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Abstract

Mixtures are a commonly encountered form of biological evidence that contain DNA from two or more contributors.
Laboratory analysis of mixtures produces data signals that usually cannot be separated into distinct contributor genotypes.
Computer modeling can resolve the genotypes up to probability, reflecting the uncertainty inherent in the data. Human
analysts address the problem by simplifying the quantitative data in a threshold process that discards considerable
identification information. Elevated stochastic threshold levels potentially discard more information. This study examines
three different mixture interpretation methods. In 72 criminal cases, 111 genotype comparisons were made between 92
mixture items and relevant reference samples. TrueAllele computer modeling was done on all the evidence samples, and
documented in DNA match reports that were provided as evidence for each case. Threshold-based Combined Probability of
Inclusion (CPI) and stochastically modified CPI (mCPI) analyses were performed as well. TrueAllele’s identification
information in 101 positive matches was used to assess the reliability of its modeling approach. Comparison was made with
81 CPI and 53 mCPI DNA match statistics that were manually derived from the same data. There were statistically significant
differences between the DNA interpretation methods. TrueAllele gave an average match statistic of 113 billion, CPI
averaged 6.68 million, and mCPI averaged 140. The computer was highly specific, with a false positive rate under 0.005%.
The modeling approach was precise, having a factor of two within-group standard deviation. TrueAllele accuracy was
indicated by having uniformly distributed match statistics over the data set. The computer could make genotype
comparisons that were impossible or impractical using manual methods. TrueAllele computer interpretation of DNA mixture
evidence is sensitive, specific, precise, accurate and more informative than manual interpretation alternatives. It can
determine DNA match statistics when threshold-based methods cannot. Improved forensic science computation can affect
criminal cases by providing reliable scientific evidence.
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Introduction

DNA analysis is the forensic gold standard in human

identification [1]. By deriving a genotype from minute amounts

of biological material [2], scientists can help identify individuals

connected to a crime scene.

With increased societal expectations [3], crime laboratories now

process more challenging DNA evidence. Such samples are

typically mixtures of two or more individuals, with DNA that

may be damaged, degraded or present in small amounts [4]. DNA

from one person expresses only one or two alleles at a genetic

locus, and so is readily genotyped by visual inspection. Mixture

data, however, may present multiple genotype alternatives that

complicate interpretation.

Human analysts may simplify short tandem repeat (STR) [5]

interpretation by applying a threshold that reduces quantitative

data into all-or-none events [6]. This approach works well with

single source samples that contain only one genotype. But with

mixtures, thresholds discard the quantitative contributions of each

genotype, along with the peak height pattern. Threshold-based

methods can reduce identification information, render probative

data ‘‘inconclusive’’, and potentially infer an incorrect genotype

[7].

An ‘‘analytical’’ threshold helps human analysts distinguish

between allelic data peaks and baseline instrument noise. The

Combined Probability of Inclusion (CPI) mixture interpretation

method first applies this analytical threshold to decide which peaks

at a locus are sufficiently tall to be considered alleles. If a reference

individual’s alleles are included in this set of mixture alleles, then

CPI uses all the alleles in the mixture set to calculate a match

statistic (the inclusion probability) as the square of the sum of the

allele frequencies. (Allele determination can be viewed as a

separate human interpretation step that precedes the CPI

statistical calculation step. For clarity in this paper, we consider
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the entire data analysis procedure to comprise the CPI interpre-

tation method). The method does not make assumptions about the

number of contributors.

There is naturally occurring random variation in the polymer-

ase chain reaction (PCR) [8]. Therefore, repeat amplifications of

the same DNA template quantity will produce varying peak

heights. A pair of heterozygote sister alleles may express one taller

peak, along with a considerably shorter peak, thereby creating a

situation where the heterozygote could be misinterpreted as a

homozygote. The analytical threshold does not address this

situation [9].

In 2010, the United States Scientific Working Group on DNA

Analysis Methods (SWGDAM) published guidelines to help

resolve such mixture genotyping issues [10]. For manual mixture

review, these new SWGDAM guidelines introduced a higher

‘‘stochastic’’ threshold for use in a modified CPI (mCPI) mixture

interpretation method. After determining locus alleles using the

analytical threshold, and establishing that an individual is

included, the more stringent mCPI method additionally requires

that every allele over the analytical threshold must also reach the

stochastic threshold; otherwise the locus cannot be used in the

mCPI match statistic. The taller peak height requirement

addresses genotype errors by statistically removing ambiguous

locus situations where a peak resides in a third state, between the

analytical and stochastic thresholds. However, mCPI can discard

potentially useful identification data, which lowers match statistics

and reclassifies previously interpretable mixtures as ‘‘inconclu-

sive’’.

The Virginia Department of Forensic Science (DFS) imple-

mented the new SWGDAM mixture interpretation guidelines, and

reviewed their DNA evidence using stochastic thresholds. In 2011,

DFS identified 375 criminal cases in which their stochastic

threshold method had produced an inconclusive result or a less

informative match statistic [11]. Interested in preserving more

identification information, DFS employed a provision in the

SWGDAM guidelines (paragraph 3.2.2) that allowed use of a

validated ‘‘probabilistic genotyping’’ computer interpretation

method [10].

Mathematical modeling can account for quantitative STR data

patterns [12]. Combining different amounts of contributor

genotypes, along with other variables, produces allele patterns

that can be compared with STR data peaks [13]. Incorporating

probability into the equations allows a computer to assess the

relative likelihood of alternative solutions [14,15]. The result is a

genotype probability distribution that is objectively derived from

the data, independent of known comparison genotypes. Subse-

quent comparison of this evidence genotype with a reference

genotype, relative to a human population, produces a DNA match

statistic that measures identification information. By using all of

the quantitative DNA mixture data, and thoroughly considering

all feasible genotype alternatives, computer modeling can preserve

more identification information than manual review [7].

DFS pursued a probabilistic genotyping approach for their

DNA mixture evidence. They arranged for Cybergenetics

(Pittsburgh, PA) to apply their validated TrueAllele Casework

system to DNA mixture evidence in 144 cases. Cybergenetics

produced DNA match reports on 92 evidence items in 72 cases.

