

				17
	Match s	tatistics		
		052B	188, 189	
Item	Description	Brett Wentworth	John Wakefield	
004A-C	Swabs 0-3 ft of amp cord	18.81	-0.10	
004D-F	Swabs 3-6 ft of amp cord	18.81	0.15	
004G-I	Swabs 6-9 ft of amp cord	18.81	2.90	
004J-L	Swabs 9-12 ft of amp cord	18.81	-16.69	
004M-O	Swabs 12-15 ft of amp cord	17.68	8.48	
004P-R	Swabs 15-18 ft of amp cord	18.70	-1.49	
004S-T	Swabs 18-20 ft of amp cord	18.81	-1.09	
045A	Shirt collar, outside rear	7.92	18.88	
045C	Shirt collar, outside front	18.81	10.07	
052F1-2	Victim forearm swabs	18.81	6.36	

TrueAllele® computer solution

19

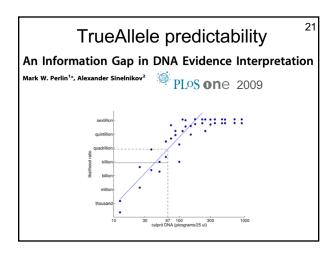
- Accurate. 43 validation studies, 8 published
- Objective. Workflow removes human bias
- Accepted. Reported in 46 states, used by 10 labs
- Transparent. Give math, software (4GB DVD)
- Neutral. Can statistically include or exclude

Peer-reviewed validation studies²⁰

Perlin MW, Sinelnikov A. An information gap in DNA evidence interpretation. *PLoS ONE*, 2009;4(12):e8327. Ballantyne J. Hanson FK. Perlin MW. DNA mixture genotyping by probabilistic computer.

Ballantyne J, Hanson EK, Perlin MW. DNA mixture genotyping by probabilistic computer interpretation of binomially-sampled laser captured cell populations: Combining quantitative data for greater identification information. *Science & Justice*. 2013;53(2):103-114.

Perlin MW, Hornyak J, Sugimoto G, Miller K. TrueAllele[®] genotype identification on DNA mixtures containing up to five unknown contributors. *Journal of Forensic Sciences*. 2015;60(4):857-868.


Greenspoon SA, Schiermeier-Wood L, Jenkins BC. Establishing the limits of TrueAllele[®] Casework: a validation study. *Journal of Forensic Sciences*. 2015;60(5):1263-1276.

Bauer DW, Butt N, Hornyak JM, Perlin MW. Validating TrueAllele® interpretation of DNA mixtures containing up to ten unknown contributors. *Journal of Forensic Sciences*. 2020; 65(2):380-398.

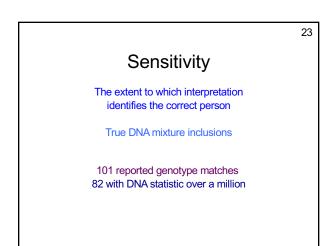
Perlin MW, Legler MM, Spencer CE, Smith JL, Allan WP, Belrose JL, Duceman BW. Validating TrueAllele® DNA mixture interpretation. *Journal of Forensic Sciences*. 2011;56(6):1430-1447.

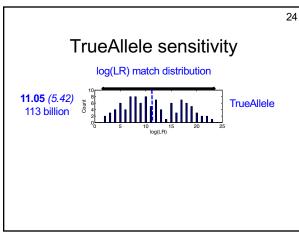
Perlin MW, Belrose JL, Duceman BW. New York State TrueAllele® Casework validation study. *Journal of Forensic Sciences*. 2013;58(6):1458-1466.

