulation methods, user 
interfaces and data Visualization for communicating results, 
utility in forensic applications, and useful extensions of 
linear mixture analysis. 

SUMMARY OF THE INVENTION 

0008. The invention pertains to a method of analyzing a 
mixed DNA sample. The method is comprised of the steps 
of obtaining a mixed DNA sample. Then there is the step of 
amplifying the DNA sample to produce a product. Then 
there is the Step of detecting the product to produce a signal. 
Then there is the Step of analyzing the Signal to determine 
information about the composition of the mixed DNA 
Sample. 
0009. The invention also pertains to a method for finding 
Suspects. The method is comprised of the Steps of obtaining 
a Sample related to a crime wherein the Sample includes 
DNA from a plurality of individuals. Then there is the step 
of determining mathematically with a computing device a 
genotype related to an individual in the Sample. Then there 
is the Step of comparing the genotype with a database of 
genotypes to form a comparison. Then there is the Step of 
finding a likely Suspect from the database using the com 
parison. 

0010. The invention also pertains to a system for resolv 
ing a DNA mixture. The System comprises means for 
amplifying a DNA mixture, Said means producing amplified 
products. The System further comprises means for detecting 
the amplified products, Said means in communication with 
the amplified products, and producing Signals. The System 
further comprises means for quantifying the Signals that 
includes a computing device with memory, Said means in 
communication with the Signals, and producing DNA length 
and concentration estimates. The System further comprises 
means for automatically resolving a DNA mixture into one 
or more component genotypes, said means in communica 
tion with the estimates. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0011 FIG. 1 shows a representation of information in 
linear mixture analysis. 
0012 FIG. 2 shows (a) the relation between a data point 
and two genotypes, and (b) a specific perpendicular rela 
tionship and point. 

0013 FIG. 3 shows (a) the closest points to the search 
Space at the minimum Solution, and (b) a contradiction of 
minimality. 

0014 FIG. 4 shows (a) a highly confident three allele 
Solution at a locus, and (b) an ambiguous three allele 
Solution. 
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0015 FIG. 5 shows a four allele solution at a locus. 
0016 FIG. 6 shows minimization curves for different 
mixing weights. 

0017 FIG. 7 shows a mixture deconvolution solution. 
0018 FIG. 8 shows distributions from (a) a two 
unknown mixture problem and (b) a one unknown mixture 
problem. 

DESCRIPTION OF THE PREFERRED 
EMBODIMENT 

0019 Linear Mixture Data 
0020. A detailed description of the data generation and 
initial data analysis process has been given ("Method and 
System for DNA Analysis,” filed Feb. 15, 2000, having Ser. 
No. 09/504389), incorporated by reference. This section 
Summarizes the key StepS. 
0021 Step 1. Sample Extraction. The DNA is extracted 
from the sample (e.g., a forensic Stain). This is preferably 
done using Standard techniqueS Such as cell lysis followed 
by inorganic Solvent extraction, Such as phenol chloroform 
or Silica gel membranes. CheleX is another Standard extrac 
tion mechanism. Additional lysis and processing may be 
done for extracting sperm DNA. It is preferable to remove 
PCR inhibitors (e.g., divalent cations, proteins) so that the 
PCR amplification can proceed as linearly as possible. 
Additional clean up Steps, Such as microcon purification, 
may be helpful. See (Ausubel FM, Brent R, Kingston RE, 
Moore D D, Seidman J. G., Smith JA, et al., editors. Current 
Protocols in Molecular Biology. New York, N.Y.: John 
Wiley and Sons, 2001; Dracopoli NJ, Haines J. L., Korf BR, 
Morton C C, Seidman C E, Seidman J G, et al., editors. 
Current Protocols in Human Genetics. New York: John 
Wiley and Sons, 2001; QIAamp DNA Blood Kit, Qiagen, 
Valencia, Calif.; Microcon, Millipore, Bedford, Mass.), 
incorporated by reference. 
0022 Step 2. PCR Amplification. The extracted and 
purified DNA template is then PCR amplified using a 
preferably multiplexed primer Set. It is preferable to quan 
titate the DNA, and use the amount of DNA template (e.g., 
0.5 ng to 2 ng) recommended for use with the multiplex 
primer Set. However, limited Sample material or other cir 
cumstances may necessitate using Smaller or larger DNA 
amounts (e.g., 1 pg to 1 ug). In Such cases, the PCR 
conditions can be varied. For example, the number of PCR 
cycles can be increased with very low DNA quantities. With 
Small amounts of DNA (e.g., under 100 pg), SGMplus kit 
users have increased the cycle number from 28 to 34. It is 
preferable to use a high quality thermostable polymerase 
(e.g., AmpliTad Gold), along with a hot-start procedure to 
reduce spurious amplification. See (ProfilerPlus, Cofiler, 
SGM plus manuals, Applied Biosystems, Foster City, Calif.; 
PowerPlex kits, Promega, Madison, Wis.; Gill P, Whitaker J, 
Flaxman C, Brown N, Buckleton J. An investigation of the 
rigor of interpretation rules for STRs derived from less than 
100 pg of DNA. Forensic Sci Intl 2000, 112:17-40), incor 
porated by reference. 
0023 Step 3. Size Separation and Detection. Automated 
DNA sequencers combine fragment Separation and detec 
tion. Some older gel-based systems (e.g., Hitachi FM/BIO2) 
perform these operations in Separate Steps. An adequate 
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quantity and quality of run controls should be used, includ 
ing internal size Standards, allelic ladders, known positive 
controls, and negative controls. Preferably, the detector (e.g., 
fluorescent) exhibits a linear response over a large range, 
and an appropriate amount of PCR product is loaded into the 
System to work within this linear range, thereby avoiding 
low Signal to noise or Saturation of the detector. The detect 
ing step produces data files collected from detected PCR 
product signals. See (ABI/310, ABI/377, ABI/3700 user 
manuals, Applied Biosystems, Foster City, Calif.; FM/BIO2 
user manual, Hitachi Software, South San Francisco, Calif.; 
MegaBACE 1000 user manual, Molecular Dynamics, 
Sunnyvale, Calif.; SCE/9610 user manual, SpectruMedix, 
State College, Pa.), incorporated by reference. 
0024) Step 4. Image and Signal Analysis. Baseline 
removal and color Separation are performed on the detected 
Signals. This produces Signals in each dye that are not 
corrupted by peaks from Spectrally overlapping dyes. On gel 
images, lane tracking is performed to identify the one 
dimesional profiles. On both gel and capillary Systems, the 
internal Size Standards are tracked, and then used to map 
pixel location into an estimate of DNA fragment size. The 
sized signal information is then recorded for further analysis. 
See (GeneScan user manual, Applied BioSystems, Foster 
City, Calif.; FM/BIO2 user manual, Hitachi Software, South 
San Francisco, Calif.; True Allele user manual, Cybergenet 
ics, Pittsburgh, Pa.), incorporated by reference. 

0025 Step 5. Quantitation and Allelic Analysis. The data 
signals are compared with the allelic ladder signals; prefer 
ably, these signals are in size coordinates. The relevant 
allelic peaks of each marker are then precisely sized to 
determine the allele, and possibly other information (e.g., 
Size deviation, allelic designation, genotype). The allelic 
peaks are quantified to estimate their relative DNA concen 
tration; this can be done using peak height (or area) taken 
from the signal peak or its modeled function. See (Geno 
typer user manual, Applied BioSystems, Foster City, Calif.; 
STRcall user manual, Hitachi Software, South San Fran 
cisco, Calif.; True Allele user manual, Cybergenetics, Pitts 
burgh, Pa.; Ng, S. -K., Automating computational molecular 
genetics: Solving the microSatellite genotyping problem, 
Computer Science Dept, 1998, Carnegie Mellon Univer 
sity), incorporated by reference. 

0026 Step 6. PCR Artifact Removal. It is preferable 
(although not required) to remove PCR amplification arti 
facts prior to quantitative mixture analysis. PCR Stutter can 
be removed from a locus by calibrating the allele Stutter 
patterns on related Samples from a laboratory, and then 
mathematically removing (or attenuating) the Stutter from 
the examined Sample. Relative amplification of alleles 
within a locus (also termed preferential amplification or 
heterozygote imbalanc) can be adjusted for by calibrating 
the imbalance on related Samples from a laboratory, and then 
mathematically adjusting allele balance from the examined 
sample. See (Martens, H. and T. Naes, Multivariate Cali 
bration 1992, New York: John Wiley & Sons 438; Ng, S.-K., 
Automating computational molecular genetics: Solving the 
microSatellite genotyping problem, in Computer Science. 
1998, Carnegie Mellon University; Perlin, M. W., et al., 
Rapid construction of integrated maps using inner product 
mapping: YAC coverage of human chromosome 11 Genom 
ics, 1995. 28(2): p. 315-327), incorporated by reference. 
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0027. The quantified allelic peaks of the PCR amplified 
Sample at a locus behave linearly over a wide range of 
parameters. Specifically, the relative DNA concentrations at 
a locus (adjusting for PCR Stutter and relative amplification) 
are proportional to the relative amounts of DNA allele 
template present. This physical phenomenon is a fact of 
nature. Poor PCR conditions can induce nonlinear behavior. 
It is therefore preferable to use optimal DNA template, 
enzyme, multiplex primers, and other high quality PCR 
amplification elements. 

0028 Linear Mixture Model 

0029) Linear Model 

0.030. In the PCR amplification of a mixture, the amount 
of each PCR product Scales in rough proportion to the 
relative weighting of each component DNA template. This 
holds true whether the PCRs are done separately, or com 
bined in a multiplex reaction. Thus, if two DNA samples A 
and B are in a PCR mixture with relative concentrations 

weighted as WA and wb (0swAs 1,0s wbs 1, WA+wB= 
1), their corresponding signal peaks after detection will 
generally have peak quantitations (height or area) showing 
roughly the same proportion. Therefore, by observing the 
relative peak proportions, one can estimate the DNA mixture 
weighting. Note that mixture weights and ratioS are inter 
changeable, Since the mixture weight 

0031) 
ratio 

is in one-to-one correspondence with the mixture 

A 
B 

0.032 To mathematically represent the linear effect of the 
DNA sample weights (WA, wb, wC, ...), combine all the 
locus data into a single linear matrix equation: 

d=Gw+e, 

0.033 which has expected value: 
d=Gw. 

0034. Here, column vector d describes the mixture pro 
file's peak quantitation data, matrix G represents the geno 
types (column j gives the alleles for individual j), and w is 
the weight column vector that reflects the relative propor 
tions of template DNA or PCR product. The quantitative 
data profile d is the product of genotype matrix G and the 
weight vector W. The more complete data description 
includes an error term e, while the error term is exploited 
later on, the expected value form is sufficient for the first 
parts of the discussion. 
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0035 More precisely, write the vector/matrix equation 
d=Gw for mixture coupling (of individuals and loci) as 
coupled linear equations that include the relevant data: 

dik = X. giik Wii, 
i 

0036 where for locus i, individual j, and allele k: 

0037 d is the allele k proportion in the observed 
mixture data at locus i; 

0038 g is the genotype of individual jat locus i in 
allele k, taking values 0 (no contribution), 1 (het 
erozyote or hemizygote contribution), or 2 (homozy 
gote contribution), though with anomalous chromo 
Somes other integer values are possible; and 

0039) w is the weighting in the mixture of indi 
vidual j's DNA proportion. 

0040 

0041. It is useful to motivate the use of vectors and 
matrices in modeling STR mixtures. This section provides 
extended illustrative examples. 

Illustrative Examples 

0042. The first example shows the coupling of DNA 
mixture weights with relative peak quantities. Suppose that 
there are three individuals A, B, C represented in a mixture, 
where 50% of the DNA is derived from individual A, 25% 
from individual B, and 25% from individual C. Mathemati 
cally, this corresponds to a weighting of wA=0.5, wb=0.25, 
and WC=0.25. Further Suppose that at one locus the geno 
types are: 

0043. A has allele 1 and allele 2, 

0044 B has allele 1 and allele 3, and 

0045 C has allele 2 and allele 3. 
0046) This information, and the predicted peak quanti 
ties, are laid out in FIG. 1. 

0047 Referring to FIG. 1, the relative data quantity is 
calculated for each allele at the locus as shown. For example, 
allele 1's relative data value of 0.75 is calculated from (a) the 
genotype values of <1, 1, 0- (i.e., the allele is <present, 
present, absent>) at allele 1 for individuals A, B, and C, and 
(b) the individuals' DNA mixture weight contributions of 
<0.50, 0.25, 0.25>. The computation is performed by com 
puting the inner product of these two vectors as (1x0.50)+ 
(1x0.25)+(0x0.25)=0.75. 
0048. The information in FIG. 1 can be connected via the 
linear vector/matrix equation: 

alleles alleles? alleles Talleles wA 

in of of of . B 

mixture A B C C 
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0049 Representing each allele as a position in a column 
vector, this forms the linear relationship: 

|-|| 
0050 which is the mathematical expression of Table 1. 
Note that the Sum of alleles in each allele column vector 
(whether mixture or individual) is normalized to equal two, 
the number of alleles present. 
0051. With multiple loci, the weight vector w is identical 
acroSS all the loci, Since that is the underlying chemical 
mixture in the DNA template. This coupling of loci can be 
represented in the linear equations by extending the column 
vectors d and G with more allele information for additional 
loci. 

0.052 To illustrate this coupling of DNA mixture weights 
acroSS multiple loci, next add a Second locus to the three 
individual mixture above. At locus two, Suppose that the 
genotypes are: 

0053 A has allele 1 and allele 2, 
0054 B has allele 2 and allele 3, and 
0055 C has allele 3 and allele 4. 

0056 Combine this vector information via the partitioned 
matrix equation: 

locus 1 locus i? locus i? locus 1 

mixture As BS CS 

alleles alleles alleles alleles wA 

- - - - --- --- . wb 

locus2 locus2 locus2 locus2 C 

mixture As BS CS 

alleles alleles alleles alleles 

0057 Representing each allele as a position in a column 
Vector: 

0.75 

0.75 

0.50 1 
0.50 

. 0.25 
0.50 

0.25 
0.75 

0.50 

0.25 

O 1 

0.058 Multiple loci produce more data and provide 
greater confidence in estimates computed from these linear 
equations. 

0059) Problem Formulations 
0060 Given partial information about equation d=Gw, 
other elements can be computed by Solving the equation. 
Cases include: 
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0061. When G and w are both known, then the data 
profile d can be predicted. This is useful in Search 
algorithms. 

0062) When G and d are both known, then the 
weights w can be computed. This is useful in con 
firming a Suspected mixture, and in Search algo 
rithms. 

0063. When d is known, inferences can be made 
about G and W, depending on the prior information 
available (Such as partial knowledge of G). This is 
useful in human identification applications. 

0064. The DNA mixture is resolved in different ways, 
depending on the case. 

0065. In the preferred embodiment, normalize the mix 
ture profile data vector d at each locus. That is, for each 
locus, let NumAlleles be the number of alleles found in an 
individual's genotype (typically Numalleles=2, one for 
each chromosome). For each allele element of the locus 
quantitation data, multiply by Numalleles, and divide by the 
Sum (over the observed alleles) of all the quantitation values 
for that locus. Then, the Sum of the normalized locus 
quantitation data is Numalleles, which totals 2 in the 
illustrative example above. 

0.066 Linear Mixture Analysis 

0067. A fundamental problem in DNA mixture analysis is 
determining the mixture weights (also termed proportions or 
ratios). This section focuses on the problem of how to 
compute the mixture weights, given the mixture data d, and 
the genotype Vectors of the J known contributors. 

0068 Resolving DNA mixtures using LMA entails (a) 
obtaining DNA profile data that include a mixed sample, (b) 
representing the data in a linear equation, (c) deriving a 
Solution from the linear equation, and (d) resolving the DNA 
mixture from the solution. The LMA approach is illustrated 
in the following problem formulations. 

0069. Geometric Perspective 

0070 The geometry of the linear model is usefully rep 
resented by the relations of the genotype Vectors in multi 
dimensional data Space. The genotypes are points that may 
be usefully defined as either the pure allele ({0,1,2} valued) 
vectors, or as the continuous real-valued data points gener 
ated by the PCR process (which may contain PCR stutter, 
relative amplification, and other artifacts). This geometric 
model can be used with any number of component geno 
types, and with any number of loci. The basis vectors of this 
Space are the relevant alleles, and points in the Space 
describe multiplex PCR measurements (preferably renor 
malized within each locus). A vector coordinate is the 
renormalized peak quantity (e.g., height, area) correspond 
ing to a relative estimate of DNA concentration for one 
allele. 