This is the largest data set on which case reports have been

generated for probabilistic genotyping of DNA mixture evidence.

This study describes the results of computer-based probabilistic

genotyping mixture interpretation on 101 reported matches, out of

111 genotype comparisons. (A DNA match is defined here

operationally as a comparison between an evidence and reference

genotype, relative to a population, that gives a reproducible

positive match statistic). The 10 comparisons that did not produce

a match are also characterized. The study compares the

computer’s information yield with two methods of manual

interpretation on the same evidence items. Previous TrueAllele

Casework validation studies have been published on samples of

known composition [13,16], as well as on actual casework items

[7,17]. This observational study was performed on casework items.

Table 1. Distinguishing features of three different DNA mixture interpretation methods.

TrueAllele CPI mCPI

Peak data Approach quantitative qualitative qualitative

Scale continuous binary ternary

Height used

Pattern used

Threshold analytical analytical and stochastic

Genotype Inference probability model data above analytical
threshold

data above analytical
threshold

Representation allele pairs alleles alleles

Operation automated manual manual

Inclusion statistical alleles alleles

Contributor number assumed

Statistic Comparison with genotype with alleles with alleles

Locus all inclusion stochastic inclusion

Calculation likelihood ratio inclusion probability inclusion probability

Application include, exclude or
inconclusive

include include

Identification information inclusion inclusion

Attributes involving STR data usage, genotype inference and match statistic calculation are shown for the TrueAllele, CPI and mCPI methods.
doi:10.1371/journal.pone.0092837.t001

Computer and Manual DNA Mixture Interpretation
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A companion study has been performed using laboratory

synthesized mixtures [18].

The present study compares three interpretation methods for

analyzing DNA mixtures from actual casework, specifically, the

automated TrueAllele Casework computer system, with the

traditional CPI and updated mCPI manual threshold-based

methods [19]. The manual methods involve determining and

applying a threshold for binary or ternary peak classification,

whereas the automated approach uses continuous peak quantities

without a threshold (Table 1). The study hypothesizes that the

automated system will be more statistically powerful, precisely

because it uses more of the data that manual methods discard. If

this hypothesis is correct, the automated system should generally

reach the same conclusions but infer more powerful match

statistics, and resolve cases that the manual methods do not.

The paper begins by describing three methods of DNA mixture

interpretation, one automated and two done manually. We then

present the case materials used and the interpretation procedures

employed. We examine the TrueAllele automation method’s

reliability, using its inferred match statistics to assess how sensitive,

specific, precise and accurate it is. (In Forensic Science, ‘‘sensitive’’

and ‘‘specific’’ describe the reliability of analytical instrumentation.

With DNA interpretation methods, they can similarly describe the

respective degree of positive or negative identification). We

compare how well TrueAllele, CPI and mCPI preserve identifi-

cation information relative to one another, as measured by their

match statistics. We conclude by observing that computer-based

DNA mixture interpretation can provide an improvement over

current manual forensic processes.

Methods

The DNA samples used in this study were lawfully obtained by

DFS in accordance with Virginia code Section 9.1–1101. All

personal identifiers were removed from DNA data prior to

computer interpretation. The submitted scientific manuscript

contains only summary statistics, and discloses no personal or

case information.

The DNA mixture interpretation process begins with electronic

data signals. These signals are examined to form genotypes.

Comparison of an evidence genotype with a reference genotype,

relative to a population, can then produce a DNA match statistic.

STR Mixture Data
A STR locus is a length polymorphism, where alleles have

different numbers of short DNA units (typically four or five base

pairs) that are repeated in tandem [5]. When a polymorphic locus

has 15 or more alleles, it provides over a hundred possible

genotype values. This genetic variation is useful for distinguishing

between people in a population. For example, the Penta E locus

on chromosome 15 contains the five base pair repeat unit

(AAAGA)n, with n = 5, 6, …, 24; these 20 alleles permit 210

distinct allele pairs. (Given n alleles, there are n(n+1)/2 possible

unordered allele pairings, with n homozygotes and n(n–1)/2

heterozygotes. With n = 20, there are 20?21/2, or 210 genotype

values).

Following DNA extraction and quantification, STR analysis

proceeds in two steps. First, PCR amplification with a set of

fluorescently labeled primers creates millions of allele copies from

the DNA template. Random variation in a 31 cycle PCR process

[19] produces natural variation in the quantities of amplified

alleles [20]. Second, the allele amplicons are size-separated by

capillary electrophoresis, with laser detection of DNA quantity

measured in relative fluorescent units (RFU). The amplified allele

size and quantity signals are recorded as peaks in an electrophe-

rogram (EPG), and saved into a fragment size analysis (.fsa) data

file.

Penta E is one of 15 STR loci in the Promega PowerPlex 16

multiplex kit [21]. The example EPG data at this locus show a

pattern of allelic peaks, where the x-axis (molecular size)

corresponds to the allele’s number of repeats and the y-axis

(RFU height) relates to allele quantity (Figure 1). The data have

Figure 1. Mixture data. Quantitative DNA mixture data are shown at
the Penta E STR locus. The x-axis measures allele fragment size (bp), and
the y-axis measures DNA quantity (RFU); a boxed peak number denotes
allele length. The two contributor mixture is formed from a 7,14 major
genotype and a 10,12 minor genotype. The result is a pattern of peak
heights that reflect the underlying genotypes.
doi:10.1371/journal.pone.0092837.g001

Figure 2. Genotype modeling. Linear combinations of genotype
allele pairs can explain the observed quantitative mixture data. Here, a
major 7,14 contributor (blue bars) having twice the DNA as a minor
10,12 contributor (green bars) explains the data well, with a high
likelihood value. Alternative genotype choices or combinations would
not explain the data as well, and thus have lower likelihood.
doi:10.1371/journal.pone.0092837.g002

Computer and Manual DNA Mixture Interpretation
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two tall peaks for alleles 7 and 14 with heights around 600 RFU,

and two shorter peaks at alleles 10 and 12 of height 300 RFU.