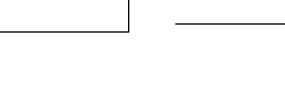
Perlin MW, Dormer K, Hornyak J, Schiermeier-Wood L, Greenspoon S. TrueAllele® Casework on Virginia DNA mixture evidence: computer and manual interpretation in 72 reported criminal

TrueAllele reliability

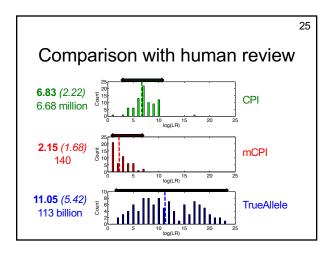
TrueAllele Casework on Virginia DNA Mixture Evidence: Computer and Manual Interpretation in 72 Reported Criminal Cases

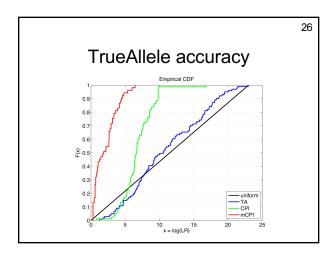

Mark W. Perlin¹⁺, Kiersten Dormer¹, Jennifer Hornyak¹, Lisa Schiermeier-Wood², Susan Greenspoon² Toburgentics Brithumb Persenhanis Linked States of America 2 Denatment of Forensic Science Richmond Versitis Linked States of America

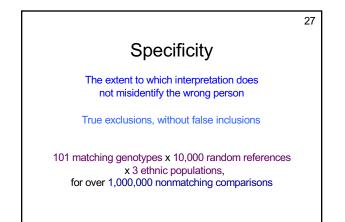


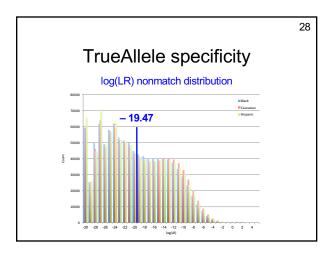

22

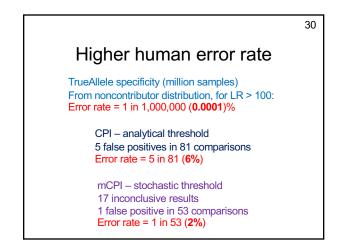
Validation axes

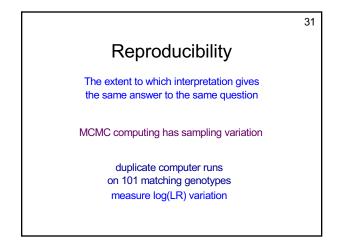

- sensitive
- specific
- reproducible

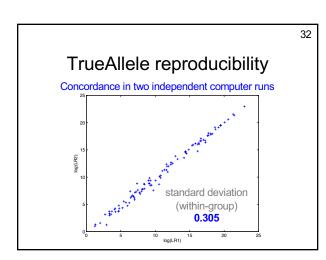



Cybergenetics © 2007-2023

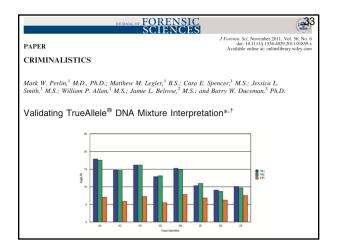




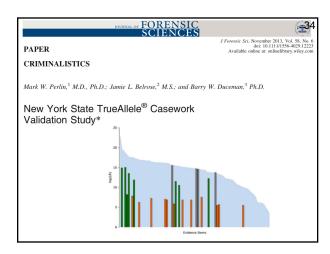


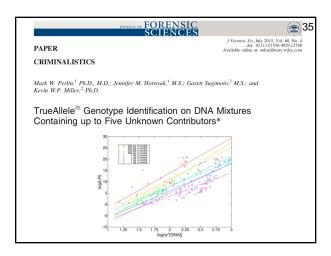


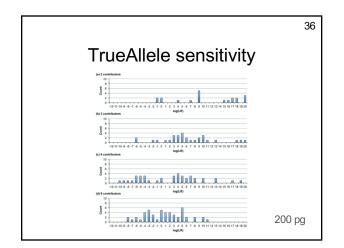
Fa	ilse po	ositives	
in over 1,00	0,000 com	parisons per	group
The fill of the state of the second	Dii-	Converter	
Tail distribution	Black 39	Caucasian 32	Hispanic 29
0	39 8	11	29
2	2	1	1
3	0	0	1
log(LR) > 0	49	44	40
false positive ra		4 :- 00 000 (0.0050()