0071. In a “mixture combination', the real-valued non 
negative elements of the weighting vector W Sum to 1. That 
is, the points of W form a simplex. Define the Space of all 
possible genotype mixtures C(G) as the J-1 dimensional 
subspace of R' (K the number of alleles considered) gen 
erated by all mixture combinations Gw of the weighted 
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columns of G. For J different individuals, the elements of w 
lie in the J-1 dimensional simplex, so C(G) (with full G 
rank) is a J-1 dimensional Subspace. 
0.072 With J-2 contributors to the mixture, J-1 equals 1. 
Then, the three points (component genotypes a and b, and 
mixture data d) lie on a plane, and can be easily visualized 
(FIG. 2.a). The solution subspace Giw-abw of possible 
mixtures in this case is a line. This line describes all 
physically realizable linear mixtures of genotypes a and b, 
where the exact location is given by the mixture combina 
tion weight W. 
0073. The least squared error Solution to d=Gw--e mini 
mizes the length of the error Vectore. The minimum Solution 
e connects data point d to its perpendicular projection on the 
line formed by a and b (FIG. 2...b). This projection of d onto 
the Subspace C(G) generated by mixture combinations of the 
columns of G (i.e., a biw, for positive w Summing to 1) can 
be computed via the perpendicular projection operator P: 

0.074 Applying operator P to d produces the point Pd, the 
least Squares estimate Gwo. This projection can be gener 
alized to account for known covariance Structure. Perpen 
dicular projection operators and least Squares estimation are 
described in (Christensen, R., Plane Answers to Complex 
Questions: A Theory of Linear Models 1996, New York: 
Springer-Verlag), incorporated by reference. 
0075) Determining Mixture Weights 
0.076 Consider the case where all the genotypes G and 
the mixture data d are known, and the mixture weights W 
need to be determined. This problem is resolved by solving 
the linear equations d=Gw-i-e for W using a least Squares 
matrix division method. One standard method is linear 
regression (Seber GAF. Linear Regression Analysis. New 
York: John Wiley & Sons; 1977), incorporated by reference. 
Such computer implmentations often use Singular value 
decomposition (SVD) (Press W H, Teukolsky SA, Vetter 
ling WT, Flannery B P. Numerical Recipes in C: The Art of 
Scientific Computing. Second ed. Cambridge: Cambridge 
University Press; 1992), incorporated by reference. 
0077. In the MATLAB programming language, w can be 
estimated as: 

0078 using the built-in matrix division operation “\'. 
With full rank matrices, matrix multiplication via the normal 
equations computes the weights as: 

0079 A preferred embodiment for robustly determining 
the weight WA is using the projection operator Pd to Set the 
ratio to Pd-bl/a-b. This embodiment applies the con 
Straint that the weight factorS Sum to unity. 
0080. Others have computed mixture weights by mini 
mizing parameters at Single loci (Gill P, Sparkes R, Pinchin 
R, Clayton T M., Whitaker J P Buckleton J. Interpreting 
Simple STR mixtures using allele peak area. Forensic Sci. 
Int. 1998;91:41-53). In the LMA model, this early work can 
be reinterpreted as minimizing at a Single locus the Sum of 
Squares deviation|d-Gwif over w for each feasible integer 
valued genotype matrix G. This prior art has a limited 
Single-locus view of the data, which restricts the amount of 
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derivable useful information; there is no known way to 
combine the Separate Single locus partial Solutions into one 
global optimum. Moreover, Such prior art does not make 
Special use of the known reference genotypes, which contain 
much valuable information. LMA improves on Such earlier 
mixture methods by providing a mathematical basis that can 
use the data from all the loci Simultaneously in a rapid 
optimized numerically computed global minimization. 
Moreover, LMA permits the genotype matrix entries to 
assume any possible value, and not just integers. 
0081 Analogous mixture problems occur outside 
molecular biology, and are Similarly modeled using linear 
matrix equations. In chemometrics, the approach is termed 
“multivariate calibration” (MC) (Martens H, Naes T. Mul 
tivariate Calibration. New York: John Wiley & Sons; 1992), 
incorporated by reference. These MC methods are quite 
different than computing genotypes (and mixture weights) 
from the data. For example: 

0082 (1) MC finds real-valued solutions but geno 
types are whole numbers. MC finds solutions in a 
real-valued multi-dimensional Euclidean function 
space R. However, genotype Solutions lie in a 
subset of the integer-valued lattice in R*. 

0083) (2) Calibration exploits signal continuity 
whereas locus patterns contribute combinatorially. 
MC inversion methods exploit the continuity of 
close Solutions. 

0084. However, the genotype mixture problem instead 
has combinatorial Solutions, since each locus contributes its 
own Subsets of integer-constrained possibilities (i.e., allele 
combinations). 

0085 (3) MC methods rely on multiple samplings 
whereas (with limited forensic Samples) mixture data 
typically arise from a single multiplex PCR experi 
ment. MC typically uses multiple data objects (i.e., 
five or more spectra), and finds mixture Solutions via 
linear operators (e.g., inverse matrices). In this foren 
sic STR mixture problem, usually only a single data 
object (the DNA-limited multiplex PCR) is obtained, 
and different Search algorithms are required. 

0086 Therefore, novel methods are needed that are spe 
cifically tailored to the requirements of the STR mixture 
genotype data, as described next. 
0087 Mixture Deconvolution 
0088 Crime scene stains are typically comprised of J 
contributors, where J-1 are of known genotype, and 1 
genotype is unknown. For example, with J-2, in the mixture 
data d, the victim's genotype a is known, but the perpetra 
tor's genotype b is unknown. This is often the case in Sexual 
assault cases. If this unknown genotype b were determined, 
it could be used to match a specific Suspect, or to Search a 
DNA database of likely Suspects (e.g., convicted offenders) 
for a matching profile. Such a (relatively) unique b would 
greatly improve upon the current art, in which a large Set of 
non-unique candidate Suspect genotypes is generated. 
0089. Yet this problem is hard, and is as yet unsolved in 
the prior art. The reason for this is that the quantitative allele 
measurements for the Kalleles create a vast K-dimensional 
Search Space. For example, with just J-2 individuals, K 
ranges from about 50 to 100 dimensions for modern 10 to 15 
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locus multipleX STR experiments, assuming no Stutter 
removal (and about half that dimension when stutter is 
removed). K increases with marker panel size (e.g., with 
currently anticipated STR, SNP and other genetic markers), 
as well as with the number J of contributing individuals. 
Even when J-1 contributors are known, the unknown J" 
contributor can assume any one of a combinatorial number 
of genotypes drawn from possible allele Values in each of the 
K dimensions. For example, even restricting the possible 
alleles to the three values {0, 1, 2}, the number of solutions 
is 3', a rather large number which is approximately 10", 
or one trillion trillion trillion trillion possibilities. 
0090 Interestingly, there is a highly novel, useful, and 
nonobvious problem reduction. Given J-1 known contribu 
tors, the Search Space can be reduced to a Small, finite J-1 
dimensional Simplex. For example, with a two person (one 
known, one unknown) mixture, the problem reduces to 
Searching for a minimum on a line Segement (i.e., a small 
bounded continuous one dimensional interval). This Search 
can be done in under 0.1 Seconds using Standard minimiza 
tion procedures on an inexpensive personal computer. The 
prior art is limited to vast combinatorial Searches of discrete 
genotype possibilities that are intractable on even the most 
powerful computers. The current invention improves on this 
by changing the problem to a far simpler Search on a just few 
(i.e., J-1) bounded continous parameters; the genotype 
vectors are found incidently during the process. Unintu 
itively, the invention makes efficient use of increasing quan 
tities of data to improve the accuracy and confidence of the 
genotype estimate. 
0.091 This section describes the “mixture deconvolution” 
invention. Given the quantitative mixture data d, and J-1 
known contributing genotypes, the unknown contributor 
genotype b is automatically, accurately, and efficiently com 
puted. 

0092 Consider the case of Jindividuals, where J-1 of the 
J genotypes are known, the quantitative mixture data profile 
d is available, and the task is to find the unknown genotype 
b along with the mixture weighting W. This important 
problem is currently unsolved in the prior art. The inven 
tion's Solution is demonstrated here. 

0093. Determining Genotype Profiles 
0094 Consider first the special case where the mixture 
weights w known, and J-2. That is, there are two individuals 
A and B, one of the two genotypes (say, a) is known, the 
other individual's genotype (say, b) is not known, the 
mixture weighting w is known, and the quantitative mixture 
data profile d is available. 
0.095 Expand d=Gw--e in this case as: 

0.096 where a and b are the genotype column vectors of 
individuals A and B, and WA and wb=(1-WA) are their 
mixture weights. Then, to resolve the genotype, algebra 
ically rewrite this equation as: 

b=(d-wAb-e)/wB 
0097 or, equivalently, as: 

b(wA)=(d-wAgA)/(1-wA)-ef (1-wA) 

0098) and, taking expected values, obtain: 
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0099 and then solve for b by vector arithmetic. The 
computed b(WA) is the normalized difference of the mixture 
profile minus a fraction of A's genotype. The accuracy of the 
Solution increases with the number of loci used, and the 
quality of the quantitative data. Typically, however, the 
mixture weights w are not known. 
0100 Consider next the case where the mixture weights 
w are not known, with J-2, genotype a is known, but 
genotype b is not known. The goal is to make inferences 
about the genotype matrix G starting from a mixture data 
profile d. This case has practical applications for forensic 
Science. In one typical Scenario, a Stain from a crime Scene 
may contain a DNA mixture from the victim and an 
unknown individual, the victim's DNA is available, and the 
investigator would like to connect the unknown individual’s 
DNA profile with a candidate perpetrator. This scenario 
typically occurs in rape cases. The perpetrator may be a 
Specific Suspect, or the investigator may wish to check the 
unknown individual's DNA profile against a DNA database 
of possible candidates. If the mixture weight wa were 
known, then the genotype b could be computed immediately 
from the vector difference operation (with known weights) 
just described. 
0101 Minimization Algorithm 
0102 Since wa is not known, one workable approach is 
to search for the best weight w in the 0,1 interval that 
Satisfies additional constraints on the problem. By Setting 
WA equal to this best w, this computes the genotype g(WA) 
as a function of this optimized wA value, and derives 
b=g(WA). A Suitable constraint is the prior knowledge of the 
form that possible Solution genotype Vectors g can take. It is 
known that Solutions must have a valid genotype Subvector 
at each locus (e.g., having alleles taking on values 0, 1 or 2, 
and Summing to 2). One may also consider null alleles, 
corresponding to failed (or low copy number) PCR ampli 
fications. This knowledge can be translated into a heuristic 
function of bow) which evaluates each candidate genotype 
solution b against this criterion. The result of this “mixture 
deconvolution' algorithm is a computed genotype b and the 
mixture weights W. 

0103) The heuristic applied is a function of the unknown 
weight W, the observed data profile d, and the known 
genotype a. Since d and a are fixed for any given problem, 
in this case the function depends only on the optimization 
variable W. For any given win (0,1), compute the vector: 

So that 

0106) To minimize the error |elf, it suffices to minimize 
the expression: 

(1-w) b-b(w)’. 
0107 The primary issue is how to select the minimum 
distance to the correct genotype b at each value of W, So that 
it can be compared with vector b(w). 
0108 Compute and record the deviation dev(e(w)) as 
follows. The devel function at one locus is defined as: 
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0109 Assume the genotype comprises one 
homozgotic allele. Compute the deviation by finding 
the index of the largest peak, and forming a vector 
oneallele that has the value 2 at this index and is 0 
elsewhere. Let dev1 be the sum of squares difference 
between genotypes b(w) and oneallele. 

0110 Assume the genotype comprises two het 
erozygotic alleles. Compute the deviation by finding 
the index of the two largest peaks, and forming a 
vector twoallele that has the value 1 at each of these 
two indices and is 0 elsewhere. Let dev2 be the Sum 
of Squares difference between genotypes b(w) and 
twoallele. 

0111 Return the the lesser of the two deviations as 
the genotype difference, adjusted by the (1-w) Scal 
ing for the error term: (1-w) min(dev1, dev2). 

0112 To compute dev(e(w)), Sum the component deve 
cus(e(w)) at each locus. That is, the heuristic function is the 
Scalar value 

deve(w) =X device (e(w)). 
loci 

0113 Minimize this function over w in O.1 to find wa, 
and estimate b from the computed b(WA). If desired, the 
Summation terms can be normalized to reflect alternative 
Weightings of the loci or alleles, e.g., based on Variance. 
Other heuristic functions can be used that reflect reasonable 
constraints on the genotype Vectors (Gill P, Sparkes R, 
Pinchin R, Clayton T M. Whitaker JP, Buckleton J. Inter 
preting simple STR mixtures using allele peak area. Foren 
sic Sci. Int. 1998;91:41-53), incorporated by reference. 
0114) To assess the quality of the computed STR profile, 
use information from this minimization Search. Rule check 
ing can identify potentially anomalous allele calls, particu 
larly when peak quantities or sizes do not conform to 
expectations (Perlin M. Computer automation of STR scor 
ing for forensic databases. In: First International Conference 
on Forensic Human Identification in The Millennium; 1999; 
London, UK: The Forensic Science Service; 1999), incor 
porated by reference. Quality measures can be computed on 
the genotypes, which may Suggest problematic calls even 
when no rule has fired. A most useful quality Score in this 
mixture analysis is the deviation dev(e) of the computed 
genotype. Low deviations indicate a good result, whereas 
high Scores Suggest a poor result. It may be helpful to 
partition the deviations by locus, using the locus deviation 
function devi(e). When a locus has an unusually high 
deviation, it can be removed from the profile, and the 
resulting partial profile then used for human identity match 
Ing. 

0115) J Individuals, 1 Unknown 
0116. With Ja2 individuals and 1 unknown genotype, the 
data can similarly be resolved. With J-2 the mixture space 
(of weights or mixed genotypes) is parametrized by a one 
dimensional line. In general, with arbitrary individuals J the 
mixture Space is parametrized by a J-1 dimensional Simplex. 
0117 The search is conducted over the J-1 dimensional 
Simplex for weights w, . . . , W. That is, to define the 

Oct. 17, 2002 

J-vector W, J-1 weights are Selected So that w+...+W=1, 
and Osw;s 1, for all j. The continous genotype approxima 
tion points explored in the image of the J-1 dimensional 
Simplex weights are: 

0118 where (d-wa-. . 
matrix form as: 

W-a-) can be written in 

d–a1. . . a wi. . . w; 1. 
0119 Genotype b is the closest valid genotype to b(w), 
chosen by the fast devi(e(w)) functions defined above. 
With w defined as: 

the error vector e(w) is then: 

So the Squared error is computed as: 

0.122 One result of the search is the minimizing mixture 
weight wo. Another is the least Squared error vector e(wo) 
that extends from data point d into its perpendicular projec 
tion Pd. Point Pd resides within the genotype mixture 
Subspace C(G) (the image under G of the Simplex mixture 
weights), and is the closest point to d that lies in that 
Subspace. The Search also returns b, the closest valid geno 
type to b(wo). The definition of a “valid' genotype depends 
on the nature of the DNA template and the PCR experiment. 
0123 Minimization Method 
0.124. The minimization over the simplex can be per 
formed using most practical global Search algorithms. In the 
neighborhood of the correct Solution, the Search Space has 
parabolic shape. This Suggests using a Search algorithm that 
can exploit this feature. While virtually any robust search 
procedure will Successfully implement the required function 
minimization, a Straightforward algorithm is described. 
0125 Step 1. (Global) Parametrize the J-1 dimensional 
Simplex as a J-1 dimensional unit cube, Since W is just 
(1-w. . . w). Perform a global minimization by prefer 
ably partitioning the J-1 cube into n parts (e.g., n=2 to 1000, 
depending on the Search space) along each dimension, and 
then forming the n'' volume elements as the product space 
of the 1-D partitions. The partitioning can depend on the 
anticipated value of W. Compute the Squared error function 
|elf-w°b-b(w) at a point within each voxel. Record the 
Set of Smallest values and their points. 
0126 Step 2. (Local) Choose either Step 2a or Step 2b. 
Continue the search at the local level. 

0127 Step 2a. (Local iterative) Repeat the procedure at 
VOXel Sample points that appear to be potential minima, but 
focus in on Smaller Volumes around the point. 
0128 Step 2b. (Local search) Use a standard minimiza 
tion algorithm. For one dimensional Search, use golden 
Section Search, inverse parabolic interpolation, or Brent's 
method. In higher dimensions, use a general methods Such 
as Nelder-Mead simplex Search, or direction Set Search. 
There are many good local Search algorithms that work here 
(Forsythe, G. E., M. E. Malcolm, and C. B. Moler, Computer 
Methods for Mathematical Computations 1977, Englewood 
Cliffs, N.J. Prentice-Hall; Brent, Richard P, 1973, Algo 
rithms for Minimization without Derivatives, Prentice Hall, 
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Englewood Cliffs, N.J.; Press, W. H., et al., Numerical 
Recipes in C: The Art of Scientific Computing. Second ed 
1992, Cambridge: Cambridge University Press), incorpo 
rated by reference. 
0129. Correctness of Minimization 
0130. The mixture deconvolution method starts with 
mixture data from Jindividuals, and the known genotypes of 
J-1 individuals. The method determines the best estimate of 
the "genotype, along with the J mixing weights. In evalu 
ating the possible weighting values w, the method estimates 
b(w) and finds the closest b to this estimate. 
0131 Many different b's may be considered as the 
weights w vary during this proceSS. However, there is no 
orthogonality constraint (between b(w) and the C(G) Sub 
Space, with b a column of G) on Such closest candidate 
genotypes. Therefore, is not obvious that the correct b is ever 
chosen: might there be Some b' that is closer than the correct 
b to b(wo)? With an incorrect genotype b' cloaking the true 
b, the error would not be minimized and the correct weight 
Wo and genotype estimates b(wo) and b would not be found. 
0132 Background: Referring to geometry FIG. 3..a, there 
exists a genotype point b in R', Such that the simplicial 
Subspace C(a b) is the closest Subspace to d out of all 
possible C(a b.) choices. Let G=ab), and G=a b). For 
J=2, C(G) is the finite line Segment connecting points a and 
b; this line Segment represents all possible error-free mix 
tures of genotypes a and b. The perpendicular projection 
point Pd=Gwo is the closest mixture point to din C(G), or 
indeed in any mixture space C(G). The distance r=(I-P)d 
between points d and Pd is the minimal distance between d 
and any point in any C(G). 
0133) Assertion: At point b(wo), the minimization search 
method finds the genotype b corresponding to the minimal 
distance r. 