Three Interpretation Methods
STR mixture data can be interpreted in different ways, giving

rise to different DNA match statistics. Table 1 lists the features of

three such methods – the quantitative computer-based TrueAllele

approach, as well as the two qualitative human review methods

CPI and mCPI. TrueAllele uses all the peak height data on a

continuous RFU scale, examining the entire peak pattern to make

inferences. Applying an analytical RFU threshold, CPI reduces the

peak height quantities to two binary states (allele or not), while

mCPI additionally applies a higher stochastic threshold to develop

a third state (uncertain).
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Figure 3. Analytical threshold. The purpose of this threshold is to
distinguish allelic signal from background noise. Applying the threshold
(red line) reduces the quantitative peaks to all-or-none putative allele
events (blue bars). The analytical threshold operation eliminates
individual peak heights, as well as their collective pattern.
doi:10.1371/journal.pone.0092837.g003

Figure 4. Stochastic threshold. A higher threshold level (red line) is
used in manual review to address random peak variation by
differentiating more certain (blue bars) from less certain peaks. The
stochastic threshold removes more STR loci from statistical consider-
ation, which makes less use of the available data.
doi:10.1371/journal.pone.0092837.g004
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TrueAllele infers genotypes with a probability model that uses a

computer to automatically propose peak patterns, and assess how

well they explain the quantitative data (Table 1, Genotype). The

manual methods infer alleles based on events above a predeter-

mined analytical threshold RFU level, and then assess inclusion.

Because TrueAllele separates out the genotypes contributing to a

mixture, it can compare evidence genotypes (as probability

distributions) with reference genotypes. CPI and mCPI reduce

peak height data to ‘‘alleles’’ instead of separating out genotypes,

and so compare reference genotypes with evidence data features

instead of with inferred genotypes.

TrueAllele’s inferred (probabilistic) genotypes can be entered

into standard formulae to calculate a likelihood ratio (LR) (Table 1,

Statistic). This LR result can give weight to inclusion or exclusion,

and so all loci are used in the match statistic [22]. CPI and mCPI

first establish an inclusion based on the analytical threshold; loci

that do not support an inclusion are not assigned a probability of

inclusion. The mCPI statistical calculation will not use a locus that

has an uncertain allele whose peak height lies between the

analytical and stochastic thresholds.

TrueAllele Genotype Modeling
Many variables are considered in genotype modeling, such as

the genotypes of each contributor at every locus, the mixture

weights (that sum to 1) of the contributors, the DNA template

mass, PCR stutter, relative amplification, DNA degradation and

the uncertainties of all these variables. A likelihood function

assesses how well particular values of these variables explain the

observed quantitative STR data peaks, determining the probabil-

ity of the (fixed) data conditioned on the (changing) variable

values.

With DNA mixture data vector d (of peak heights and sizes)

having K contributors, the primary explanatory variables are the

genotypes G, mixture weight W and mass M (of combined allelic

fluorescence intensity). An approximate likelihood function

containing these variables is

Pr djG~g,W~w,M~m,:::f g~MVN m,Sð Þ

where mean pattern vector m~m
PK

k~1

wkgk and covariance matrix

S are parameters of a multivariate normal (MVN) distribution, as

previously described [7,13]. Pattern m is constructed as a weighted

sum of contributor allele pairs gk.

We can visually understand this likelihood function as

constructing a pattern of allele heights that can be compared

with the peak height data. Figure 2 shows a major contributor 7,14

allele pair (blue rectangles of equal height) and a minor 10,12

genotype value (green rectangles of equal height) in a 2:1 mixture

ratio. This genotype model is superimposed on the STR peak

data, where we see a good fit between the model and data

patterns, which corresponds to a high likelihood value. Alternative

genotype values and amounts might not explain the data as well

(e.g., proposing genotypes 7,10 and 12,15), and would have a

lower likelihood.

The posterior genotype probability is proportional to the

likelihood value times the prior population probability [23]

Pr G~gjd,W~w,M~m,:::f g

!Pr djG~g,W~w,M~m,:::f gPr G~gf g:

Bayes theorem [24] requires us to consider all feasible genotype

alternatives, even those having little probability. Other variables,

such as mixture weight, are similarly framed as posterior

Table 3. The range of biological sample types that were
found in the 92 evidence items is shown.

Sample type Count

blood 10

epithelial/skin 30

fingernails 2

hair 1

saliva 4

semen 3

stain 1

touch 41

For each sample type, the table records how frequently that type was seen.
doi:10.1371/journal.pone.0092837.t003

Table 4. The first three rows estimate for each number of
contributors (first column) how many mixture items (second
column) had that contributor number.

Contributors Items

Estimate 2 40

3 65

4 8

Overlap 2 or 3 16

3 or 4 3

2, 3 or 4 1

When an item was consistent with more than one contributor number
possibility, that item appears in multiple categories. The last three rows
examine overlap situations where the number of contributors (first column) was
uncertain, and counts the number of items (second column) in those situations.
doi:10.1371/journal.pone.0092837.t004

Table 5. The frequency distribution of mixture weights as
inferred by the computer is shown for the matched
genotypes.

Mixture Weight Count

0.05 3

0.15 13

0.25 5

0.35 12

0.45 18

0.55 12

0.65 11

0.75 12

0.85 12

0.95 4

The binning is done by decile, with each row showing the center of its mixture
weight range, along with the number of genotypes in that bin.
doi:10.1371/journal.pone.0092837.t005
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probability distributions [7]. Since the high dimensional parameter

space is vast, the TrueAllele computer conducts a statistical search

using Markov chain Monte Carlo (MCMC) to thoroughly sample

the joint posterior probability distribution [25,26].