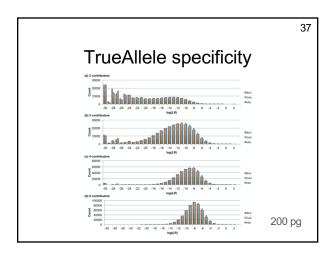


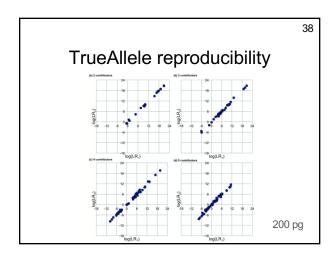
Cybergenetics © 2007-2023

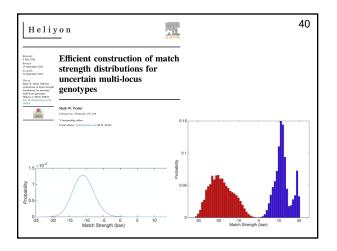




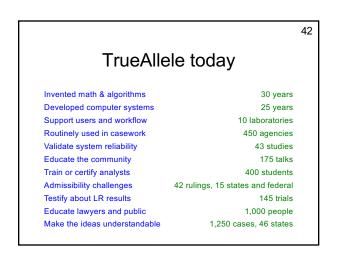








	ALISTICS Bauer, ¹ Ph.D.; Nasir Butt,	² Ph.D.; Jennifer	M. Hornyak, ¹	M.S.,						
		² Ph.D.; Jennifer	M. Hornyak, ¹	Mc.						
M.D., Ph.D				M.O.; 4	and M	ark W	V. Per	lin, ¹ Pi	h.D.,	
	- - • • • • ®									
	ing TrueAllele®			A						
	s Containing up	to Ten U	nknown							
Contrib	utors*									
				TABL	E 7—Pe		,			
	TABLE 4—Independent analysis.					P	reling R			
		Pit-	Mixture weight (%)	TABLI 0	1	2	reling R 3	4	5	6
	Operator	Site	13	0		2 K	reling R 3 K	4 K	к	к
		Site	13 22 12		1 K	P 2 K 5	reling R 3 K K K	4 K K	K K K	K K K
ienotypes	Operator Cybergenetics 78	Site CCRFSL 78	13 22 12 16	0 7 6	1 K 7 4 4	P 2 K 5 5	reling R 3 K K	4 K K K K	K K K	K K K
enotypes linimum	Operator Cybergenetics 78 -5.16	Site <u>CCRFSL</u> 78 -9.14	13 22 12 16 13	0 7 6 5 4 4	1 K 7 4 4 3	P	reling R 3 K K K 6 1	4 K K K 6	K K K K	K K K K
ienotypes Iinimum Iean	Operator Cybergenetics 78 -5.16 8.36	Site <u>CCRFSL</u> 78 -9.14 8.48	13 22 12 16 13 15	0 7 6	1 K 7 4 4	Pr 2 K K 5 5 2 4	reling R 3 K K K 6 1 1	4 K K K 6 6	К К К К 8	K K K K K
ienotypes finimum fean fedian	Operator Cybergenetics 78 -5.16 8.36 5.98	Site <u>CCRFSL</u> 78 -9.14 8.48 5.61	13 22 12 16 13 15 2	0 7 6 5 4 4 3 1	1 K 7 4 3 3 1	Pr 2 K K 5 5 2 4 1	zeling R 3 K K 6 1 1 1 1	4 K K K 6 6 3	К К К К 8 3	K K K K K K K K 4
ienotypes finimum Iean Bedian faximum D	Operator Cybergenetics 78 -5.16 8.36	Site <u>CCRFSL</u> 78 -9.14 8.48 5.61 29.12	13 22 12 16 13 15	0 7 6 5 4 4	1 K 7 4 4 3	Pr 2 K K 5 5 2 4	reling R 3 K K K 6 1 1	4 K K K 6 6	К К К К 8	K K K K K