0134) Proof: Referring to FIG. 3...b, suppose that there 
exists ab' that is closer to b(wo) than is b. Then the angle dab' 
is less than angle dab. Hence the line C(ab') intersects the 
circle centered at d of radius r. Therefore there exists a 
mixture in C(ab') whose distance to d is less than r. But 
this violates the minimality assumption for r, and the asser 
tion is proved. Note that sin 0 provides a bijection between 
minimal angles and minimal distances. QED. 
0135) To extend the proof for arbitrary J, note that there 
exists a minimal r such that for Some genotype matrix G=a 
a a b), the perpendicular projection operator Pd is 
closest to data point d. The J points {a, a . . . ab form 
a J-1 dimensional Simplex which is orthogonal to the error 
vector e(wo)=(P-I)d of length r. As with the J=2 case, there 
is a J-1 dimensional sphere centered at d of radius r, and 
another centered at b(wo) of radius r?w. By a minimality 
argument of lines, distances, and angles Similar to one 
presented for the J-2 case, but using the interior of the 
Spheres instead those of the circles, there can exist no b' 
closer than b to b(wo). Therefore, regardless of the number 
of contributors J, the minimum weights Wo and genotype 
vector b are found via the b(wo) search of the simplex 
domain. 

0136) Error Analysis 
0.137 Variances are calculated from the linear model 
d=GW--e, together with the global minimal Solution 
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Pd=Gwo. Note that the error vector e can be computed as 
(I-P)d. The variances can be computed from the data using 
Standard linear regression methods (Christensen, R., Plane 
Answers to Complex Questions: A Theory of Linear Models 
1996, New York: Springer-Verlag; Martens, H. and T. Naes, 
Multivariate Calibration. 1992, New York: John Wiley & 
Sons 438; Seber, G. A. F., Linear Regression Analysis 1977, 
New York: John Wiley & Sons), incorporated by reference. 
When genotype Vectors are computed from the data, as in 
mixture deconvolution, the computed genotypes can be 
usefully viewed as parameters of the model, than as fixed 
components of the design matrix G. 

0138 Estimating the variance of of the data d. With K 
allele measurements, and J individuals, G is a KXJ design 
matrix (of rankJ), and Ed=G.W. ASSuming (for now) equal 
variances in each component of the observed quantitative 
data, the dispersion of the data is given by DId=Oflk. Then 
an unbiased estimate of the variance O’ is the sample 
variance S. 

0.139 where RSS is the “residual sum of squares', and 
dof is the “degrees of freedom”. Typically in linear model 
ing, dof-K-J. However, in Some cases, the degrees of 
freedom are adjusted, depending the actual number of 
parameters used in the estimation. For example, in mixture 
deconvolution, when the J-1 weights are varied, the J" 
weight is computed from the others. Hence the dof in this 
case is K-J--1. Bootstrap algorithms often dispense with 
these distinctions altogether, particularly in variance calcu 
lations, and just use K. In practice, with the values of Kused 
in multiplex PCR (e.g., 25 to 50), Small differences in the dof 
will not greatly affect the Statistical computations. 
0140) Estimating the variance of of the mixture weights 
w. The dispersion of the weighting vector w is Dwo 
O. (G'-G). Since wo is estimate with the smallest variance, 
estimate the weight variances as: 

0141) The variance of the " weight is S' times the " 
diagonal entry (G'-G). (Covariances between the weights 
are described by the off-diagonal entries.) In particular, this 
estimate has utility for assessing the quality of the mixure 
problem, since a small variance Of (e.g., S™ (G'G)')in 
the mixture weight wo indicates a high confidence in the 
Solution (e.g., Wo and b, with mixture deconvolution). 
0142) Estimating the variance O, of the genotype esti 
mate b(w). Since d=G-w--e, 

0143) and so O, is proportional to O/w. Therefore, a 
reasonable estimate of O, at the Solution point is S/w. 
0144) When there is additional information about the 
covariance Structure of the observations, one can use the 
general covariance matrix V. Important Special cases include 
V=of (used above), and V a diagonal matrix with vt=O, 
(weighted least Squares). The covariance matrix V is readily 
estimated from the data when multiple mixture experiments 
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are performed on the DNA samples. One need only use the 
Standard Statistical definition 

0145 where X and Y are vectors of random variables 
corresponding to quantitative allele measurements obtained 
from multiplex PCR experiments. 
0146 A highly useful effect of the invention is that 
variances and Standard deviations can be computed directly 
from the experimental data in order to quantify a confidence 
in the results. The most preferred embodiment derives the 
estimates described here (including mixture weights, geno 
type vectors, and variances) using a linear model of the data. 
By applying least Squares estimation (or, equivalently, maxi 
mum likelihood estimation), exact distributions are not 
required. An alternative preferred embodiment obtains vari 
ance estimates and confidence intervals using Standard boot 
strap simulation procedures (Efron, B. and R. J. Tibshirani, 
An Introduction to the Bootstrap 1993, New York: Chapman 
& Hall), incorporated by reference. These simulation meth 
ods, however, can provide useful extensions for Solving 
additional DNA mixture problems, as described next. 
0147 Bootstrap Methods 
0148. A more difficult mixed DNA problem is that of two 
unknown contributors. That is, there are J contributors, J-2 
with known genotype, and 2 genotype profiles unknown. For 
example, with J-3, in the mixture data d, the victim's 
genotype a is known, but there are two unknown genotypes 
b and b, one of which (at least) is the perpetrator. This can 
happen, for example, in a sexual assault when there are (a) 
multiple assailants, or (b) a consensual partner and an 
assailant. If the unknown genotypes b and b were deter 
mined, they could be used to match Specific Suspects, or for 
Searching a DNA database of likely Suspects (e.g., convicted 
offenders) for a matching profile. Such (relatively) unique b 
and b would greatly improve upon the current art, in which 
a large Set of candidate Suspect genotypes is generated. 

014.9 This problem (more than one unknown contribu 
tor) is quite hard, and not feasibly solved in the prior art. 
Within the vast K-dimensional Search Space of quantitative 
allele measurements, two genotype profiles are to be ascer 
tained. With J=2 individuals, and K=100, how can the 
genotypes possibly be separated and uniquely identified? 
For with three feasible allelic values, each perSon can have 
one of 10 possibilities, and in combination, the number of 
possibilities is the square of that figure: 10', or a “google' 
of possible genotype Solutions. Brute force computation is 
clearly not a viable approach. 
0150. However, with a novel combination of mathemat 
ics, computation, and information, the described invention 
can usefully Solve this problem. In a nonobvious way, the 
invention combines the method detailed above for deriving 
one unknown (and its confidence) from a mixed DNA 
profile, together with DNA database information. Since the 
goal is to match a Suspect in the database of candidate 
offenders (which includes all available profiles from actual 
Suspects in the case, as well as all other accessible DNA 
databases), the genotype of the unknown individual is pref 
erably included in the matchable database in order for a 
match to actually occur. 
0151. It is useful to have a null distribution of scores for 
a population of randomly Selected candidate Solutions. Then, 
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a candidate Solution can be compared with this null distri 
bution, and a decision made about the whether or not the 
Score Suggests a likely candidate. This Section describes how 
to construct Such null distributions using Statistical Simula 
tion resampling via bootstrap methods (Efron, B. and R. J. 
Tibshirani, An Introduction to the Bootstrap 1993, New 
York: Chapman & Hall), incorporated by reference. It fur 
ther describes how to use confidence Scores generated by the 
invention together with Such null distributions. 
0152 Two Unknown Case 
0153. A method for resolving two unknown DNA profiles 
using a DNA database proceeds as follows. 
0154) The first step constructs and characterizes the null 
distribution of randomly constructed Solution confidence 
Scores. With two unknowns, this is done by Simulating one 
unknown, and then using mixture deconvolution to compute 
the Second unknown, along with an error estimate (e.g., the 
variance) of the Solution. A function of this error estimate is 
used as a confidence Score. 

0155 Step 1a. Gather data. 
0156 Analyze the DNA mixture peaks to determine 
the useful loci. A locus that is useful for mixture 
analysis typically has more than one allele present. 

O157 Determine the relevant alleles within each useful 
locus. The relevant alleles should preferably have a 
relative DNA concentration that exceeds Some preset or 
data-dependent threshold. 

0158 When feasible, retrieve the population frequen 
cies within each locus of the relevant alleles. If the prior 
allele distributions are not available, then preferably 
uSe uniformly distributed frequencies. 

0159 Step 1b. Sample a distribution of genotypes {g} 
for the population that represents the mixture alleles. In the 
preferred embodiment, this is done by Simulating a large 
number (e.g., 100 to 5,000 generally suffice, with 500 to 
2,000 the most preferred range) of genotypes. Preferably, 
use the prior locus allele frequency distribution (restricted to 
alleles found in the mixture) to Sample genotypes represen 
tative of the population that could have generated the 
mixture. 

0160 Step 1c. Compute a distribution of confidence 
Scores for the mixture data allele population. In the J-2 
known mixture case, genotypes a and b are the two 
unknowns. For each Sampled genotype gi, Set genotype a to 
g. Use the mixture deconvolution method to estimate the 
weight vector wo, the genotype b, and a confidence Score in 
the solution based on the error. Preferably, the confidence 
score S, is a function of the estimated variance ind (O) or 
wo. (O.). Record the set of confidence scores {s}. 
0.161 Step 1d. Compute parameters (e.g., mean, Vari 
ance, confidence interval) of the distribution of Sampled 
confidence scores {s}. Continuing with the bootstrap pro 
cedure, these Simulated distribution parameters are com 
puted by the “plug-in” principle for bootstrap statistics (e.g., 
averages, moments, order Statistics, or any computable func 
tion). 
0162 Step 1e. Use the computed parameters of {s} to 
help identify outliers of unusually high quality. In the most 
preferred embodiment, this is done by modeling the {S} 
distribution (e.g., as a normal, beta, or gamma function), and 
determining tail probabilities based on the value of the 
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confidence Score. Alternatively, confidence intervals can be 
constructed by the bootstrap for identifying outlier confi 
dence Scores. In any case, the bootstrap mean and Standard 
deviation can provide an approximate guide to identifying 
noncentral values. 

0163 A second computation is then performed. For every 
candidate genotype h; in the database of possible offenders, 
a mixture deconvolution is performed, and a confidence 
Score is computed. These Scores are then compared with the 
null distribution of confidence scores from Step 1 to identify 
any genotypes h; of unusually high confidence that match the 
data. The Set of Such highly confident genotypes, preferably 
in ranked order, is then returned. More Specifically, iterating 
over the candidate genotypes {h} in the database: 
0164 Step 2a. Select a candidate h; from the database. 
The database comprises the available Suspect, convicted 
offender, or other known genotypes. 
0.165 Step 2b. Perform mixture deconvolution. Set a=ht, 
and compute b. Compute the error measures of the mixture 
deconvolution Solution, as described above. 
0166 Step 2c. Compute the confidence score t for h; 
using an error-based Scoring function commensurable with 
the one used in Step 1c above. Note that: 

0167. When the null distribution has a modeled prob 
ability function, the tail probability can be used. 

0168 The actual S value of his a useful numerical 
Score, since Smaller values Suggest higher confidence. 
These quadratic values can follow a X distribution. 
Moreover, ratios of sample varianes can follow an F 
distribution, which can provide additional ranking and 
hypothesis testing information. 

0169 Step 2d. Compare the confidence score with the 
null distribution. Compare t with the null distribution {s}. 
0170 Step 2e. Identify the possible matching genotypes. 
If t is a high confidence Score for candidate ht, then record 
the genotype (preferably along with its score) as (hi,t) for 
further evaluation. When bootstrapped confidence intervals 
are used, note that the endpoints provide a Straightforward 
decision rule for identifying outliers. The ranked outliers of 
high confidences are recorded for further examination. 
0171 The result of this procedure is a set of ranked 
genotypes {h} that are in the Suspect database which match 
the mixture data unusually well. In practice, this Set will 
generally be either empty (no matches were found), a 
Singleton (only one good match was found), or a doubleton 
(both DNA contributors reside in the database). This null 
distribution comparison method uses a database of DNA 
profiles that provide a set of candidate first individuals. It 
further uses a mixture deconvolution method that can com 
plete a J-1 mixture problem and compute a Second indi 
vidual, along with its confidence Score. 
0172 The advantages of this method are many; several 
are emnumerated. The mathematical analysis is fully autom 
atable on a computing device, So that the current large 
amount of human forensic expert effort is not required. The 
method can Solve complex problems that even human 
experts cannot handle, and thereby identify candidate SuS 
pects. The results provide Statistical confidence measures for 
reporting useful to the prosecution or the defense. By 
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reducing large lists of candidate to just a few (or even no) 
Suspects, a vast amount of police investigative work is 
entirely eliminated. This elimination can Save tens of thou 
Sands of dollars in even one case, and can help better apply 
limited law enforcement resources to reducing crime. 
0173) One Unknown Case 
0.174. It can be useful to obtain additional measures of 
confidence in a genotype Solution (e.g., when using mixture 
deconvolution). A variation of the bootstrapped null distri 
bution method above can be used to obtain useful confidence 
information when there are J-1 known contributor profiles, 
and one unknown contributor profile. 
0175 Step 1. Form the null distribution. This works 
similarly to the case above. However, here there are J-1 
known genotypes, and So these are fixed throughout. Only 
the one unknown profile is Sampled. 

0176 Step 1a. Gather data. Determine the alleles in the 
mixture data. Use uniformly distributed frequencies when 
population estimates are not available. Note that multiple 
estimates can be computed, one for each population allele 
frequency distribution. 
0177 Step 1b. Sample a distribution of genotypes {b} 
for the population that represents the mixture alleles. In the 
most preferred embodiment, all the alleles in the mixture at 
a locus are used. This approach is in keeping with current 
reporting practice. In an alternative preferred embodiment, it 
may be possible to use a Subset of Such alleles. For example, 
in a three locus case with J=2, Suppose that locus d has 
alleles {1, 2, 3}, and reference profile a has alleles {1,2}; 
then it logically follows that the unknown genotype b must 
include allele {3} at that locus, and So the allele combination 
{1,2} would not be possible for b at that locus. While this 
embodiment is more efficient than including all possible 
alleles, it can be less robust with quantitative data, particu 
larly when the DNA quantity of the allele is relatively small. 

0.178 Step 1c. Compute a distribution of confidence 
Scores for the mixture data allele population. In the J-1 
known mixture case, genotype b is the only unknown. For 
each Sampled genotype gi, Set genotype b to gi. Use linear 
modeling error estimation Such as perpendicular projection 
to estimate the weight vector wo, and a confidence Score S, 
as above in the Solution based on the error. This geometrical 
calculation is simpler (and faster) than Searching for 
unknown genotypes. Record the Set of confidence Scores 

0179 Step 1d. Compute parameters (e.g., mean, vari 
ance, confidence interval) of the distribution of Sampled 
confidence Scores {s}. Use the “plug-in” principle for 
bootstrap Statistics. 

0180 Step 1e. Use the computed parameters of {s} to 
help identify outliers of unusually high quality. In the most 
preferred embodiment, model the {s} distribution (e.g., as a 
normal, beta, or gamma function), allowing the determina 
tion of tail probabilities based on the value of a confidence 
Score. Alternatively, use confidence intervals. 

0181 Step 2. Compare with the null distribution. This 
works similarly to the case above. However, here there are 
J-1 known genotypes, and the Single unknown genotype is 
computed using mixture deconvolution. Thus, there is just 
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one score (that of the mixture deconvolution Solution) to 
compare against the null distribution. 

0182 Step 2a. Compute the genotype b from the data. 
This is preferably done using the mixture deconvolution 
invention. 

0183 Step 2b. Determine the error measures of the 
mixture deconvolution Solution. 

0184 Step 2c. Compute the confidence score t for busing 
the error-based Scoring function used in Step 1c above. 

0185 Step 2d. Compare the confidence score with the 
null distribution. Compare t with the null distribution {s}. 
0186 Step 2e. Ascertain whether or not b is a high 
confidence matching genotype. This is done using the results 
of Step 2d. 

0187 Zero Unknown Case 

0188 In the case of J knowns, the minimum variance can 
be determined directly by least Squares projection of the data 
d vector into the J-1 Simplex Subspace of mixed genotype 
vectors. However, bootstrap resampling provides another 
mechanism for assessing the error, hence the quality of the 
Solution. This can be useful when the data deviates greatly 
from linear behavior. Simulations for error distribution 
estimation have been well described, including both boot 
Strapping pairs and bootstrapping residuals (Efron, B. and R. 
J. Tibshirani, An Introduction to the Bootstrap 1993, New 
York: Chapman & Hall), incorporated by reference. 