The modeling approach is objective in the sense that only

evidence data is used to infer genotypes, without any knowledge of

a reference comparison genotype. Proceeding ab initio from the

data and model eliminates natural examination bias issues that

Figure 5. Computer specificity. A histogram shows empirical log(LR) distributions for 101 evidence genotype comparisons relative to 10,000
randomly generated references. There are 1,010,000 data points for each of the three ethnic populations. Note that the negative values are located
far to the left of zero.
doi:10.1371/journal.pone.0092837.g005

Table 6. Specificity results (ban) for TrueAllele mixture interpretation log(LR) values, comparing 101 reported evidence genotypes
with 10,000 random genotypes from each of three ethnic populations.

n = 3,030,000 Black Caucasian Hispanic

Minimum 230.000 230.000 230.000

Mean 219.467 219.217 219.547

Maximum 2.381 2.726 3.782

Standard deviation 6.543 6.723 6.637

Tail distribution Black Caucasian Hispanic

0 39 32 29

1 8 11 9

2 2 1 1

3 0 0 1

log(LR) .0 49 44 40

The average exclusionary LR value was around one over a billion billion. Very few false positives were seen in over three million genotype comparisons.
doi:10.1371/journal.pone.0092837.t006
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may affect other mixture interpretation approaches [27]. The

resulting evidence genotype for the minor contributor at this locus

concentrated 98% of its probability at allele pair 10,12 (Table 2,

TrueAllele).

CPI Allele Inclusion
Inclusion methods of DNA mixture interpretation begin by

applying an analytical threshold to the quantitative STR peak

data. The Virginia DFS analytical thresholds are specific to each

fluorescent dye channel: 73 RFU (blue dye), 84 RFU (green),

75 RFU (yellow) and 52 RFU (red). Peaks above the threshold are

designated as ‘‘allele’’ events, while those below are not used

(Figure 3).

The inclusion likelihood function assigns 1 to all allele pairs

included in the allele list, and 0 otherwise. This CPI likelihood also

assumes that all alleles from each contributor are present. With

four allele events, for example, there are ten possible allele pairs

(Table 2, CPI). Multiplying the prior probability times the 0/1

likelihood values, and renormalizing, gives the CPI genotype

probability distribution [28].

The inclusion approach disperses probability over (in this

example) ten genotype values. Many of these allele pairs (e.g., 7,7)

are not compatible with a minor contributor genotype, based on

the peak height data shown. Since the total probability is 1,

diverting genotype probability away to infeasible solutions reduces

the probability at more likely solutions, and thereby lowers match

strength. Starting from highly informative STR data, CPI may

reduce considerably the reported identification information, or

even eliminate it entirely by dismissing an evidence item as

‘‘inconclusive’’. Inclusion protocols are susceptible to examination

bias, since a reference genotype could be considered (e.g., to assess

potential allelic dropout) when determining whether to use a locus

in a CPI statistical calculation [29].

mCPI Stochastic Threshold
Replicate STR experiments exhibit natural variation in peak

height, as described by probability model data variance param-

eters [13,30]. When interpreting DNA evidence using threshold

approaches, stochastic thresholds help to account for this peak

pattern variability, which is often more pronounced in low-

template samples [8]. A laboratory determines its stochastic

threshold through replicate PCR experiments that examine

heterozygote allele imbalance and drop out. For example, in

following the SWGDAM 2010 guidelines, Virginia DFS set its

stochastic thresholds for different capillary injection times as

210 RFU (2s), 320 RFU (5s) and 460 RFU (10s) [19].

The higher mCPI stochastic threshold can make less use of the

STR data. In our Penta E mixture example, the 5s injection peak

heights of alleles 10 and 12 now fall below the stochastic threshold

of 320 RFU (Figure 4). This peak removal can assign essentially

zero probability to a 10,12 minor contributor allele pair at this

locus in a statistical calculation (Table 2, mCPI). Manual mCPI

mixture interpretation would omit Penta E from the cumulative

match statistic because of the uncertain alleles 10 and 12, and thus

not report the identification information at that locus.

Likelihood Ratio
The likelihood ratio is a standard DNA match statistic [31]. The

LR summarizes in one number the impact of STR data on our

belief in the identification hypothesis H that an individual

contributed their DNA to biological evidence. The base ten

Figure 6. Computer precision. The scatterplot shows log(LR) values
for 101 duplicate computer runs on the same evidence. Each point
gives the first (x) and second (y) values. The data lie close to the y = x
diagonal, which represents exactly replicated results.
doi:10.1371/journal.pone.0092837.g006

Table 7. The log(LR) DNA match information (ban) for genotype comparisons is shown for three mixture interpretation methods
(TrueAllele, CPI and mCPI).

TrueAllele CPI mCPI

Minimum 1.255 0.778 0.301

Median 10.550 6.681 1.857

Mean 11.054 6.825 2.145

Maximum 22.962 16.724 6.447

Standard deviation 5.421 2.217 1.675

N = 111 81 70

Inclusion ($0) 101 81 53

Persuasive ($6) 82 54 2

Inconclusive 17

The TrueAllele method preserved more identification information (mean) over a broader range (minimum, maximum) than the two inclusion methods, and produced
more inclusions and persuasive match statistics.
doi:10.1371/journal.pone.0092837.t007
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logarithm of the LR expresses identification information in

additive ‘‘ban’’ units, and is called the ‘‘weight of evidence’’ [32].

There are several ways to calculate a LR match result, all of

which produce the same number [33]. Since our focus here is on

genotypes, we note that the LR is the ratio of posterior (after

having seen evidence) to prior (the population distribution)

genotype probabilities, evaluated at the allele pair of a known

reference [34]. For case reporting, we write ‘‘a match between the

evidence and reference is (some number) times more probable

than coincidence’’. The LR can also account for co-ancestry, the

relatedness in populations between all people [35,36].

When a genotype likelihood function accounts for observed

quantitative evidence data, a reproducibly inferred LR number

can accurately summarize the extent of match between that

evidence and a reference. A positive log(LR) provides a weight of

evidence supporting a match, a negative log(LR) does not favor a

match, while a log(LR) near zero is inconclusive. The LR value is

always scientifically meaningful. Scientists sometimes verbally

describe a LR using an arbitrary subjective scale [37].