	Commonwealth of Pennsylvania v Kevin Foley (admitted, 2009; appellate precedent, 2012)					
	People of California v Dupree Langston (admitted, 2013) 41					
	Commonwealth of Virginia v Matthew Brady (admitted, 2013)					
	State of Ohio v Maurice Shaw (admitted, 2014) State of Louisiana v Chattley Chesterfield & Samuel Nicolas (admitted, 2014)					
	People of New York v John Wakefield (admitted, 2015; appellate precedent, 2019; high court precedent, 2022)					
	State of South Carolina v Jaquard Aiken (admitted, 2015)					
	Commonwealth of Massachusetts v Heidi Bartlett (admitted, 2016)					
	State of Indiana v Dugniqio Forest (admitted, 2016)					
	State of Indiana v Malcolm Wade (admitted, 2016) State of Washington v Emanuel Fair (admitted, 2017)					
	State of Louisiana v Harold Houston (admitted, 2017)					
	State of Indiana v Randal Coalter (admitted, 2017)					
	State of Nebraska v Charles Simmer (admitted, 2018; appellate precedent, 2019)					
	State of Indiana v Vaylen Glazebrook (admitted, 2018)					
	State of Ohio v David Mathis (admitted, 2018) State of Florida v Lajayvian Daniels (admitted, 2018; appellate precedent, 2021)					
44 US	State of Tennessee v Demontez Watkins (admitted, 2018; appellate precedent, 2021)					
	State of Georgia v Thaddus Nundra (admitted, 2019; appellate precedent, 2023)					
	State of Georgia v Monte Baugh & Thaddeus Howell (admitted, 2019)					
	State of Louisiana v Kyle Russ (admitted, 2019)					
admissibility	People of New York v Casey Wilson (admitted, 2019) State of Georgia v Alexander Battle (admitted, 2019)					
•	United States v Lenard Gibbs (admitted, 2019)					
rulings	State of Georgia v Guy Sewell (admitted, 2019)					
runnys	State of Georgia v Adedoja Bah (admitted, 2019)					
0	State of Georgia v Nathaniel Day (admitted, 2019)					
	State of Tennessee v Abdullah Powell (admitted, 2021) State of Georgia v Zarren Garner (admitted, 2021)					
	United States v Curtis Johnson, Jr. (admitted, 2021)					
	State of Georgia v Rahul Joseph Das (admitted, 2021)					
	State of Maryland v Tyrone Harvin (admitted, 2021)					
	State of Maryland v Gregory Jones (not used, Daubert not applied, 2021)					
	State of Georgia v Lashumbia Session (admitted, 2021) State of Georgia v Bryan Byers (admitted, 2022)					
	State of Louisiana v Dermell Lewis, Corey Major, & Gerald Parker (admitted, 2022)					
	State of Louisiana v James Tabb (admitted, 2022)					
	State of Louisiana v Shawn Briscoe and Lance McIntyre (not used due to timeliness, 2022)					
	United States v Hunter Anderson (admitted, 2023)					
	State of Louisiana v Corlious Dyson (admitted, 2023) United States v Ravel Mills (admitted, 2023)					
	United States v Damond Lockett (admitted, 2023)					
	State of Georgia v Erin Stephon Arms (admitted, 2023)					

Cybergenetics © 2007-2023

Perlin MW, Dormer K, Hornyak J, Schiermeier-Wood L, Greenspoon S. TrueAllele[®] Casework on Virginia DNA mixture evidence: computer and manual interpretation in 72 reported criminal cases. *PLOS ONE*. 2014;(9)3:e92837. 43

Conclusions

TrueAllele Casework DNA mixture interpretation is:

A reliable method

- objective sensitive
- specificreproducible
- accurate

TrueAllele computer genotyping is more effective than human review