0189 Probability Distributions 

0190. It is useful to compute probabilities from the 
observed data. This can be done once the data or error 
distributions are modeled. It is reasonable to assume normal 
distributions for the experimental error in PCR amplifica 
tion, electrophorectic band migration, and fluorescent detec 
tion. These assumptions lead to a normal error model for the 
observed DNA quantities. In an alternative preferred 
embodiment, the error distribution is modeled directly from 
the data of many identical mixture experiment replications, 
this empirical error model is then used in place of the 
theoretical normal model. 

0191) Data Distribution 

0192 Assume that the error vector components e, are 
normally distributed. Then e-Nk(0, Olk), and hence 
d-Nk(Gw, of), where K is the number of alleles included 
in the quantitative analysis, and G is a KXJ genotype matrix. 
That is, the probability of the data d is approximated by the 
multivariate normal distribution: 

1 
Pd G, w = If exp 

K 26-? 

0193 where of is the sample variance estimate computed 
from S. This probability attains its maximum value when G 
is correct, and wo is the least Squares estimate. 

Oct. 17, 2002 

0194 It is also known that 

RSS dolf. S' 
= - - Aif 

0.195 which characterizes the sample variance as having 
a chi-squared distribution. 
0196) Suppose that the error is unbiased E(e)=0, but its 
dispersion is more generally De=oV, rather than the 
uniform of Ik. With this covariance structure, the residual 
Sum of Squares is: 

ff-(Gw-d)V(Gw-d) 
0197) hence the probability distribution is: 

1 (G. w-d)'V' (G. w-d) 
K exp 

0198 Weight Distribution 
0199 The distribution of the mixture weight vector w can 
be directly computed using the mathematics of linear models 
(Seber, G. A. F., Linear Regression Analysis 1977, New 
York: John Wiley & Sons), incorporated by reference. Given 
the variance of, one immediately has: 

0200. Therefore, the distribution of the weights is 
Wo=N(W.O.) and the distribution of the weight variation as 
(wo-w)'G'G(wo-w)'=y'. When the error covariance struc 
ture is a known constant matrix of V, the dispersion of w 
generalizes to: 

0201 These distributions permit the comparison of dif 
ferent mixture weights, the assessment of relative likelihood, 
and the determination of confidence intervals. Moreover, the 
variance estimate of (or the standard deviation) is a highly 
useful measure of the confidence in the obtained results. 

0202 Genotype Distribution 
0203 For comparing (or ranking) likely genotypes from 
the data, it is useful to have a numerical Score. One powerful 
and well-accepted Score is the likelihood ratio (Edwards, A. 
W. F., Likelihood, Expanded ed. 1992 Baltimore: Johns 
Hopkins University), incorporated by reference. To compare 
the hypothesis of one genotype b relative to another one b, 
one can form the likelihood ratio (LR): 

Pr{d H. Prida, b} 
|Rd) = pa - Praia. 

0204. The value of the LR provides a measure of belief 
in one hypothesis over another. The detailed computation of 
the LR (for any number of individuals J) via its component 
probabilities is described below. 
0205 An LR may include hypotheses concerning 
“unknown genotypes. Note that the mixture deconvolution 
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method permits ascertainment of a genotype (with high 
confidence), given the other J-1 genotypes in the mixture. 
Using associated variance and probability estimates, this 
ascertainment Suggests that a very high probability is asso 
ciated with the correct “unknown”, whereas very low prob 
abilities are associated the incorrect “unknowns'. That is, 
the Supposedly “unknown may actually be quite known 
from the data. These probabilities are useful in weighting the 
possibilities based on the data, as shown next. 

0206 For conviction in court, it would be useful to 
present a Statistical measure that describes the degree of 
confidence in the defendant's genotype based on the data. 
Given the distribution of the data under different models, 
one can determine the posterior probability of the genotypes. 
For example, consider the representative likelihood ratio: 

|Rd) part pia, i. 

0207 evaluated at the observed data vector d. This LR 
compares the prosecution's hypothesis that the quantitative 
mixture data d are generated by victim a and the defendant 
b, relative to the defense hypothesis that the data are 
generated by the victim a and an unknown random perSon. 
Similar derivations and alternative formulations have been 
described (Evett, I. W. and B. S. Weir, Interpreting DNA 
Evidence: Statistical Genetics for Forensic Scientists 1998, 
Sunderland, Mass.: Sinauer ASSOc, Evett, I. W., P. Gill, and 
J. A. Lambert, Taking account of peak areas when interpret 
ing mixed DNA profiles. J. Forensic Sci., 1998 43(1): p. 
62-69), incorporated by reference. 
0208 If the defendant’s genotype is b, then the LR 
becomes: 

genotype i 

0209 The prior genotype probabilities Pr{b} can be 
computed (with or without F. correction) from population 
allele frequency information in the usual way (Balding, D. 
J. and R. A. Nichols, DNA profile match calculation: how to 
allow for population Stratification, relatedness, database 
selection and single bands, Forensic Sci Int, 1994, 64: p. 
125-140; Evett, I. W. and B. S. Weir, Interpreting DNA 
Evidence: Statistical Genetics for Forensic Scientists, 1998, 
Sunderland, Mass.: Sinauer ASSoc), incorporated by refer 
ence. The other probability to evaluate is 

Pr{da, b, 
0210 the probability of the observed mixture data d, 
given the two component genotypes. This term is needed for 
computing both the numerator and denominator. 

0211 The determination of Pr{da,b;} does not appear in 
the prior art of DNA mixture analysis. Indeed, it is desper 
ately needed, but conspicuously absent, in a Seminal mixture 
analysis paper (equation 5, Evett, I. W., P. Gill, and J. A. 
Lambert, Taking account of peak areas when interpreting 
mixed DNA profiles. J. Forensic Sci. 1998, 43(1): p. 62-69). 
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However, by using the linear modeling invention, these 
probabilities can be estimated using the probability esti 
mates already described. 
0212. In a first preferred embodiment, Pr{da,b} is com 
puted at a point at a closest location. For J-2 individuals, this 
sets G=a b). In general, for Pr{dG}, the procedure is to 
construct the perpendicular projection operator P=G(GG) 
1G", and find the error vector e=(I-P)d=(d-Gw) that 
projects d onto the closest point Pd=Gw in the J-1 
dimensional simplex C(G). The Squared error e'e then equals 
the term that appears in the exponent of the probability: 

G. w - s exp 
K 26-? 

0213 Since the length of the errore is minimized at the 
point Gw, the normal function is maximized there, and this 
can be a reasonable estimate, particularly with Small Vari 
ances. This distribution partitions the genotype measure 
ment Space into nested cones that radiate out from the data 
point d. 

0214) In a second, more preferred embodiment, Pr{da,b 
is computed more accurately by considering all possible 
mixture weights. This is done (with J=2) by integrating over 
all possible values of the mixture weight w; 

0215. When integrating over a likelihood ratio LR(d), the 
w integration can be performed Separately for each term, or, 
preferably, taken over the entire LR. For general genotypes 
G having J individuals, the mixture weight vector w lies 
within the J-1 unit Simplex, and the integral is taken over the 
entire Simplex: 

we simplex(J-1) 

0216) In this decomposition, the first probability function 
PrdG,w} is estimated as: 

1 |G. w – d’ 
Pd G, w} = (exp-- 

(2,6-?)2 O 

0217. In the most preferred embodiment, the variance 
estimate of is set by the globally minimal variance. In an 
alternative embodiment, the variance used is Scaled accord 
ing to the hypothesis, so that of depends on the S of the 
genotype under consideration. 

0218. The second function Pr{w} is the probability of the 
mixture weight vector W, prior to having Seen the data d. In 
one preferred embodiment, a uniform prior can be used, with 
all mixture weight vectors having equal probability. In a 
Second most preferred embodiment, the prior is computed 
from the mixture weights observed (or Sampled) from a 
relevant population of cases. This can be done by using the 



US 2002/0152035 A1 

invention's linear mixture model, possibly together with 
mixture deconvolution, and accurately determining the mix 
ture weights, hence the prior Pr{w} for the crime stain 
population. With Small variances, the mass of the integral 
will be tightly centered around the minimization point Gw 
in the simplex C(G), and the form of the prior may have little 
effect on the computed probability. In the art of empirical 
Bayesian estimation, beta distributions and other 
“unknown” priors are successfully employed (Carlin, B. P. 
and T. A. Louis, Bayes and Empirical Bayes Methods for 
Data Analysis, 2000, Chapman & Hall/CRC Press), incor 
porated by reference. 
0219. The third function dw is the differential of the 
integration. This will cancel out in a likelihood ratio calcu 
lation, and therefore does not affect most calculations. 
0220) This ability to compute the LR 

genotype i 

0221 by appropriately weighting the prior probabilities 
Prb, based on the weight of evidence in the data Prala,b, 
represents a Strikingly useful advance over the prior art. 
Current forensic reporting practice typically uses full 
weighting of all possible genotypes in a mixture (National 
Research Council, Evaluation of Forensic DNA Evidence: 
Update on Evaluating DNA Evidence, 1996, Washington, 
DC: National Academy Press), incorporated by reference. At 
each locus, then, the full weight of each possible genotype 
is currently used, instead of the weight as determined by the 
data. Examining the effect on the denominator is shown by: 

genotype i genotype i 

0222 Relationship (1) expresses the fact that, in general, 
the probability Prida,b) of the correct genotype b, has an 
exponentially greater likelihood than the probability Pr{da, 
b;} of any of the other genotypes b. Thus, the only term 
that is typically apparent in the data weighted Sum over the 
genotypes is Prb. 
0223 Relationship (2) is the observation that the prob 
ability of just one of the possible genotypes is less than the 
Sum of the probabilities acroSS all possible genotypes. In a 
two person mixed sample, a three allele locus (and, for that 
matter, a four allele locus) has six possible genotype con 
tributors. So considering all six possibilities, instead of just 
one, will reduce that loci's multiplicative contribution to the 
LR by a roughly factor of 6. 
0224) Taken over all 13 CODIS loci, the multiplication of 
independent locus LRs would reduce the total LR by a factor 
of about 6', or over 10' (i.e., ten billion) fold. That is, by 
not properly weighting the true chance of a "random man' 
given the data, the prosecution can incorrectly concede to 
the defense an astronomical amount of likelihood. This 
concession can become most crucial when poor DNA 
samples from crime scenes reduce the power of the STR data 
(fewer loci, PCR artifacts, allelic dropout, etc.). 
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0225. The LR calculations above made use of the mul 
tiplicative combination rule for independent LRs (Edwards, 
A. W. F., Likelihood, 1992, Baltimore: Johns Hopkins 
University; Lindgren, B. W., Statistical Theory. Fourth ed. 
1993, New York, N.Y.: Chapman & Hall), incorporated by 
reference. For multiple independent loci, this is written as: 

0226 Thus, the likelihoods (or probabilities) of the data 
and genotypes can be determined Separately at each locus, 
and then combined later on. This permits focusing on the 
properties of Single loci, with the knowledge that the Single 
locus results can easily be combined to compute a composite 
result. 

0227. An LR for any number J of contributors can be 
computed using LMA. This is because LMA provides the 
key enabling factor: the probability function ProdG,w} of 
the data d given any hypothesis about the genotype G and 
weight W parameters. The geometrical computations of 
LMA permit an estimate of the variance, whether by normal 
theory or bootstrap resampling. One can specify the hypoth 
esis of the prosecution H, regarding known genotypes o 
and unknown genotypes Gunknown, and the hypothesis of 
the defense H, regarding the alternative known genotypes 
an and unknown genotypes genotypes Gown. There 

may be constraints relating common genotype parameters in 
Gnown and in Gaunknown. After forming the likelihood 
ratio, Sum over all possibile genotype configurations 
(restricted for efficiency to the alleles found in the mixture 
data) over all the unknown genotype variables in (Gnown 
U Genew), and Simultaneously integrate out the mixture 
weights W lying in the J-1 dimensional Simplex of feasible 
mixture weights. For computational efficiency, it may be 
useful to structure the problem with a hierarchical (or 
empirical) Bayes model, and use Markov Chain Monte 
Carlo (MCMC) methods for more rapid integration (Berger, 
J. O., Statistical Decision Theory and Bayesian Analysis. 
Seconded 1985, New York: Springer Verlag, Tanner, M.A., 
Tools for Statistical Inference: Methods for the Exploration 
of Posterior Distributions and Likelihood Functions 1996, 
New York: Springer Verlag), incorporated by reference. 
0228 Computer Methods 
0229. There are various computer methods that are useful 
in implementing LMA and mixture deconvolution. The use 
of numerical methods (integration, minimization, Search, 
etc.), matrix algebra, multivariate regression, efficient algo 
rithms, and Statistical calculations are described elsewhere 
in this specification. Many of these operations are built 
directly into high level mathematical programming lan 
guages Such as MATLAB and S-plus. 
0230. Simulation is a powerful computational method. In 
population genetics, many problems can be Solved numeri 
cally by resampling from Simulated genotypes. To do this, 
one needs a genotype Simulator. In the preferred embodi 
ment, genotypes are simulated at each locus independently. 
For a given set of possible alleles (based, for example, on the 
alleles appearing in the mixture data) and their population 
frequencies, alleles are sampled using a random number 
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generator and a decision function based on the cumulative 
distribution of the allele frequencies. The effect of popula 
tion inbreeding is accounted for by using corrected allele 
frequenies that include F. 
0231. Visualization is a highly effective mechanism for 
rapidly exchanging information with a user. Novel Visual 
izations of geometric genotype relationships are described in 
this Specification, both for the complete genotype, as well as 
for individual loci. To render a three allele mixture system, 
it is best (when feasible) to focus on the two dimensional 
Simplex image of the measurement Space, which uses the 
constraint that the weights Sum to 1. The geometric graphics 
computation can be done in three dimensions, and then 
projected onto the two dimensional Surface (triangle) for 
user display by means of a linear transformation Such as the 
2x3 matrix: 

-O.70711 
-0.40825 

O.70711 O 
-0.40825 O.81.65 

0232 Examples of Such automatically rendered visual 
izations are shown for a three allele locus in FIGS. 4.a and 
4.b. 

0233 For rendering visualizations in four allele dimen 
Sions, it is preferable to perform geometric graphics com 
putation in the natural 4-D space, and then project onto the 
three dimensional region (tetrahedron) for user display by 
means of a linear transformation Such as the 3x4 matrix: 

-O.7O711 O.70711 O O 
-0.40825 -0.40825 O.81.65 O 
-O.28868 -O.28868 -O.28868 O.86603 

0234. Using computer software that includes a three 
dimensional renderer (e.g., the plot3 function in MATLAB) 
can then flexibly project the image into the 2-D for user 
interaction. An example of Such an automatically rendered 
visualization for a four allele locus is shown in FIG. 5. 

0235) To understand the behavior and reliability of LMA 
Search methods, it is useful to present the associated mini 
mization curve. An automatically rendered visualization for 
a minimization curve is shown in FIG. 6. To see the data and 
its analysis in terms of quantified peaks, it is useful to view 
the genotypes and mixture results in a way that focuses on 
the relevant alleles at each locus. An automatically rendered 
Visualization for genotypes and mixture results is shown in 
FIG. 7. The user can interact with these two visualizations 
(e.g., a mouse device controling a slider). Adjusting the 
weight will change both the location on the minimization 
curve (or higher dimensional Surface), as well as change the 
calculated mixture heights in the genotype figure. This 
interactive feature makes visually apparent how a calculated 
mixture resembles a valid genotype only when near a correct 
mixture weight. 

0236) Data Results 
0237 Methods described above are shown via examples 
on a mixture data Set. 
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0238) Data Generation 
0239). Two anonymous human DNA samples (A and B) 
were analyzed both individually, and in different mixture 
proportions (10:90, 30.70, 50:50, 70:30, 90:10). PCR 
amplificaton was performed on the samples on a PCT-100 
thermocycler (MJ Research, Waltham, Mass.) using the ten 
STR locus SGMplus multi-mix panel (PE BioSystems, 
Foster City, Calif.). Size separation of the fluorescently 
labeled PCR products was done with internal size standards 
on an ABI/310 Genetic Analyzer capillary electrophoresis 
instrument (PE BioSystems). GeneScan analysis (including 
comparison with allelic ladder runs for allelic size designa 
tion) was performed, and the peak heights and areas were 
recorded. 

0240 The linear mixture analysis used the mixed DNA 
profile data d, along with the reference profile genotype a. 
The LMA heuristic search algorithm was implemented in 
MATLAB (The MathWorks, Natick, Mass.), and used to 
analyze the data on a Macintosh PowerBook G3 (Apple 
Computer, Cupertino, Calif.). The automated heuristic algo 
rithm was applied to each data case, with the program 
Searching for local minima to compute the mixture weight W 
and the unknown genotype profile b. The computation time 
for each problem was under 0.1 Seconds. The computed 
profile was compared with the actual profile for individual 
B. (While known in advance for assessment purposes, 
neither the mixture weight w nor B's profile were used in the 
calculations.) 
0241 Mixture Deconvolution 
0242 Mixture deconvolution was performed on the data, 
as described above. Five deviation curves are shown in FIG. 
6, each plotting Squared deviation against the mixture 
weight. From left to right, these curves correspond to the 
heuristic functions of the 10:90 (plus), 30:70 (solid), 50:50 
(cross), 70:30 (dash), and 90:10 (dot) mixture ratios. The 
minima of these curves are located near 10%, 30%, 50%, 
70%, and 90%, respectively, demonstrating that heuristic 
minimization infers the proper mixture weight. The shape of 
the 90:10 (dot) curve reflects the trajectory through allele 
Space as the weight changes from 0 to 1. Note that the 
minimum has a parabolic shape. 
0243 The following expected ratios produced the esti 
mated mixture weights and Standard deviations: 

expected estimated w estimated Ow 

10:90 11.09% 1.02% 
30:70 29.53% O.90% 
50:50 48.43% 1.12% 
70:30 69.59% O.85% 
90:10 89.04% O.81% 

0244. Note that the standard deviations are relatively 
Small. In every case, the estimated mixture weight is within 
two Standard deviations of the expected ratioS. 
0245 One hundred alleles were estimated (5 experi 
mentsx10 loci per experimentx2 alleles per locus). Due to 
experimental variation, not all alleles can be called uniquely. 
However, under the assumption of unique allele calls, there 
was one incorrect call, for an miscall rate of 1%. The miscall 
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was in the 90:10 experiment at locus D21, where the true 
heterozygote genotype (2.3) was estimated to be a homozy 
gote genotype (2.2). This was due to the low quantity of bs 
DNA present in the extreme 90:10 mixture case. 