Figure 7. Method sensitivity. Three histograms show the empirical log(LR) distribution for different mixture interpretation methods on the case
data. Frequency distribution (a) shows TrueAllele inferred genotype match statistics for 101 evidence genotype matches (blue). The (b) manual CPI
review yielded 81 match statistics (green) that were generally less informative (leftward) and less varied (clustered). The (c) 53 mCPI match statistics
(red) gave less information and had similar values.
doi:10.1371/journal.pone.0092837.g007
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Comparing Three Interpretation Methods
Table 2 shows the prior, likelihood and posterior genotype

probabilities of a minor contributor for three different mixture

interpretation methods at locus Penta E. The prior probability is

the population prevalence of an allele pair (Table 2, prior). The

differences between these methods reside in their likelihood

functions (Table 2, likelihood):

N The TrueAllele genotype modeling likelihood function is a positive

real number that describes how well each allele pair hypothesis

explains the STR data.

N With CPI allele inclusion, the analytical threshold produces a list

of included possible allele pairs; these receive a likelihood of 1,

and all other values are set to 0.

N Using a mCPI stochastic threshold at a higher RFU level forms a

possibly shorter list of allele pairs, corresponding to binary 0/1

likelihoods.

A method’s posterior genotype probability is the product of its

likelihood and the prior, normalized to sum to unity (Table 2,

posterior).

The LR is shown (Table 2, LR) as a ratio of posterior to prior

genotype probabilities. We see that TrueAllele genotype modeling

used peak height information to make a clear distinction between

the 7,14 major and 10,12 minor genotype contributors. By

ascribing 98% of the probability to genotype 10,12, the continuous

computer method produced a LR of 37 (posterior to prior ratio of

98/2.7) that preserved virtually all of the identification informa-

tion.

The CPI allele inclusion method uses all data peaks above a

predetermined analytical threshold to form allele pairs [38]. The

LR of the inclusion genotype at known 10,12 relative to the

population is 4 (11/2.7), the reciprocal of the inclusion probability.

The inclusion method’s LR of 4 at this locus is approximately an

order of magnitude less than TrueAllele’s genotype modeling LR

of 37. Multiplying together independent locus inclusion LR values

gives the CPI match statistic. The inclusion method is named CPI

by its match statistic, also dubbed Random Man Not Excluded

(RMNE).

mCPI uses a stochastic threshold to produce a DNA match

statistic. mCPI only uses those loci at which all of the peaks are

above the stochastic threshold. In our Penta E locus example, the

data peaks corresponding to the known 10,12 individual are both

under the threshold, setting the mCPI likelihood to zero.

Therefore the mCPI posterior probability and LR (from the

calculation 0/2.7) of the locus would both be zero, as well. This

locus was not used in the mCPI calculation.

Considering all loci in this mixture, TrueAllele’s log(LR) was

16.32; the weight of evidence was 7.04 ban for CPI, and 6.00 ban

for mCPI. This example illustrates how genotype modeling makes

more use of the data to preserve DNA match information, while

an already diminished CPI match statistic can be further reduced

by the mCPI stochastic threshold. Our study examines this

phenomenon on a larger set of Virginia DFS case matches,

comparing the three mixture interpretation methods TrueAllele,

CPI and mCPI.

Materials

Mixture Data
The Virginia DFS identified DNA mixture cases where

computer interpretation could potentially make more use of the

STR data than manual review. The selection criteria included

having a probative DNA item, possible use of that item as evidence

in a criminal trial, an included person of interest, and a need for

accurate DNA match information. Items that were easy to

interpret manually were not chosen.

The 72 cases spanned a full range of biological evidence,

including touch, epithelial cells, blood, saliva and semen (Table 3).

These samples are representative of DNA laboratory casework

items. The DNA evidence items were all mixtures, most having 3

contributors and some 4 (Table 4), as estimated visually from locus

peak counts and patterns.

Figure 8. Method comparison. Cumulative empirical log(LR)
distributions are shown for uniform probability (black), and for each
of the three mixture interpretation methods TrueAllele (blue), CPI
(green) and mCPI (red). TrueAllele tracks a uniform distribution over a
wide information range, whereas CPI and mCPI do not.
doi:10.1371/journal.pone.0092837.g008

Table 8. Paired comparisons for positive log(LR) values between TrueAllele (TA) and CPI.

N = 81 TA CPI TA – CPI test p-value

Mean 11.623 6.825 4.798 t = 8.396 1.350610–12

Median 10.816 6.681 4.135 W = 3047 6.664610–11

r = 0.2999

r2 = 0.0900

Significance tests were done for means (Student t) and medians (Wilcoxon signed rank W). Correlation coefficients (r) and coefficient of determinations (r2) are shown.
TrueAllele was significantly more informative than CPI.
doi:10.1371/journal.pone.0092837.t008
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The mixture weights as calculated by TrueAllele were evenly

distributed between 10% and 90% (Table 5). Statistically

comparing this empirical mixture weight distribution with a

uniform probability distribution gave a Kolmogorov-Smirnov test

[39] statistic of 0.1079, whose p-value (0.2220.0.05) showed no

significant difference between the distributions.

Virginia DFS generated STR data using the Promega Power-

Plex 16 kit (Madison, WI), analyzed on an Applied Biosystems

31306l Genetic Analyzer (Foster City, CA). The DFS case

materials included electronic.fsa data files from the sequencer,

their own case reports and case context descriptions. DFS sent

these electronic materials via secure file transfer protocol (sFTP) to

Cybergenetics during the latter half of 2011. The data files were

organized in batches for computer processing.

TrueAllele System
Cybergenetics TrueAllele Casework is a computer system for

resolving DNA mixtures into their component genotypes [40].

Written in the MATLAB programming language, the computer

uses MCMC sampling [25] to solve a hierarchical probability

model [23]. (In this paper, a ‘‘computer’’ always refers to

TrueAllele Casework software running on either a client or server

computer). A human operator uses VUIer (Visual User Interface)

client software that interfaces over a network with a server that

hosts a database and parallel processors running interpretation

software.

TrueAllele divides DNA identification into two phases [41]. The

computer first infers genotypes from the evidence data. The

inference is objective in that it has no knowledge of downstream

comparison reference genotypes. Afterwards, a comparison can be

made between an inferred evidence genotype and a reference, to

calculate a LR [31] relative to a population. Separating mixture

data into single source-like genotypes can make results easier to

explain [33] and simpler to report [42].

Procedure

TrueAllele Processing
For each received batch of cases, Cybergenetics processed

the.fsa files in the TrueAllele Analyze module to assess data

quality. For computing efficiency, EPG peaks below the baseline

noise level of 10 RFU were not used (since they do not affect the

results). The quality-checked quantitative peak data were then

uploaded to a TrueAllele database.

A trained first TrueAllele operator processed a case by

downloading from the database the electronic data for all evidence

items. The operator examined the EPG signals, and estimated the

number of contributors for each evidence item based on the

number of peaks observed at each locus. If relevant and available,

an assumed reference could be used. (For example, with an

intimate sample from a sexual assault, assuming the victim’s

genotype as a known contributor to the mixture is forensically

meaningful). Appropriate DNA interpretation case questions were

uploaded as ‘‘requests’’ from the VUIer to the TrueAllele database

for processing.

Following this initial processing, an experienced second

TrueAllele operator then reviewed the computer results, and

determined whether further analysis would be required. Such

additional TrueAllele analyses could entail assuming a different

number of contributors, considering DNA degradation, or

repeating the question using more computer processing time.

When the number of contributors was ambiguous, multiple

contributor assumptions were tested; the assumed number of

contributors (when there are enough) does not have a major effect

on the inferred genotypes or match statistics. Reportable DNA

results were replicated in two or more independent computer runs.

Case Reporting
A reporting scientist examined all the computer results in a case.

After careful review of the replicated genotypes, together with the

data and mixture weights, a concordant genotype subset was

identified. Concordant genotypes had similar probability distribu-

Table 9. Paired comparisons for positive log(LR) values between TrueAllele (TA) and mCPI.

N = 53 TA mCPI TA – mCPI test p-value

Mean 12.883 2.145 10.738 t = 15.147 1.040610–20

Median 12.537 1.857 10.679 W = 1431 2.386610–10

r = 0.2945

r2 = 0.0867

Significance tests were done for means (Student t) and medians (Wilcoxon signed rank W). Correlation coefficients (r) and coefficient of determinations (r2) are shown.
TrueAllele was significantly more informative than mCPI.
doi:10.1371/journal.pone.0092837.t009

Table 10. Paired comparisons for positive log(LR) values between CPI and mCPI.

N = 52 CPI mCPI CPI – mCPI test p-value

Mean 7.069 2.180 4.889 t = 17.417 4.082610–23

Median 6.720 2.024 4.696 W = 1378 3.497610–10

r = 0.5188

r2 = 0.2692

Significance tests were done for means (Student t) and medians (Wilcoxon signed rank W). Correlation coefficients (r) and coefficient of determinations (r2) are shown.
CPI was significantly more informative than mCPI.
doi:10.1371/journal.pone.0092837.t010
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tions, mixture weights and Kullback-Leibler (KL) statistics [43].

These properties all measure the inferred genotype, and are

independent of any reference comparison or match result. The

scientist chose a representative genotype from this concordant set.

In the VUIer program, the TrueAllele scientist indicated the

three genotypes (evidence, reference and population) needed to

calculate a LR. Virginia’s databases of Black, Caucasian and

Hispanic populations were used, and the co-ancestry coefficient

was set at 1%. All three LRs were reported; for comparison

purposes in this study, we conservatively took the smallest of the

three match statistics.

Match Statistic Collation
Cybergenetics processed the data, and prepared DNA match

reports for 72 cases requested by DFS. These cases encompassed

92 items of evidence and 111 comparisons to reference individuals.

TrueAllele LR values were collated from these reports. DFS had

independently conducted manual mixture calculations on most of

the reported TrueAllele matches. These CPI and mCPI match

statistics were collected and recorded in a LR format.

A DFS forensic examiner assessed DNA evidence to determine

whether a person of interest could be eliminated from the data.

This assessment considered the number of contributors, sample

type, DNA quantity, potential drop out, and other factors. When

the data were inconclusive or the person had been eliminated, no

match statistic was calculated.

Results

We assessed the reliability of DNA mixture interpretation

methods through information metrics based on log(LR). The data

set comprised 111 computer-inferred evidence genotypes and

match statistics; our focus is on the 101 reported matches. We

consider in turn how specifically, precisely and sensitively the

TrueAllele system performs. Information comparisons with CPI

and mCPI methods are possible because formally these manual

methods are LRs [28].

Recall that the identification hypothesis H is that a particular

individual contributed their DNA to biological evidence. The

alternative hypothesis ,H is that they did not, i.e., that the DNA

was left by someone else. Forensic science standardly approxi-

mates ,H with a random man hypothesis that the DNA

contributor is an unrelated person selected at random from a

genotype population [31].

TrueAllele Specificity
Specificity measures the extent to which a mixture interpreta-

tion method does not misidentify the wrong person. Since

identification information is expressed through the log(LR), let X

be a real-valued random variable of log(LR) values. We want to

understand the TrueAllele distribution of Pr{X = x | ,H}, the

information X conditioned on randomly selected genotypes (that

are not contributors to the mixture). The specificity statistic

Pr{X.0 | ,H} then tells us how frequently a positive log(LR)

occurs by chance.

Toward this end, we generated ten thousand random genotypes

from each of the three Virginia ethnic populations. This

generation was done by randomly selecting alleles in proportion

to their prevalence in the population database. We compared the

101 matching TrueAllele-inferred evidence genotypes to these

random reference genotypes, relative to the appropriate popula-

tion, to calculate log(LR) values; the co-ancestry coefficient was set

to 1%. These values provided a representative log(LR) sampling of

over a million nonmatching comparisons for each population.

The resulting empirical Pr{X = x | ,H} distribution is shown

in Figure 5, where the kth bin aggregates the log(LR) values for the

interval k # x,k+1. A negative log(LR) value means that a

coincidental match is more probable than the evidence matching

the reference genotype. TrueAllele’s log(LR) distribution is highly

negative, with an average value around –19.5 (Table 6). Thus, for

noncontributors, the computer-inferred probability of an evidence

genotype is generally much less than the population frequency.

The specificity value Pr{X.0 | ,H} was estimated by

counting the fraction of positive log(LR) outcomes. For all three

ethnic populations, TrueAllele’s false positive rate was less than

one in twenty thousand (Table 6, tail distribution). The rate for

X.3 was under one in a million, and no false positives were seen

beyond that level. The results were essentially the same when

reference genotypes were randomly generated using co-ancestry

coefficients ranging from 1% to 5% (data not shown).