0246 The data d, reference a, and estimated b(wo) are 
shown in FIG. 7. The quantitative data d of the 30:70 
mixture experiment is shown at every SGMplus locus (first 
row). Also shown is the known reference profile of indi 
vidual a (second row). Using mixture deconvolution, the 
computer estimates the unknown genotype b(wo) (third row) 
and the mixture weight wo. Note that the estimated genotype 
is the same as the true genotype. 

0247 Distribution of d 
0248 The error vector e is computed from (1-wo) 
b(wo)-6(wo)), where wo is the minimizing weight param 
eter, b(wo) is the continuous estimate of the genotype 
parameter, and b(wo) is the integer-valued estimate that is 
the closest valid genotype to b(wo). With K=31 alleles, the 
sample variance S is estimated as 

|el? 
K - 1 

0249. The estimate of O is taken as the square root of the 
sample variance, with 6=0.0407=v0.001658. 
0250 Once O. has been estimated, the probability distri 
bution centered at d can be approximated as the multivariate 
normal: 

lost exp 
K 26 

0251 Here, K=31, and G is the matrix formed from the 
genotype column vectors a and b. 

0252) Distribution of w 
of, is estimated from 6 as 0253) The variance of w, o, 

6-6 (G'-G). For example, in the 70:30 mixture case 
(with b as the minor component), 

15 
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0254 and, with 6-0.0407, one computes 

0255 
WA as 

the standard deviation 6 for genotype as weight 

6=0.0085=(0.0407)(0.2087). 

0256 This calculation is the source of the 0.85% standard 
deviation value for the 70:30 mixture experiment appearing 
in the table above. 

0257). From the estimated mixture weight (69.59%) and 
Standard deviation (0.85%), one can compute a confidence 
interval for the 70:30 experiment. With the Z distribution 
test (Zoos=1.96), the 95% confidence interval is 67.92%, 
71.25%); using the more exact t distribution test (tools= 
2.04; dof=30), the 95% confidence interval is 67.85%, 
71.32%). These two confidence intervals are essentially 
equivalent, and both contain the predicted value of 70% with 
a high p value. Note that mixture deconvolution computes a 
rather tight estimate on the mixture weight, with 95% of the 
distribution mass concentrated in under 4% of the range. 

0258 Likelihood 

0259. It is useful to rank the genotypes according to their 
likelihood ratio LR, dividing the probability of each candi 
date genotype by the probability of the highest probability 
genotype. This can be done for the entire genotype, acroSS 
all loci, or (by the multiplication of independent data rule) 
one locus at a time. The first approach is best for comparing 
two genotypes in the context of all the data. The last 
"locus-based' approach is useful when trying to understand 
the data in more depth, Seeing if there are equivocal loci that 
might be problematic, and deciding whether to report more 
than one genotype at a locus when the LR does not dis 
criminate conclusively. 

0260 For the 70:30 mixture data, consider the LR com 
putation at locus THO1. This is representative of typical 
results on these data. Take the LR for two genotypes as the 
ratio LR(d) of P{dG} to the maximal probability P{dG}. 
Form the log of the likelihood ratio (or “support”) as the 
logarithm of this ratio, or 

iri (d) = in AE) 
24 5 0.0436 -0.0091 PdC} (GG)= (GG) = 5 24 -O.O091 0.0436 

V(G. G) = 0.2087 0261 Report the computed probabilities and lr (in base 
10 logarithm units) for the ranked genotypes for the data at 
this locus in the table: 

genotype 011 002 O20 101 110 200 

Pld=G} 54.064 1.2247e-06 7.687e-16 1.5844e-18 3.3288e-22 3.7843e-24 
lril O -7.6449 -16.847 -19.533 -23.211 -25.155 
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0262 The first genotype 0 1 1 is about ten million times 
more likely than the next closest candidate 00 2. This 
typical result shows very Strong Support for the Selected 
genotye at this locus. 
0263. In Some cases, the data are more equivocal, and the 
LR Support can help in deciding which genotypes are likely, 
and how to report the results. Recall that the one allele 
miscall (out of a hundred scores) occurred in the 90:10 
mixture experiment, at the D21 locus. The likelihood analy 
sis is shown for this data in the following table: 

genotype 020 011 110 101 002 

Pld=G, 32.432 10.583 O.36474 O.OOO92291 6.9245e-OS 
lri1 O -0.486.36 -1949 -4.5458 -5.67O6 

0264. The table shows that the first two ranked genotypes 
have comparable likelihood, and that the third genotype may 
not be an unreasonable possibility. In the reporting of this 
mixture, the automation program (or a user) in this ambigu 
ous case would elect to report two (or perhaps three) 
possible genotypes at this locus. This conclusion, that there 
is more than one likely genotype, is derived entirely from the 
data using the likelihoods. It would be most useful to 
visualize these likelihood relationships. A novel method for 
Visualizing Such genotype likelihood is demonstrated next. 
0265 Visualizing Likelihood 
0266 The likelihood function, as a (minimal) sufficient 
Statistic, partitions the genotype space into regions of con 
Stant value. In the case of mixture deconvolution, with J-2, 
an equivalence class for a particular value may be thought of 
as a conical Surface originating at point a, with its center line 
extending through d, having an angle from this line deter 
mined by the constant likelihood (or probability) value. This 
picture can be a useful visualization in certain applications. 
(For arbitrary J, the equivalence class is rooted at the known 
genotype Subspace C(Gnow), and forms a hyperplane that 
is tangent to a sphere around data point d.) 
0267 A confidence region can be constructed for geno 
types based on the data. The Sum of Squared error deviations 
follows a chisguare distribution. This distribution can be 
used to examine confidence in the results at one locus, a Set 
of loci, or the entire genotype. 
0268 Referring to the automatically computer generated 
FIG. 4.a, the genotype mixture space for the three allele 
case at locus THO1 is shown for the 70:30 mixture. This 
Space is a two dimensional Simplex embedded in the three 
dimensional measurement space (for three alleles). The Six 
candidate genotypes occupy positions along the boundary 
(three at vertices, and three along the edges). The possible 
expected measurements for a two perSon mixture are 
described by the solid line (within the simplex) that connects 
the two genotype points. The data point d is shown in the 
interior of the triangular space. A 99% confidence chi Square 
radius is drawn around the data point. Part of the b(w) search 
Space is shown by the dashed line extending from a, through 
d, to b(wo). 
0269. In the most preferred embodiment, lines are drawn 
from a to every candidate genotype b. Each line represents 
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a possible Solution for mixtures of genotypes a and b. Lines 
that fall wihin the interior of the circle (or sphere) have 
sufficient proximity to the data d to permit a probability 
value that is within the confidence level. Lines that fall 
entirely outside the circle (or sphere) are outside the confi 
dence region. In FIG. 4.a, only one line falls within the 
confidence circle. Thus the genotype (2.3) (at the other end 
of this line emanating from the known genotype (1,2)) is the 
only genotype which resides within the 99% confidence 
region. 
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0270. In an alternative preferred embodiment, the conical 
Surface (or rays) emanating from point a, and tangent to the 
confidence circle (or sphere) is drawn. Genotype points 
residing within the conical boundaries (defined by the pen 
umbra of the point and sphere) lie within the conical 
genotype confidence region, and those outside may be 
rejected. In FIG. 4.a, only the genotype (2,3) would fall 
within this penumbra. 

0271 Referring to the automatically generated FIG. 4.b, 
the genotype mixture Space for the three allele case at locus 
D21 is shown for the 90:10 mixture. Recall that the com 
puter reported a Small Support difference between the most 
highly ranked possible genotypes. These close probabities 
are usefully visuallized in the Figure. Here, genotype a is at 
point (1,3), the true genotype b is at point (2,3), and the data 
point d is shown in the interior of this space near a. However, 
multiple lines fall within the 99% confidence data region. 
These include lines from (1,3) to genotypes (2.3), (2.2), and 
(just barely) (1,2). Therefore, it is visually apparent that 
these genotypes should be included in a 99% confidence 
reporting of candidate genotypes. Computer visualization of 
a 95% confidence region shows that only the first two highly 
ranked genotypes would be reported at that level. 

0272. There is a natural three dimensional visualization 
of the likelihood relationships for the four allele case. 
Referring to the automatically generated FIG. 5, the 99% x 
sphere about the data point d is shown. Of all the lines 
emanating from a to candidate genotypes bi, only one (the 
line to genotype (24)) intersects the confidence sphere. 
Hence, only this genotype lies within the conical confidence 
region (i.e., the penumbra of point a and the data confidence 
sphere). 
0273. These automatically generated computer drawings 
are highly useful in Visually clarifying the likelihood, prob 
ability, and confidence relationships between the data and 
the genotypes. The immediate intuition they provide can 
replace far more tedious, time consuming, and less effective 
review of nonvisual presentations. 

0274 Random Man Likelihood 
0275 One can compute the likelihood ratio of the 
hypothesis of the prosecution relative to the hypothesis of 
the defense. A typical formulation entails a “random perSon” 
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hypothesis by the defence (Evett, I. W. and B. S. Weir, 
Interpreting DNA Evidence: Statistical Genetics for Foren 
sic Scientists, 1998, Sunderland, Mass.: Sinauer Assoc), 
incorporated by reference. Suppose that H is the prosecu 
tion's hypothesis that the Stain contains the genotypes of the 
victim a and the defendant b, while defence hypothesis H. 
is that the Stain contains the the genotypes of the victim a and 
a random perSon. This LR can be written as: 

genotype i 

0276 where the probability computations have been 
described above. 

0277 Consider the 70:30 mixture data, at the locus 
THO1. Suppose that each of the three alleles have a popu 
lation frequency of 10%. Then, computing the LRs as 
described gives an LR(d) of 50, and an Ir(d) of 1.699. 
0278) The LR(d) of 50 follows from taking the reciprocal 
of the genotype frequency of ~2ppi, or 20.1)(0.1) which is 
0.02; this reciprocal is 50. It is clear from the lr(d) values that 
there is essentially only one significant term in the denomi 
nator, that of the correct genotype. The current art is focused 
on the population frequencies, and generally includes all of 
them in the sum. However, using the LMA invention for 
LRS, the data probabilities overwhelming Suggest only one 
genotype, essentially removing the improbable ones, and 
appropriately using properly weighted genotype population 
frequencies. In the preferred embodiment, the F., inbreed 
ing coefficient is accounted for, and bootstrapping is done to 
adjust for Sampling error. 

0279. Without this novel data probability correction, the 
He would have been the more usual Sum of genotype 
frequencies (0.1+0.1+0.1), or 0.09, leading to an LR of 11.1 
(as 1/0.09). Thus, with the assumed 0.1 allele frequencies, 
the invention increases the LR at this locus by about a factor 
of 5. 

0280. The THO1 locus contributes 1.699 Support units 
(base 10) to H, over Ha. The Sum of Support across all ten 
loci (using the 0.1 allele frequency assumption) is 17.022. 
Therefore, the genotype b found by the method is about a 
billion billion times more likely than that of a random 
perSon. 

0281 Posterior Distribution of b 
0282. In Bayesian inference, the prior probability of 
genotypes is moderated by the likelihood probability of the 
data to determine the posterior probability of the genotypes. 
In the preceding Statement, odds may be used in place of 
probabilities. While many priors cannot be used in court, a 
prior probability of a genotype based on estimated frequency 
in the population may be reasonable. By providing a (novel) 
means for computing a mixture likelihood, the invention 
enables the computation of posterior genotype distributions. 
0283 Bootstrap Solutions 
0284 Bootstrap resampling methods provide a powerful 
mechanism for obtaining distributions, variances, confi 
dence regions, and other highly useful Statistical values. In 
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particular, the bootstrap can be used to determine the dis 
tribution for a (randomized) null hypothesis, along with its 
mean, Standard distribution, and confidence regions. Then, 
hypothesis testing and ranking can proceed on the data by 
comparison with this null distribution. 

0285 (2 unknowns) In the case with J individuals, with 
two genotypes unknown, it is possible to effectively match 
against a database of feasible Suspects. This is done using 
mixture deconvolution, together with bootstrap resampling. 
Consider the case with J=2. Using the 70:30 mixture data, 
with B resamplings, in each iteration: 

0286 A genotype a is randomly generated according 
to specified (e.g., uniform) population allele frequen 
cies, with alleles drawn from the mixture data. 

0287 Mixture deconvolution is run on a and d to 
estimate b and w. 

0288 The standard deviations O* and O* are esti 
mated, and recorded. 

0289. The bootstrap statistic used here is the standard 
deviation O. This is used as a confidence Score for the quality 
of the fitted least squares solution. While either variance is 
useful, O, permits comparison between experiments using 
an invariant 0,1 Scale, independently of the geometry of 
each Solution. On completing the resampling iterations, 
useful population Statistics are computed by the bootstrap 
plug-in principle, Such as the resampled distribution mean 
and Standard deviation. 

0290 Referring to FIG.8.a, the resampled distribution of 
standard deviations O* is shown for B=1000 iterations, 
along with the known minimum solution. The distribution 
has a normal-like central form. The mean is 0.04297, and the 
standard distribution is 0.00575. The distribution is brack 
eted with a minimum of Z=-2.64 standard units (SU), and 
maximum of Z=4.52 SU. The statistic of the correct Solution 
is shown at the left, located Z=-6.00 SUs to the left of the 
ca. 

0291. In the preferred embodiment, individual genotypes 
from a known genotype are tested as above, but they are 
drawn from a database of possible Suspects (e.g., a DNA 
database) rather than simulated. The candidate Suspects are 
preferably limited to those that share a sufficient number of 
alleles with the observed mixture data. The resampled 
distribution and its Statistics show that incorrect genotypes 
would tend to follow the resampled distribution. However, 
when a correct genotype is found, it is a clear outlier from 
the others. In this case, the Z=-6 Score of the actual 
genotype corresponds to a normally distributed probability 
of one in a billion. Such probability information can be very 
useful for ranking the candidates. When following up data 
base leads, the ranking makes clear which individual(s) are 
the outliers, and to what degree. 

0292 (1 unknown) In the case of Jindividuals, with J-1 
genotypes a known, but one genotype b unknown, it can be 
useful to assess the quality of the Solution in a distribution 
free way. This is done comparing the quality of the mixture 
deconvolution estimate b (i.e., Ow) against the quality of 
randomly reSampled genotypes. Consider the case with J-2. 
Using the 70:30 mixture data, with Bresamplings, in each 
iteration: 
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0293. A genotype b is randomly generated according 
to specified (e.g., uniform) population allele frequen 
cies, with alleles drawn from the mixture data, by either 
(a) including all these alleles, or (b) removing alleles 
that are incompatible with a and the data d. 

0294 The mixture weight w is computed by perpen 
dicularly projecting d onto the C(G) Space, and taking 
ratios. This maintains the Simplex constraints on W. 

0295) The standard deviations O* and O* are esti 
mated, and recorded. 

0296 Referring to FIG. 8.b, resampling is shown using 
the “sampling all alleles' version, Since that is most com 
patible for comparison with the current art. The resampled 
distribution of standard deviations O* is shown for B=1000 
reSampling iterations, along with the known minimum Solu 
tion. The distribution has a normal-like central form. The 
mean is 0.06623, and the standard distribution is 0.01340. 
The distribution is bracketed with a minimum of Z=-2.51 
SUs, and maximum of Z=4.63 SU. The statistic of the 
correct Solution is shown at the left, located Z=-4.31 SUs to 
the left of the mean. This corresponds to a probability of one 
in a hundred thousand, and shows high confidence in the 
genotype Solution G=ab, relative to other alternatives. 
0297 (General likelihood ratios) There are both paramet 
ric and nonparametric approaches to bootstrapping the like 
lihood ratio, as described (Efron, B. and R. J. Tibshirani, An 
Introduction to the Bootstrap, 1993, New York: Chapman & 
Hall), incorporated by reference. An LR can be formed to 
compare any two competing hypotheses, involving any 
number of known and unknown contributors to a mixture. 
The question is how much Support this LR has in the data. 
The Specific hypothesis pair explored in this data simulation 
WS 

|Rd) part - p. 1, 

0298) The prosecution hypothesis H, is that the data 
contains the genotypes of a known perSon a and a random 
person b, whereas the defence hypothesis His that the data 
contains the genotypes of the two random people a and b*. 
When the genotypes are fully Specified, the geometric con 
Straints place W in a relatively Small region of the J-1 
Simplex. Therefore, the minimum distance to the perpen 
dicular error (I-P)d is a useful approximation to the (more 
exact, but more costly) integration over the multidimen 
Sional normal distribution considering all W. 
0299 Specifically, for any fully specified pair of hypoth 
eses, the Support function (log of the likelihood) has the 
form 

(PdH} irii (d) = in FE) a M2 26 data 

0300 For each simulated hypothesis set, estimate the 
Sum of Squares term for a randomly resampled genotype G* 
by computing the perpendicular projection operator P, 
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determining the minimum error vector by a matrix multi 
plication e=(I-P)d, and then computing the Squared error 
as the vector product e'e. The lr is calculated as the differ 
ence between the Squared error terms. After bootstrapping 
for B iterations, the question is then how far the null 
difference of Olies in standard Zunits from the center of the 
simulated distribution. 