TrueAllele Precision
TrueAllele’s genotype model has hundreds of variables.

Therefore the (largely continuous) probability model cannot be

solved directly by brute force integration or enumeration. Instead,

MCMC computing is used to statistically sample from the joint

posterior probability distribution, a standard numerical solution

for high-dimensional hierarchical models. Such methods exhibit

sampling variation between independent computer runs.

Precision describes a method’s reproducibility on the same data.

To measure precision, we examined the identification information

obtained in duplicate computer runs of the 101 matching

genotypes. The observed log(LR) pairs are shown in Figure 6,

where the scatterplot shows the points clustering near the y = x

diagonal line. Precision can be quantified by calculating within-

group standard deviation [7], which is the mean square variation

over replicate computations. For the set of genotype matches, we

found a precision of 0.305 ban. So, on average, repeated

TrueAllele LR values vary by a factor of 2 (100.305) standard

deviations.

The log(LR) variation between computer runs was generally

greater at medium LR values having logarithms between 5 and 10

(Figure 6). When the LR was small, so were the inter-run

deviations. With large LRs, the highly informative genotypes were

very reproducible. Statistical tests for heteroscedasticity (Breush-

Pagan, White) were not significant (p.0.05).

TrueAllele Sensitivity
Sensitivity measures the extent to which a mixture interpreta-

tion method identifies the correct person. We therefore examine

Pr{X = x | H}, the log(LR) distribution conditioned on the

identification hypothesis H. In this observational case study, we

want reassurance that H is true, so that the reference genotype

actually contributed to the mixture evidence.

The preceding specificity results demonstrated that the false

positive rate Pr{X.0 | ,H} of TrueAllele’s mixture interpreta-

tion under the noncontributor hypothesis was less than 0.005%.

(This is ten times smaller than the highly reliable 0.05% error rate

for dual manual review of easily interpreted single-source

reference samples [44]). Moreover, beyond small log(LR) levels

around 3 ban, no false positives were seen in millions of

comparisons. Indeed, in experimental studies based on samples

of ‘‘known’’ composition [13,16,45,46], TrueAllele is used to

rectify laboratory errors in genotype composition and mixture

weight. Since the method’s high specificity assures identification

hypothesis H with considerable certainty, we can safely examine

the Pr{X = x | H} sensitivity distribution of positive log(LR)

values.
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The TrueAllele log(LR) distribution of the 101 reported

matches is shown in Figure 7a. For each genotype comparison,

we took the smallest of the three ethnic population LR values and

used a co-ancestry correction of 1%. The log(LR) values ranged

from 1.255 to 22.962, with a mean value of 11.054 ban (Table 7,

TrueAllele). As expected, the matching DNA evidence evenly

spanned the entire range of positive identification information,

from zero to full single-source levels beyond 20 ban. This breadth

of scores was also seen in the large standard deviation of 5.421

ban. Of the 101 reported matches, 82 had a DNA statistic

exceeding a million, which is a level that people may find

persuasive [47].

More accurate genotype modeling employs a likelihood

function that better explains the data, and so tends to produce a

higher LR (relative to less accurate modeling) when there is a true

match. However, the actual LR value depends on the genotype

model, thus some other measure of accuracy is needed. Over a

large ensemble of DNA mixtures having randomly distributed

mixture weights (Table 5) and DNA amounts, one would expect to

observe uniformly distributed identification information. So one

measure of accuracy is the degree to which a method’s empirical

log(LR) distribution resembles a uniform distribution.

A uniform probability density function (PDF) is a constant

horizontal line. TrueAllele’s empirical PDF appears relatively

constant across its range of observed log(LR) values (Figure 7a). A

better comparison is made using a cumulative distribution function

(CDF); for a constant PDF value, the CDF is a straight line moving

from 0 up to 1 (Figure 8, black). The computer’s empirical CDF

forms a reasonably straight line (Figure 8, blue), similar to the

uniform CDF (Figure 8, black). The Kolmogorov-Smirnov (K–S)

test can statistically assess whether two probability distributions are

the same. With a KS value of 0.1059, the p-value (0.2149.0.05)

showed no significant difference between TrueAllele’s empirical

log(LR) distribution and a uniform distribution, providing

statistical support for the system’s accuracy.

Threshold Methods
The two threshold-based manual methods produced less

informative DNA statistics that were distributed differently than

the computer’s 101 genotype modeling positive log(LR) results. On

81 comparisons, the CPI manual method yielded matches with a

mean log(CPI) value of 6.825 ban (Table 7, CPI). The mCPI

stochastic threshold method gave 53 matches with a 2.145 ban

average, and 17 inconclusive results where a match statistic could

not be calculated (Table 7, mCPI). Frequency plots of the log(CPI)

and log(mCPI) distributions show a pronounced leftward shift for

these two match statistics (Figures 7b and 7c, relative to 7a). The

match information range narrowed, with standard deviations of

2.217 and 1.675 ban, respectively.

We can again use the Kolmogorov-Smirnov statistic to test the

accuracy of these two manual methods. The empirical CDFs of

inferred log(LR) values for both CPI (Figure 8, green) and mCPI

(Figure 8, red) are seen to deviate from a uniform distribution

(Figure 8, black). For CPI, KS = 0.5609 (p = 1.8856610–22),

demonstrating a significant difference between CPI’s log(LR)

CDF and the uniform distribution. Similarly with mCPI,

KS = 0.7352 (p = 1.1316610–25), showing a significant difference

between mCPI’s log(LR) CDF and the uniform distribution. The

nonuniform clustering of CPI and mCPI log(LR) values (Figures 7b

and 7c; Figure 8, green and red), statistically confirmed by the KS

tests, does not support the accuracy of threshold methods.

Comparison of Methods
The numerical differences in average log(LR) between the three

interpretation methods were statistically significant (Tables 8–10).