0301 Setting B=1000 (preferably, 500s Bs 2000), and 
using the 70:30 mixture data, known genotype a was Set to 
the major component, and the two unknown genotyes band 
c were simulated. Using the correct a, a normally shaped 
distribution was obtained for the bootstrapped difference of 
Squares, with Zabout 3.0 (mean of 4.62, standard deviation 
of 1.52). This shows that the data support an LR that 
includes individual a in the mixture, as H. Suggested, rela 
tive to a random person (i.e., OSU), as Hal Suggested. (Note 
that with all random individuals, in other simulations Z=0.0, 
as expected.) 
0302) This approach simulates the random components 
of any hypothesis Set, and uses Statistical resampling on the 
fully specified LR to determine the confidence in the LR or 
its Support. The approach is generally applicable to all H, 
and H hypothesis sets and their LRs. With simple boot 
Strapping, it works best (on geometrical grounds) when the 
Specified a (e.g., the Suspect) is a major contributor to the 
mixture. To use the method in its most general form, it is 
preferable to employ more powerful Statistical Simulation 
methods, such as MCMC and empirical Bayes. 
0303 Special Analyses 
0304 (Few loci suffice) It is believed in the current art 
that many loci are required for mixture analysis, and that the 
current megaplexes (e.g., 15 loci) are more powerful in 
mixture resolution than are the Smaller panels. However, 
empirical Studies using LMA on laboratory data Show that 
this is not the case. Therefore, Smaller (hence less costly, 
time consuming, and complex) panels may Suffice for many 
forensic applications. 
0305 Referring to the 70:30 mixture data d, the major 
component was used as a known reference Sample a, and 
mixture deconvolution was applied to d and a to estimate the 
unknown genotype b and the mixing weight wo. In each 
analysis experiment, a locus order was randomly Selected, 
loci were added one at a time, and, for each partial Set of i 
loci (1sis I, I=10, the number of STR loci), mixture decon 
volution was applied to the partial data Set. After deconvo 
lution, the quality of the result was assessed by computing 
the Standard deviation Owas a confidence Score. This experi 
ment was repeated many times. 
0306 In a typical experiment, the results for cycle i are 
shown. The columns are (1) the number i of loci in the data 
Subset, (2) the difference of the estimated weight from the 
final solution (wo-69.586%), and (3) the standard deviation 
of the estimated weight. 

1. -O.O791 1.5854 
2 O.8009 18696 
3 -2.3509 1.2680 
4 O.2491 1.2455 
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-continued 

5 -0.7744 0.9179 
6 -O.7696 1.OO26 
7 -0.7746 1.0314 
8 -0.2158 O.8824 
9 O O.8335 
1O O O.8499 

0307 By the fifth cycle, with i=5 loci, the confidence in 
the weight (i.e., the standard deviation) has converged to 
about 1%, and then stayed at that level, with final values of 
about 0.85%. The weight estimate itself has converged to 
within one percentage point of the final wo by the fourth 
cycle. That is, most of the of the information in the mixture 
has been extracted using just i=5 loci. This reanalysis of the 
data Suggests that very large multiplex panels (e.g., with 
I>10) may not be essential for mixture analysis in all cases. 
0308. In this case, there were 3 four allele cases found in 
the first five loci. Current manual analysis depends largely 
on four allele locus data. Does all the resolving power of 
mixture analysis reside in the four allele data'? The next 
reanalysis shows that this is not the case. 
0309 (Three allele data). In the current art, large multi 
plex STR sets (e.g., roughly 10-20 markers) are preferred for 
mixture analysis. This is due in large part to the current need 
for four allele locus data in two perSon mixture cases when 
manually analyzing the data. Examiners who elect to use 
peak quantification data begin with the four allele cases to 
identify the major and minor contributors, and coarsely 
estimate the mixture weight (Clayton, T. M., et al., Analysis 
and interpretation of mixed forensic stains using DNASTR 
profiling. Forensic Sci. Int., 1998, 91: p. 55-70), incorpo 
rated by reference. The human inspection methods that are 
prevalent in the current art can do little with two or three 
allele locus data alone, Since Such data are not clearly 
resolved by manual analysis. This approach necessitates 
using large panels (at greater expense and effort) in order to 
randomly assure the presence of four allele locus data. 
0310. Using LMA on real mixture data shows that four 
allele loci are not required. Referring to the 70:30 mixture 
data d, the major component was used as a known reference 
Sample a, and mixture deconvolution was applied to d and 
a to estimate the unknown genotype b and the mixing weight 
wo. However, only the five loci showing three alleles were 
retained in the reanalysis. 
0311 Mixture deconvolution estimated a mixing weight 
of 70.50%, with O-1.18%. That is, the computer found a 
good solution (less than 1% from the best estimate) with 
high confidence (a 1% standard deviation) using only five 
STR loci, all of which had three alleles. The computation 
time was 35 milliseconds on a Macintosh Cube/G4. In the 
current art, this analysis would be very difficult (if not 
impossible) by Visual data inspection methods, and the time 
spent would be measured in hours, not milliseconds. 
0312 (Biallelic SNP analysis) Indeed, two alleles per 
locus are enough to resolve DNA mixtures, using quantita 
tive data and mixture deconvolution analysis. This is dem 
onstrated on single nucleotide polymorphism (SNP) marker 
Simulation data. 
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0313 Biallelic data was simulated for different size pan 
els of ISNP loci. The simulator generated random biallelic 
genotypes a and b at each locus. A mixture weight W was Set, 
and the Simulated mixture data d was generated as d=Gw--e, 
where G=ab, and e is a random noise vector included to 
model measurement error. Mixture deconvolution was then 
applied to d and a, with the computer estimating genotype b 
and mixture weight W. Variances were computed from the 
linear model, providing estimates of O. and O. 
0314. A wide range of values for I and w were explored 
in the experiments. Consider the experiment with I=10 loci, 
and w=95%. This is an interesting case, Since it represents 
few SNP loci, and an unknown minor contributor weight of 
just 5%. The results of a typical runs analysis are 
wA=94.42%, wiB=5.58%, and O=0.98%. That is, the linear 
analysis finds the correct Solution with high confidence. 
0315 These results Suggest that the design, use, quanti 
tation, and detection of SNP-based assays for DNA mixture 
analysis should account for the power of LMA as a power 
ful, fast, and accurate resolution method. Specifically, fewer 
loci are needed (reduced cost and effort), as long as the data 
quality, quantification, and analysis are of appropriately high 
quality. 
0316 (Three person analysis) More than J=2 persons can 
be resolved using LMA. Data were generated by mixing 
DNA from three individuals in different proportions, ampli 
fying the mixtures using SGM plus, running the products out 
on an ABI/310 automated DNA sequencer, and then record 
ing the peak quantificatins (height, area, size, genotype). The 
data used in this example were from the (very approximate) 
4:1:1 DNA combination, with 44 alleles across the 10 STR 
loci. 

0317. When all three genotypes are known, LMA can 
directly Solve for the actual mixture weights. Including a 
constraint that the weights must Sum to unity, LMA deter 
mined the weights as wA=70.56%, wb=11.43%, and 
wC=18.01%. 

0318 Next, suppose that the genotypes a and b are 
known, but that genotype c (and the mixture weights w) are 
not known. Applying an initial coarse search (1% spacing) 
on the 2-D Search Space, mixture deconvolution estimated 
the weights as wA=70%, wh=11%, and wC=19%, which 
agrees with the “all knowns” calculation. This result dem 
onstrates that LMA has application to J>2 contributors. 
0319 (Other lab data) The automation methods were 
applied to data from other laboratories, obtaining accurate 
results. For example, there was a reanalysis of the original 
six locus STR data (provided by Dr. Peter Gill) underlying 
the quantitative analysis of mixture sample MT/NO in (Gill 
P. Sparkes R, Pinchin R, Clayton T M. Whitaker J. P. 
Buckleton J. Interpreting simple STR mixtures using allele 
peak area. Forensic Sci. Int. 1998;91:41-53), incorporated 
by reference. Taking individual MT as the known reference 
profile, for each approximate mixing ratio (1:10, 1:5, 1:2, 
1:1, 2:1, 5:1, 10:1), exact mixture weights were derived and 
individual NO’s genotype was estimated. The respective 
computed weights (10.02%, 13.83%, 27.87%, 41.89%, 
58.43%, 77.25%, 86.66%) are in close agreement with the 
four allele locus weights that they had estimated (Table 6 for 
5 ng DNA in Gill P, Sparkes R, Pinchin R, Clayton T M., 
Whitaker JP, Buckleton J. Interpreting simple STR mixtures 
using allele peak area. Forensic Sci. Int. 1998;91:41-53). 
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0320 Forensic Applications 
0321) 
0322 Linear mixture analysis is useful for identifying 
individuals from mixed Stains. This has application, for 
example, in individual identity, where DNAS (e.g., from 
people, children, accident victims, crime victims, perpetra 
tors, medical patients, animals, plants, other living things 
with DNA) may be mixed together into a single mixed 
Sample. Then, mixture deconvolution can resolve the mixed 
data into its component parts. This can be done with the aid 
of reference individuals, though it is not required. 

Identify Individuals 

0323) A particularly useful aspect of the method is that 
given data d from a mixed Stain, together with one or more 
reference individuals a, a component individual b can be 
determined along with the mixture weights w. When the data 
provide Sufficient Support, this determination can be essen 
tially unique. Since the method also provides estimates of 
the error e, estimates of the variances (and Standard devia 
tions) O, O, and O, can be computed from the data. These 
values can be used to estimate probabilities and perform 
Statistical tests. Moreover, they provide a quantitative esti 
mate of the quality of a Solution. 
0324 Unique identification of individual components of 
mixed DNA samples is useful for finding Suspects from 
DNA evidence, and for identifying individuals from DNA 
data in forensic and nonforensic Situations. An individual’s 
genotype can be matched against a database for definitive 
identification. This database might include evidence, Vic 
tims, Suspects, other individuals in relevant cases, law 
enforcement personnel, or other individuals (e.g., known 
offenders) who might be possible candidates for matching 
the genotype. In one preferred embodiment, the database is 
a State, national or international DNA database of convicted 
offenders. 

0325 When there are no (or only some) reference indi 
viduals, but other information (Such as a database of profiles 
of candidate component genotypes) is available, then the 
invention can Similarly derive Such genotypes and Statistical 
confidences from the DNA mixture data. This is useful in 
finding Suspect individuals who might be on Such a database, 
and has particular application to finding perSons (e.g., crimi 
nals, missing perSons) who might be on Such a database. 
0326. When there is little or no supplementary informa 
tion, the LMA method permits computation of probabilities, 
and evaluation of hypotheses. For example, a likelihood 
ratio can compare the likelihood of the data under two 
different models. Integrating (either directly, or in conjunc 
tion with Statistical resampling) over the parameters (e.g., 
mixture weights, contributing genotypes) using the linear 
model invention enables robust and accurate evaluation of 
the evidence. 

0327 DNA Cryptography 
0328. The ability of the invention to uniquely identify 
individuals from a mixture given reference information 
enables the encoding and decoding of individual identity by 
using mixed DNA Samples. For example, an individual’s 
DNA could be mixed with the DNA from J-1 other indi 
viduals. If J-1 (or J-L, L Small) of these individual geno 
types were known to a decoder (either directly, or through a 
database of candidate genotypes), then the individuals 
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genotype could be uniquely determined from the DNA 
mixture. Moreover, if an insufficient number M (i.e., M Zero 
or M Small) of these individuals were known to a decoder, 
then the problem of resolving J-M individuals from the 
mixture would be computationally intractable, and the iden 
tity of the individual would be masked by the other con 
tributors, and essentially unknowable. This provides a 
means of communicating in confidence the identity of an 
individual, or encrypted messages. A large Set of Secure 
cryptographic protocols are immediately enabled once this 
nucleic acid encoding Scheme is used (Schneier, B., Applied 
Cryptography, second ed 1996, New York: John Wiley & 
Sons), incorporated by reference. 
0329. One typical application of DNA cryptography is in 
Sending Secure messages. Suppose that a mixed DNA geno 
type is used as a encryption key. For example, one compo 
nent of the key identifies the Sender, and other component 
identifies the recipient. (Reference DNAS may be used, 
instead of, or in addition to, the actual individual's DNA. 
Additional DNAS can be used to further increase the security 
of the encryption.) A message encoded with the mixed DNA 
Sample can then be Securely sent. 
0330. In one preferred embodiment, a message is 
encoded using an encryption key derived from the Sender's 
genotype. A DNA stain containing DNA from both recipient 
and Sender, is also sent. Third parties cannot resolve the 
mixture into its components. Both recipient and Sender 
know half the encoding: their own DNA. By supplying their 
own genotype as a reference, the mixture deconvolution 
invention instantly provides the recipient with knowledge of 
the other Sender's genotype. The Sender's genotype is then 
used to decode the message. Additional reference genotypes 
(known to one of the parties) can be used to further increase 
the security of the mixed DNA encryption key. 
0331. The DNA cryptography has application to medical 
records. In another preferred embodiment, an individual’s 
genotype is used to encode a message. A particularly useful 
message is medical record information about that individual, 
which can be encoded using the individual’s genotype, and 
then posted in a public or Semiprivate location (e.g., on an 
Internet database) indexed by this genotype. When medical 
perSonnel need to retrieve medical record information on an 
individual whom they are caring for, by having the perSon 
available, they can readily obtain the individual's genotype 
from blood or other tissue, and thereby decode the individu 
al’s medical records. Other public key methods can be 
devised; these may include additional Security codes. More 
over, information other than medical records can be com 
municated in this way. The knowledge of the STR loci used 
can constitute another level of encoding and decoding. DNA 
cryptography has utility in many other cryptographic appli 
cations, using a wide variety of cryptographic protocols, 
which are well-known in the art (Schneier, B., Applied 
Cryptography, second ed 1996, New York: John Wiley & 
Sons), incorporated by reference. 
0332 Convict Criminals 
0333 DNA mixtures are currently analyzed by human 
inspection of qualitative data (e.g., electrophoretic bands are 
present, abasent, or Something in between). Moreover, they 
are recorded on databases and reported in court in a similarly 
qualitative way, using descriptorS Such as "major' or 
“minor band, and “the suspect cannot be excluded” from 
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the mixture. Such Statements are not optimally compelling 
in court, and lead to crude database Searches generating 
multiple hits. 
0334) Linear mixture analysis of quantitative data 
changes this situation. Precise and accurate quantitative 
analysis of the mixture data can reveal unique identities in 
many cases. Moreover, these mixture analyses can be 
backed up by Statistical certainties that are useful in con 
Vincing presentation of evidence. The increased certainty of 
identification is reflected in the increased likelihood ratios, 
as well as other probabilities and Statistics, as described 
above. 

0335). As discussed, with the random person hypothesis 
of the defense, current LR analysis gives far too much away 
to the defense (National Research Council, Evaluation of 
Forensic DNA Evidence: Update on Evaluating DNA Evi 
dence, 1996, Washington, DC: National Academy Press), 
incorporated by reference. Linear mixture analysis can 
reduce such inflated LRs by many orders of magnitude. The 
LR can be improved by using Standard bootstrapping tech 
niques on the population frequencies to remove much of the 
Sampling error. It is preferable to consider inbreeding coef 
ficients when computing the prior genotype probabilities 
from the allele frequencies. 
0336. The invention includes using quantitative data. 
This may entail proper analysis or active preservation of the 
raw STR data, including the gel or capillary electrophoresis 
data files. Removing or destroying this highly quantitative 
information can lead to Suboptimal data analysis or lost 
criminal convictions. The invention enables mathematical 
estimation of genotypes, together with Statistical certainties, 
that overcome the qualitative limitations of the current art, 
and can lead to greater certainty in human identification with 
increased likelihood of conviction in problematic cases. 
0337 Generate Reports 
0338 Preparing and reviewing reports on mixed DNA 
Samples is tedious and time consuming work for the forensic 
analyst. This DNA analysis and reporting expertise is also 
quite expensive, and represents the Single greatest cost in 
crime laboratory DNA analysis. It would be useful to 
automate this work, including the report generation. This 
automation has the advantages of higher speed, more rapid 
turnaround, uniformly high quality, reduced expense, elimi 
nating casework backlogs, alleviating tedium, and objectiv 
ity in both analysis and reporting. 

0339. The linear mixture analysis and mixture deconvo 
lution methods are designed for computer-based automation 
of DNA analysis. The results are computed mathematically, 
and then can be presented automatically as tables and figures 
via a user interface to the forensic analyst. This analysis and 
presentation automation provides a mechanism for auto 
mated report generation. 
0340. There is a basic template for reporting DNA evi 
dence. Within this template, there are information and 
analyses that are unique to the case, and other information 
that is generally included. In one preferred embodiment, a 
template is developed in a document preparation environ 
ment (DPE) that provides for references to other files and 
variables. Preferable formats include readable documents 
(e.g., word processors, RTF), hypertext (e.g., HTML), and 
other portable document formats (e.g., PDF). A preferred 
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DPE that can output many different common formats is 
FrameMaker (Adobe Systems, San Jose, Calif.). A DPE 
template is a complete document that describes the text and 
graphics for a Standard report, either directly or by reference 
to variables and files. 

0341. After the automated mixture analysis, possibly 
including human review and editing, the computer generates 
all variables, text, table, figures, diagrams and other presen 
tation materials related to the DNA analysis, and preserves 
them in files (named according to an agreed upon conven 
tion). The DCE template report document refers to these 
files, using the agreed upon file naming convention, So that 
these case-specific materials are included in the approprate 
locations in the document. The DCE document preparation 
program is then run to create a document that includes both 
the general background and case Specific information. This 
DCE report document, including the case related analysis 
information (possibly including tables and figures), is then 
preferably output as a bookmarked PDF file. The resulting 
PDF case report can be electronically stored and transferred, 
Viewed and Searched croSS platform on local computers or 
via a network (LAN or WAN), printed, and rapidly provided 
(e.g., via email) to a crime laboratory or attorney for use as 
documented evidence. 

0342 Clean up DNA Databases 
0343 Many DNA databases permit the inclusion of quali 
tatively analyzed mixed DNA samples. This is particularly 
true of the “forensic' or “investigative lead” database com 
ponents, that contain evidence from unsolved crimes that 
can be used for matching against DNA profiles. 
0344) When these mixed DNA samples are matched 
against individual or mixed DNA queries, many items 
(rather than a unique one) can match. Instead of a single 
DNA query uniquely matching a Single DNA database entry, 
the DNA query can degenerately match a multiplicity of 
mixed DNA database entries. This degeneracy is only com 
pounded when mixed DNA queries are made. Mixture 
degeneracy corrupts the database, replacing highly informa 
tive unique query matches with large uninformative lists. In 
these large lists, Virtually all the entries are unrelated to the 
DNA query. 
0345 To prevent this database corruption with mixed 
DNA profiles, it would be useful to clean up the entries prior 
to their inclusion on the database. When the raw (or other 
quantitative) STR data are available, this clean up is readily 
implemented by the mixture deconvolution invention. For 
example, consider the common case of a two perSon mixture 
containing a known victim and an unknown perpetrator. 
Mixture deconvolution estimates the genotype of the 
unknown perpetrator, along with a confidence. (Lower con 
fidences may Suggest intelligently using degenerate alleles at 
Some loci.) The resolved unknown perpetrator genotypes are 
then entered into the forensic database, rather than the usual 
qualitative (e.g., major and minor peak) multiplicity of 
degenerate alleles. The result is far more uniqueness in 
Subsequent DNA query matches, with an associated increase 
in the informativeness and utility of the matches. 
0346 Clean up DNA Queries 
0347 When performing DNA matches against a DNA 
database, current practice uses mixed DNA stains with 
degenerate alleles. This practice produces degenerate 
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matches, returning lists of candidate matches, rather than a 
unique match. Most (if not all) of the entries on this list are 
typically Spurious. The length of these Spuriously matching 
lists grows as the Size of the DNA database increases. 
0348 With mixture deconvolution, the genotype b of an 
unknown contributor can often be uniquely recovered from 
the data d and the victim(s) a, along with Statistical confi 
dence measures. Thus, using the resolved mixture b, instead 
of the qualitative unresolved data d, a unique appropriate 
database match can be obtained. Moreover, the result of this 
match is highly useful, Since it removes the inherent ambi 
guity of degenerate database matching, and largely elimi 
nates Spurious matches. Even when there is more than one 
unknown contributor to d, the invention's bootstrap Simu 
lation methods permit matching of the mixed data against 
the database for relatively unique results. 
0349 Reduce Investigative Work 
0350. Of all the costs in using DNA technology to find 
criminals, the greatest one is the actual investigative work 
involved in using the DNA evidence to follow leads. One 
reason why this cost is So high is the large number of leads 
generated by degenerate matches. Following one lead is 
expensive; following dozens can be prohibitive. And as the 
sizes of the DNA databases increase, the investigative cost 
of degenerate matches (from mixed crime stains or mixed 
database entries) will increase further. 
0351. The mixture deconvolution invention overcomes 
this developing bottleneck. By cleaning up the information 
prior to its use, the databasee Searching results become more 
unique and leSS degenerate. This relative uniqueness trans 
lates into reduced investigative work, and greatly reduced 
costs to Society for putting DNA technology into practice. 
The natural business model for mixture deconvolution there 
fore includes consideration for reducing this investigative 
burden. 

0352 Catch Criminals 
0353. The ultimate cost of degenerate DNA matches is 
losing the ability to use DNA technology to find criminals at 
all. Too many leads amount to no useful leads, Since large 
numbers of low information leads cannot be practically 
acted upon due to finite law enforcement resources. Then 
Society pays the highest cost: the criminal is not found, not 
brought to justice, and continues to commit further crimes. 
This has a high financial, Societal, economic, and human 
cost, which can be quantified. For example, with Sexual 
assault crimes the estimated dollar cost to the victim and 
Society (when the victim's quality of life is quantified) is 
S87,000 per case (Victim Costs and Consequences: A New 
Look, National Institute of Justice Research Report, January 
1996, http://www.ncjrs.org/txtfiles/victeost.txt), incorpo 
rated by reference. 
0354) The mixture deconvolution invention can reduce 
this ultimate cost by cleaning up the DNA mixture Samples 
prior to using the data with a database. This cleanup reduces 
the degeneracy of the DNA matches, increases the informa 
tion resulting from a database match, and increases the 
likelihood of catching criminals using DNA technology. 
0355 Reduce Laboratory Work 
0356. In preparing potentially mixed DNA samples for 
PCR analysis, crime labs typically attempt to Separate dif 
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ferent tissues whenever possible. This is done to help avoid 
analyzing mixture traces, which is difficult, time consuming, 
and yields uncertain results in the current art. 
0357. In sexual assault cases, differential DNA extraction 
is conducted on Semen Stains in order to isolate the Semen as 
best as possible. This is done because, a priori, Semen Stains 
are considered to be mixed DNA samples, and the best 
possible (i.e., unmixed) evidence is required for finding and 
convicting the assailant. Thus, mixture Separation is 
attempted by laboratory Separation processes. The full dif 
ferential extraction protocols for isolating Sperm DNA are 
laborious, time consuming, and expensive. They entail dif 
ferential cell lysis, and repeatedly performing Proteinase K 
digestions, centrifugations, organic extractions, and incuba 
tions; these steps are followed by purification (e.g., using 
micro concentration). There are also Chelex-based methods. 
These procedures consume much (if not most) of the labo 
ratory effort and time (often measured in days) required to 
for laboratory analysis of the DNA sample. This time factor 
contributes to the backlog and delay in processing rape kits. 
0358. There are also modified differential DNA extrac 
tion procedures that are much faster and Simpler. These 
procedures eliminate most of the repetitious Proteinase K 
digestions, organic Solvent Separations, and centrifugations, 
reducing the total extraction effort from days to hours. 
However, they do not provide the same degree of Separation 
of the sperm DNA template as does the costlier full differ 
ential extraction. In fact, highly mixed DNA samples will 
often result. 

0359. With the mixture deconvolution invention, it is 
feasible to replace days of laboratory Separation effort with 
Seconds of automated computer analysis time. The result is 
the Same: the assailant's Sperm cells genotype b is separated 
from the victim's epithelial genotype a using the mixed data 
d. The invention enables crime labs to use faster, Simpler and 
less expensive DNA extraction methods, with an order of 
magnitude difference. The computer performs the refined 
DNA analysis, instead of the lab, resolving the mixture into 
its component genotypes. 
0360 Low Copy Number 
0361) Given the power of DNA human identity analysis, 
forensic Scientists are now analyzing ever lower quantities 
of DNA recovered from crime scenes. Whereas most STR 
kits work comfortably in the 1 ng range, Scientists are now 
working well below 100 pg, extending down to the 1 pg 
(several DNA copies) range (Gill, P., et al., An investigation 
of the rigor of interpretation rules for STRs derived from less 
than 100 pg of DNA, Forensic Sci Intl., 2000, 112: p. 17-40), 
incorporated by reference. 

0362) To obtain low copy number (LCN) data, laborato 
ries will change the PCR protocol, e.g., increase the cycle 
number (say, from 28 to 34 cycles with SGM plus). Experi 
ments are often done in duplicate. The combination of leSS 
template and more cycles can lead to increased data artifacts. 
Most prevalent are PCR stutter, allelic dropout, low signal to 
noise, and mixture contamination. 

0363 The automated analysis methods described earlier 
herein readily remove PCR artifacts such as Stutter and 
relative amplification. To handle allelic dropout, new valid 
genotypes (e.g., 1 of one allele, and 0 of any another; these 
do not sum to 2 alleles) must be included in the analysis. For 
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example, in mixture deconvolution, monozyogotic geno 
types would be added as valid Searchable cases. Signal to 
noise is increased by repeating the experiment, and then 
combining the results at each locus. 
0364. In performing linear mixture analysis, the main 
effect of noise and dropout are seen in increased error 
measures (such as variance and Standard deviation). While 
the invention works well on Such data, it cannot extract more 
information from the problem than it actually contains. 
Therefore, the Statistical analysis may Suggest multiple 
genotypes. The variance can be reduced by increasing the 
informativeness of the data. Techniques for this include 
experiment repetition, using multiplex panels that contain 
more loci, and using more informative loci (higher heterozy 
gosity or polymorphism information content (PIC). 
0365 Reduced Panel Size 
0366 Current multiplex panels have many STR loci (e.g., 
from 9 to 15). This provides tremendous discriminating 
power that can render virtually all of the current and future 
World's population essentially unique. When matching 
Single profiles to single profiles, the panels (in combination 
with conventional evidence) provide far more information 
than what courts actually need for guilt beyond a reasonable 
doubt. 

0367 This panel overdesign is intended to overcome 
many worst case Scenarios. Conventional wisdom holds 
that: 

0368 1. DNA databases will be corrupted with 
mixture data. 

0369 2. DNA evidence will be limited by mixture 
contamination. 

0370 3. Only the four allele cases (in two person 
mixtures) provide the analyst with useful informa 
tion for distinguishing the major and minor compo 
nentS. 

0371. 4. The more loci, the greater the confidence in 
the evidence. 

0372 5. In casework practice, not all loci will pro 
vide useful information. 

0373 There is certainly truth to these beliefs, based on 
current practice. However, the mixture analysis invention 
and its applications moderate these views, Somewhat. Spe 
cifically: 

0374 1. DNA databases need not be highly cor 
rupted by mixture data. Mixture deconvolution can 
Separate out Suspect from victim, thereby cleaning 
up the database. 

0375 2. DNA evidence need not be highly corrupted 
by mixture contamination. Mixture deconvolution 
can Separate out Suspect from Victim, thereby clean 
ing up the queries made by crime lab against data 
base. 

0376 3. Four allele cases (in two person mixtures) 
are not needed by the invention's automated com 
puter analysis of mixture data. Indeed, as shown 
herein, a handful of three allele loci work well for 
complete resolution. 
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0377 4. A large number of loci is not needed when 
using linear mixture analysis. A handful Suffice for 
achieving full confidence, as measured by the vari 
ance in the Solution. 

0378) 5. While not all loci may provide useful 
information, in fact, for mixture resolution, very few 
are actually needed. 

0379 These observations suggest a simpler approach to 
crime lab stain analysis. Rather than putting considerable 
effort into obtaining as many loci as possible, it might be 
preferable to run a Smaller panel (with loci that correspond 
to a database), perform the computer mixture analysis, and 
determine whether or not a useful identifying genotype has 
been obtained. If Successful, then a crime lab need not 
expend further resources on additional STR typing. Since 
the costs of STR panels are priced proportionately to the 
number of loci, and many Samples are analyzed per case, this 
could lower the incurred cost of information in each case. 

0380 Extensions of the Method 
0381 Other Markers 
0382. The mixture analysis methods work with markers 
other than STRs. One important class of markers are the 
single nucleotide repeat polymorphisms (SNPs). In these 
assays, each component biallelic marker has just two alleles: 
one of two bases that terminate the reaction. 

0383 With miniseduencing protocols, SNPs are detected 
by primer extension of one nucleotide that is a labeled 
ddNTP terminator. One allele has its base identified with a 
complementary terminator labeled in a first color (say, blue), 
while the second allele has its (different) base identified with 
a complementary terminator labeled in a Second color (say, 
red). Clearly, up to four alleles (one color for each possible 
nucleic acid base) can be accomodated in this way. 
0384 Suppose that after PCR (in the linear range), primer 
extension is performed on the PCR product with the two 
differently colored ddNTPs. Consider a single marker hav 
ing two alleles. A homozygote for the blue allele would 
produce two blue units and no red units, a homozygote for 
the red allele would produce two red units and no blue unit, 
and a heterozygote would produce one blue unit and one red. 
Thus, the possible genotpes at this locus can be written as 
{2 0,1 1,02)}, where the first vector element describes 
the blue allele, and the second one the red allele. This case 
is isomorphic to the two allele STR situation. 

0385) A mixture of J individuals would produce a con 
tinuous-valued signal that would be a linear combination of 
the pure genotypes, according to their DNA template pro 
portion, with the simplex constraint that the Sum of the 
(nonnegative) weight values totaled to unity. Suppose there 
are I SNP loci, J DNA contributors to the mixture, and K 
alleles present. Note that K=2I in the biallelic case (and 
Ks4I when more than two alleles per locus are permitted), 
with one entry for each detected color. Then one obtains the 
linear mixture analysis model: 

0386 where d is the observed Kx1 data vector, G is KXJ 
matrix of genotype column vectors, W is the Jx1 mixture 
weight vector, and e is the error. With multiple experiments, 



US 2002/0152035 A1 

d becomes a matrix (not a vector) of observations, and the 
equation changes accordingly. 

0387. The mixture deconvolution invention is therefore 
quite applicable to SNP data. This is because the mathemati 
cal form of the problem, and the linear nature of the data, are 
identical to the problem solved above for any linear mixture 
model, as illustrated in depth for STRs. 

0388 SNP assays can be done by gel or capillary elec 
trophoresis (which permits highly multiplexed one dimen 
Sional analysis), and by DNA arrays (which can pack a large 
number of Zero dimensional experiments into a two dimen 
Sional format) Such as microwell titre plates, and DNA chips 
or other Surface-based DNA comparison technologies. They 
are attractive for human (and other species) identification 
because a large amount of data can be obtained at a relatively 
lower ocSt per unit of information. This was demonstrated in 
the data simulations described above. 

0389. The mixture analysis methods described will work 
with any marker System, as long as the detected allele 
Signals vary linearly (or in a similarly monotonically pre 
dictable way) with the amount of DNA template that is 
effectively present. This is because once the linearity con 
dition is met, the data from one or more markers from two 
or more DNA contributors can linearly modeled as: 

0390 which is a mixture problem that the invention 
completely Solves. 

0391 Achieving this linearity condition may require 
adapting the experiment to the linear analysis method. For 
example, Some molecular biologists prefer to bias their 
experiments to achieve an all-or-none response, e.g., by 
Saturating the System Somehow (say, by using a very large 
number of PCR cycles). The linear adaptation in this case 
would entail moving the System away from the Saturating 
parameters, into a linearly (or monotonicly) behaving range 
(say, by reducing the number of PCR cycles). 
0392). Other Genotypes 

0393. There are valid genotypes other than those used in 
the above embodiments. One case involves extra alleles (i.e., 
more than two at a locus). For example, if trisomy 21 is a 
likely event, then the valid genotypes of a single individual 
can be extended to handle the three expected chromosomes. 
This is done by adding to the valid genotype Set all possible 
combinations for the observed alleles that Sum to three. With 
two alleles, for example, the original Set 

{2 O. 11), IO 2} 

0394) is expanded to 
{2 O. 11), IO 2, 3 O. 1 2), 2 1, 3 OD, 

0395 which then accomodates the feasible two and three 
chromosome cases. 

0396 Another case involves missing alleles. With LCN 
applications, allele dropout may occur due to the observable 
amplification of only one chromosome. If this is expected, 
then Simply augment the valid genotype Set with the possi 
bilities of alleles that Sum to one. With two alleles, for 
example, the original Set 
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{2 O. 11), IO 2} 

0397) is expanded to 

{2 Ol. 1 1 0 2 1 0, 0 1 }, 

0398 which then accomodates both feasible one and two 
chromosome cases. 

0399. Other Formats 
0400. The invention is not dependent on any particular 
arrangement of the experimental data. In the DNA amplifi 
cation, same DNA template is used throughout. For effi 
ciency and consistency of the amplification conditions, a 
multiplex reaction is preferred. There is no requirement on 
the specific label or detector used. It is preferred that the 
experiment be conducted in the linear range of the DNA 
analysis System. 

04.01 There is no restriction on the dimensionality of the 
laboratory System. It can accomodate dimensions of Zero 
(tubes, wells, dots), one (gels, capillaries, mass spectrom 
etry), two (gels, arrays, DNA chips), or higher. There is no 
restriction on the markers or the marker assay used. The only 
requirement is that 

0402 can be made to be a reasonable model of the 
System's behavior. For then, the mixture weight can become 
a constraint on the data that leads to rapid, robust and 
accurate Solutions. 

0403 General Solution 
04.04 The general Solution for I markers, J individuals, 
and Kalleles was given above. With 0 unknowns, the 
mixture weight w can be determined by least Squares 
minimization. With 1 unknown genotype, the missing geno 
type b can also be determined using mixture deconvolution. 
With 2 unknown genotypes, the missing genotypes band b 
can be also determined using mixture deconvolution 
together with bootstrap resampling Simulation. With more 
than 2 unknown genotypes, additional Search on the geno 
type Solution Space is required, but can be Solved with brute 
force computation, integer programming, or computational 
geometry minimization techniques. Thus the linear mixture 
analysis provides a general Solution framework for effec 
tively Solving any DNA mixture Search problem, and pro 
Viding Statistical estimates of the quality of the Solution. 
04.05 With any number of unknowns, bootstrap simula 
tion techniques based on the linear mixture analysis method 
permit the computation of a null distribution. Any genotype 
configuration can be Statistically assessed against this null 
distribution. For example, Suppose the hypothesis is that J 
particular individuals are the contributors to a particular 
mixture d. Then, least Squares projection into the J-1 
Simplex finds the weight parameter Solution having the best 
confidence Score. This optimal Score can be compared 
against the Sampled null distribution to assess the validity of 



US 2002/0152035 A1 

the hypothesis. Alternatively, the minimal Solution can be 
used to estimate variance in probability calculations, or 
other statistics (e.g., the sample variance Sf) for use in 
statistical tests (e.g., X or F). Thus, the linear mixture 
analysis invention provides a general Solution framework for 
effectively evaluating any DNA mixture hypothesis, and 
providing useful Statistical estimates. 
0406 Three Person Mixture 
0407. The most preferred embodiment for solving a three 
person mixture (J-3) with one unknown genotype was 
described above (i.e., Simplex Search for error minimiza 
tion). An alternative embodiment for resolving Such a case 
comprised of one woman and two men is described here 
using Y-chromosome markers. It entails two data Sets and 
two one dimensional optimizations, instead of the most 
preferred one data Set with one two dimensional optimiza 
tion. 

0408 For known female victim a, and the two male 
components b and b, write: 

04.09 Using Y-chromosome markers, such as (Y-PLEX 6, 
ReliaGene, New Orleans, La.), type the mixture, obtaining 
data on the two male components. Use mixture deconvolu 
tion on this Y-chromosome data to determine the mixture 
weight Bo between them. 
0410 Now write the genotype estimate function for bas: 

t 1 d - a t 
2(a) = 1 - fo a + -6b, 

0411 and the error vector as 
e(C)=(1-C)(1-fo)b,(c)-6- 

0412 where 6 is the closest valid genotype to b(C). Use 
the mixture deconvolution algorithm to minimize lef, and to 
find b and Co. 
0413) Additional Data 
0414. In forensic casework, it is often possible to perform 
only a Single PCR amplification on a Sample, due to limited 
DNA material. However, in many cases the PCR can be 
repeated. In Some circumstances, particularly when the 
initial mixture deconvolution Suggests a high variance or 
low confidence in a unique Solution, it is useful to repeat the 
experiment (possibly multiple times) to obtain additional 
data. 

0415. In the linear system d=Gw--e, d, w and e are 
column vectors. With repeated experiments, one can write 
instead the matrix relationships 

D=GWE 

0416) This can confer several advantages: 
0417. The additional data permits more accurate esti 
mation of the variances. 

0418. The search algorithm can be adjusted to force all 
columns of W to be equal, So that a common mixing 
weight in the template is assumed. If this is done, then 
it is best to amplify all replicates from the same DNA 
template. 
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0419 Mixture deconvolution may provide more accu 
rate Solutions, particularly when the data are problem 
atic. 

0420 Multiple experiments permit the calculation of 
Sample covariances acroSS the alleles. This can reveal 
correlations between allelic quantities within (or 
between) loci. 

0421. The covariance matrix V can be computed, and 
used in the modeling of the data. AS described above, 
V appears in the weight variance estimation, the prob 
ability distributions, and thus the likelihood calcula 
tions. 

0422 Experiment repetition is most helpful in certain 
applications, Such as low copy number DNA analysis. 

0423. PCR Artifacts 
0424. In the most preferred embodiment, PCR artifacts 
are removed (or attenuated) mathematically by calibrations 
such “stutter deconvolution” (Martens, H. and T. Naes, 
Multivariate Calibration 1992, New York: John Wiley & 
Sons 438; Perlin, M. W., G. Lancia, and S. -K. Ng, Toward 
fully automated genotyping: genotyping microSatellite 
markers by deconvolution, Am. J. Hum. Genet., 1995,57(5): 
p. 1199-1210.), incorporated by reference. The mixture 
analysis is preferably done after Such signal preprocessing. 
Advantages include a reduction in the dimensionality of the 
Search Space, and the use of an integer lattice for Search 
algorithms. 

0425. In an alternative embodiment, stutter is not 
removed prior to mixture deconvolution or LMA. In that 
case, the dimensionality of the data Space is increased by the 
additional alleles formed by artifactual stutter bands. In such 
analyses, it is best to include Stutter data in the representa 
tion of all genotypes, including reference and target geno 
types. This will move the genotypes off the integer lattice, 
and into the quantitative allele measurement Space. The 
effect is that genotype matrix G can assume continuous 
(rather than purely discrete) values. By the linearity of the 
Stutter transformation, the mixture model and deconvolution 
will still work well. However, this embodiment has a more 
complex representation than using the Stutter calibrated data. 
0426 In an alternative embodiment, relative amplifica 
tion is not adjusted for prior to mixture deconvolution or 
LMA. In that case, heterozygotes are better represented by 
points that are not on the integer lattice, but instead fall along 
the line between the pure homozygotes at a position based 
on their relative amplification. This can put continuous 
(rather than discrete) valued entries in the genotype matrix 
G. The methods described will operate well in this alterna 
tive , if more complex, representation. 
0427 Nonforensic Applications 
0428 Linear modeling, regression and mixture analysis 
are well established in the prior art (Christensen, R., Plane 
Answers to Complex Questions: A Theory of Linear Models, 
1996, New York: Springer-Verlag; Martens, H. and T. Naes, 
Multivariate Calibration, 1992, New York: John Wiley & 
Sons. 438; Seber, G. A. F., Linear Regression Analysis, 
1977, New York: John Wiley & Sons), incorporated by 
reference. However, the mixture deconvolution methods (for 
the J-1 knowns case) are novel. They use integer constraints 
on the genotype to determine a column in the design matrix 
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G by a global minimization. Moreover, the bootstrap Simu 
lation methods (for the J-2 knowns case) are novel. They 
use integer constraints on the genotype, together with an 
information Source (e.g., a database of candidate genotypes), 
to determine two columns in the design matrix G by multiple 
global minimizations. 
0429 These novel and nonobvious optimization methods 
have utility in the analysis of data formed by linear combi 
nations and other transformations of discrete data. Initial 
preprocessing inverts the other transformations, leaving a 
mixture deconvolution problem. This is Solved using the 
methods described above. 

0430. One nonforensic application is cryptography. Con 
sider Some binary String (e.g., ASCII) representation T of 
Some text or other discretizable information having length 
K. Next, consider another discrete String U, also of length (at 
least) K. (In alternative embodiments, more than one Such U 
are used.) Such U's of arbitrary length are readily available, 
given the amount of on-line content accessible on the 
Internet. Each element of T and U is comprised of a 0 or a 
1. Choose a weight w (between 0 and 1), and form V as the 
continuous mixing of T and U, defined by 

0431 Round the values V(k) to several decimal places, 
and introduce additional noise, if desired. That is: 

0432 Each V(k) element can be represented numerically 
in at most 8 bits as a byte character, providing natural 
round-off error. 

0433. The vector V has entries that assume values 
between 0 and 1. The message T is entirely unknowable 
from V alone. Yet, by having U in hand, mixture deconvo 
lution can instantly recover the information T. In this way, 
the function 

0434 serves as a trapdoor one-way function, for random 
W and e. It is easy to compute in one direction, and hard to 
compute in the other. However, given the Secret information 
U, it becomes easy to compute X. Such trapdoor one-way 
functions are at the heart of modern cryptography (Schneier, 
B., Applied Cryptography, second ed., 1996, New York: John 
Wiley & Sons), incorporated by reference. So the methods 
described herein clearly have utility that goes well beyond 
forensics and personal identification. 
0435 Medicine and Agriculture 
0436 There are many settings in biology, medicine, and 
agriculture where mixed DNA (or RNA) samples occur. 
These Samples can be mixed intentionally, or unintention 
ally, but the problem remains of determining one or more 
genotype components. 

0437. In biology, mixtures of DNA sequences occur. For 
example, when Sequencing DNA, it is useful to first 
Sequence the two chromosome Sample and then Somehow 
determine the component DNA sequences, rather than Sub 
clone to first Separate and then Sequence them. AS described 
in the preceding cryptography example, LMA can decon 
Volve mixed Sequences of discrete information, Such as 
DNA sequences. In HLA typing, for example, the known 
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combinations of Sequences permit quantitative information 
to be resolved using mixture deconvolution. 
0438. In medicine, cancer cells are a naturally occurring 
form of DNA mixtures. In tumors that exhibit microsatellite 
instability (e.g., from increased STR mutation) or loss of 
heterozygosity (e.g., from chromosomal alterations), a dif 
ferent typable DNA (the tumor) is mixed in with the normal 
tissue. By determining the precise amount of the individu 
al’s normal DNA, versus the amount of any other DNA(e.g., 
a diverse tumor population), cancer patients can be diag 
nosed and monitored using mixture deconvolution. This is 
done by using the many alleles possibly present at a locus. 
With diverse tumor tissue subtypes, there may be many 
alleles present. Quantitative data are collected for d, the 
individuals known alleles are then used as reference a, and 
the pattern of the tumor contribution b is determined, along 
with the mixture weight W and the Standard deviation. 
0439. In agriculture, animal materials can be mixed, e.g., 
in food, plant or livestock products. LMA can resolve the 
mixed Samples into their individual components. 

0440 Business Model 
0441 There are many situations in which automated 
linear mixture analysis conferS economic and other benefits 
to the user community. At each of these, the natural model 
is a usage-based fee that reflects a reasonable percentage of 
the value-added provided. This business model of providing 
DNA mixture data analysis is novel, and not obvious. It is 
reasonable and useful because the techology delivers clear 
benefits and enabling functionalities that cannot be done in 
any other way in the current art. 
0442. In a first preferred embodiment, crime or service 
laboratories generate their own data from DNA samples. The 
data quantitation and mixture analysis is then done at their 
Site, or, preferably (from a quality control Standpoint) at a 
separate data service center (DSC). This DSC can be oper 
ated by a private for-profit entity, or by a centralized 
government agency. The case is analyzed, and a report then 
generated (in whole or part) using the Software. The report 
is provided to the originating laboratory. Usage fees are 
applied on a per case basis, with Surcharges for additional 
work. The DSC may provide quality assurance services for 
provider laboratories to ensure that the data is analyzable by 
quantitative methods. 

0443) In a second preferred embodiment, the DSC gen 
erates the data, and analyzes it as well. This has the 
advantage of ensured quality control on the data generation. 
This can be important when the objective is quantitative data 
that reflects the output of properly executed data generation. 
After data analysis, the customer receives the report, and is 
billed for the case. 

0444 There are several feasible customers for database 
work. When entering mixed Samples onto a database, it is 
the database curators and owners (e.g., a centralized gov 
ernment related entity) that is most concerned about the 
quality of the entered data for future long-term forensic use. 
This Suggests a usage-based contract with Said entity for 
cleaning up the data. A value added by the invention is the 
capability of finding criminals at a lower cost. 
0445. When analyzing a mixed DNA sample, law 
enforcement agencies (e.g., prosecutors, police, crime labs) 



US 2002/0152035 A1 

may be interested in identifying genotypes in the mixed 
Sample which are unknown, preferably to match them 
against a database of possible Suspects. In this case, a value 
added by the invention is the reduced cost, time, and effort 
of mixture analysis and report generation. There is addi 
tional value added in obtaining a higher quality result that 
can more effectively serve the law enforcement needs of the 
agency. 

0446. When matching against a DNA database, a single 
correct match will lead to minimal and Successful investi 
gative work by the police or other parties. Having a multi 
plicity of largely incorrect matches creates far greater work, 
for far less benefit. That is the current art. The invention can 
(in many cases) reduce this work by over an order of 
magnitude. The value added in this case is the Savings in cost 
and time in the pursuit of justice. 
0447. When using mixed DNA evidence in court, the 
goal is to obtain a conviction or exoneration, depending on 
the evidence. The current art produces imprecise, qualitative 
results that are ill-Suited to this purpose. Current assess 
ments often vastly understate the true weight of the evi 
dence. The value added in this situation is the capability of 
the technology to convict the guilty (and keep them off the 
Street) and to exonerate the innocent (and return them to 
Society). The financial model in this case preferably 
accounts for the benefit to Society of appropriately reduced 
crime and increased productivity. 
0448 System 
0449 The LMA invention includes a system for resolving 
a DNA mixture comprising: (a) means for amplifying a 
DNA mixture, said means producing amplified products; (b) 
means for detecting the amplified products, Said means in 
communication with the amplified products, and producing 
Signals; (c) means for quantifying the Signals that includes a 
computing device with memory, Said means in communi 
cation with the Signals, and producing DNA length and 
concentration estimates, and (d) means for automatically 
resolving a DNA mixture into one or more component 
genotypes, Said means in communication with the estimates. 
0450 Although the invention has been described in detail 
in the foregoing embodiments for the purpose of illustration, 
it is to be understood that such detail is solely for that 
purpose and that variations can be made therein by those 
skilled in the art without departing from the Spirit and Scope 
of the invention except as it may be described by the 
following claims. 

What is claimed is: 

1. A method of analyzing a mixed DNA Sample comprised 
of the Steps: 

(a) obtaining a mixed DNA sample; 
(b) amplifying the DNA sample to produce a product; 
(c) detecting the product to produce a signal; and 

(d) analyzing the Signal to determine information about 
the composition of the mixed DNA sample. 

2. A method as described in claim 1 wherein the mixed 
DNA sample contains a plurality of genotypes. 
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3. A method as described in claim 1 wherein the ampli 
fying Step at a locus generates allele products whose 
amounts are in approximate linear relation to the allele DNA 
in the Sample. 

4. A method as described in claim 1 wherein the detecting 
Step generates at a locus allele Signals whose amounts are in 
approximate linear relation to the amplified allele products. 

5. A method as described in claim 1 wherein the analyzing 
Step includes an operation based on a linear model of the 
Signals. 

6. A method as described in claim 1 wherein the analyzing 
Step includes determining information about a genotype of 
an individual whose DNA is in the mixed DNA sample. 

7. A method as described in claim 1 wherein the analyzing 
Step includes determining information about the relative 
proportion of a individual's DNA in the mixed DNA sample. 

8. A method as described in claim 6 wherein the analyzing 
Step includes determining a confidence in a derived geno 
type. 

9. A method as described in claim 1 wherein the analyzing 
Step includes recording information in a report. 

10. A method as described in claim 1 wherein the ana 
lyzing Step includes generating a visualization of a com 
puted result. 

11. A method for finding Suspects comprised of the Steps: 
(a) obtaining a sample related to a crime wherein the 

sample includes DNA from a plurality of individuals; 
(b) determining mathematically with a computing device 

a genotype related to an individual in the sample; 
(c) comparing the genotype with a database of genotypes 

to form a comparison; and 

(d) finding a likely Suspect from the database using the 
comparison. 

12. A method as described in claim 11 wherein the 
database contains the DNA profile of a convicted offender. 

13. A method as described in claim 11 wherein after the 
Step of finding a Suspect there is the additional Step of 
convicting the Suspect using the determined genotype. 

14. A method as described in claim 11 wherein the 
genotypes found have a high likelihood of matching the 
perpetrator. 

15. A method as described in claim 13 wherein after the 
Step of convicting the Suspect there is the additional Step of 
removing the convicted individual from Society for a period 
of time during which they are unable to perpetrate another 
crime. 

16. A System for resolving a DNA mixture comprising: 

(a) means for amplifying a DNA mixture, said means 
producing amplified products, 

(b) means for detecting the amplified products, said 
means in communication with the amplified products, 
and producing Signals, 

(c) means for quantifying the signals that includes a 
computing device with memory, Said means in com 
munication with the Signals, and producing DNA 
length and concentration estimates, and 

(d) means for automatically resolving a DNA mixture into 
one or more component genotypes, Said means in 
communication with the estimates. 
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17. A system as described in claim 16 wherein the 19. A system as described in claim 16 wherein the 
quantifying means models the DNA peak shape in the resolving means can process at least one DNA mixture per 
Signals. hour. 

20. A system as described in claim 16 wherein the 
resolving means can determine a genotype using under an 
hour of human interaction time. 

18. A system as described in claim 16 wherein the 
resolving means exonerates an individual by determining 
that the individual's DNA is unlikely to be included in the 
DNA mixture. k . . . . 