TrueAllele preserved the most information, CPI kept less, and

mCPI retained the least. These results are not surprising [7]:

threshold methods make less use of the data [48], higher

thresholds further reduce information, and the study’s case criteria

selected for items having low mCPI values. The correlations are

also of interest.

The TrueAllele genotype modeling method showed a significant

improvement over the older CPI allele inclusion method (Table 8).

The mean log(LR) difference was 4.798 (Student t = 8.396,

p = 1.350610–12), and the median difference was 4.135 (Wilcoxon

sign rank W = 3047, p = 6.664610–11); both differences exceed

four orders of magnitude. There is only a weak correlation

(r = 0.2999) between the methods, and the small coefficient of

determination (r2 = 0.0900) leaves over 90% of the variance

unexplained. To the extent that TrueAllele quantitative modeling

measures identification information, the CPI binary allele inclu-

sion method is measuring something else.

TrueAllele also showed a significant improvement over the

newer mCPI allele inclusion approach (Table 9). Here the mean

log(LR) difference was 10.738 ban (t = 15.147, p = 1.040610–20),

and the median difference was 10.679 ban (W = 1431,

p = 2.386610–10). The 10 ban difference is a factor of ten billion

in DNA match statistic. The weak correlation (r = 0.2945) and

small coefficient of determination (r2 = 0.0867) again leaves over

90% of the variance unexplained. Since TrueAllele quantitatively

measures identification information, the mCPI stochastic thresh-

old method apparently measures some other data attribute.

Switching from allele inclusion to stochastic thresholds signif-

icantly reduced the match statistic (Table 10). The mean log(LR)

difference between CPI and mCPI was 4.889 ban (t = 17.417,

p = 4.082610–23), and the median difference was 4.696 ban

(W = 1378, p = 3.497610–10), which is a match statistic ratio of

over ten thousand. There is some correlation (r = 0.5188) between

CPI and mCPI, but the small coefficient of determination

(r2 = 0.2692) does not explain over 70% of the variance. Stochastic

thresholds seem to measure inclusion in a different way than does

CPI.

These concordant multi-method match results increase confi-

dence in the sensitivity experimental design, where reference

genotypes were considered to be present in their respective DNA

mixture items. Each of the three interpretation methods works

differently, is accepted by courts as reliable criminal evidence, and

was calculated independently in the study. In each pairwise

comparison, the methods independently agreed on all matches

(N.50) and gave positive identification information. These

pairwise consensus results were obtained on highly reliable data

subsets of the more readily interpretable mixtures.

TrueAllele Conservatism
Out of 111 TrueAllele genotype comparisons, 10 gave a

negative log(LR) value, and so did not produce a positive match

result (Table 11, first 10 rows). This often occurred when a

reference sample allele was not seen as an STR peak in the

evidence data, which could be explained by either exclusion or

allele dropout. Dropout at a locus usually yields a negative log(LR)

value for that locus, which the computer must tally in its joint

match statistic. Other STR features that can confound a match

between the evidence data and a reference sample are allele

overlap, low peaks, peak imbalance, infeasible mixture combina-

tions and an infeasible mixture pattern.
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There were 5 genotype comparisons where CPI indicated a

match, but the computer found no statistical support (Table 11,

TrueAllele ,0, CPI .0). Laboratory reexamination of these

items agreed with the computer’s conclusions. Since the

threshold methods did not use peak height information, they

supported inclusions whose genotype mixture combinations were

incompatible with the quantitative data. Manual mixture

interpretation statistics may omit loci that do not demonstrate

inclusion, and reported loci can only add positive log(LR)

values. The TrueAllele computer, on the other hand, must use

all the loci, with negative results at a locus decreasing the total

weight of evidence.

Five genotype comparisons gave a small positive TrueAllele

log(LR) value of under 3 ban (Table 11, last 5 rows). CPI produced

a match statistic in one of these cases, while mCPI provided no

statistics. Three of the five items showed considerable allele

overlap, which the computer could mathematically resolve better

than inclusion methods. There were fewer low peaks and greater

peak imbalance in these data, relative to the negative match

results. The last column shows that TrueAllele can distinguish

between quantitatively feasible and infeasible mixture patterns,

while CPI and mCPI may not.

Discussion

Modern criminal justice requires rapid and reliable processing

of DNA evidence. Reliability is the basis of admissible evidence,

and entails sensitivity, specificity and precision. However, when

confronted with complex mixtures or touch DNA, manual

review can become a challenging task. Since such mixtures may

constitute the bulk of biological evidence found in serious crimes

such as sexual assault or homicide, effective interpretation of

these data is needed.

In this casework study, the newly adopted mCPI stochastic

threshold method produced results in 53 of 70 DNA match

comparisons, finding an average match statistic of 140 (Table 7,

mCPI, as 102.145). The previously used CPI threshold method had

greater sensitivity in 81 inclusions on this data set, for an average

match statistic of 6.68 million. TrueAllele computer interpretation

provided 101 match statistics, with an average LR of 113 billion.

The genotype modeling reported on more of the evidence than did

threshold methods, and preserved more DNA identification

information.

TrueAllele mixture interpretation does not always increase a

DNA match statistic. In this study, the computer’s statistics were

lower than the corresponding human CPI values in 15 reported

matches [49]. Moreover, the computer found no statistical support

for a match in 10 cases, including 5 where CPI gave an

inclusionary match statistic. While the system does find more

matches and computes stronger statistics on average, it examines

DNA evidence objectively without introducing bias that may favor

the prosecution or defense.

In addition to increased average sensitivity, TrueAllele also

maintains excellent specificity. The computer’s LR can quantify

negative match information, unlike manual interpretation meth-

ods that are restricted to positive (logarithmic) values. We

examined several million genotype comparisons between comput-

er-inferred evidence and randomly generated references, and

found a false positive rate of under 0.005%. The negative match

information in this simulation experiment had a log(LR) averaging

around 219.5 ban.

TrueAllele calculates DNA match statistics with precision.

Replicate computer runs on the same evidence data showed a

within-group log(LR) standard deviation of 0.305 ban. Thus,

independent runs on the same evidence item gave statistically

similar DNA match statistics that were usually within an order of

magnitude.

To assess accuracy, (logarithmic) match statistic distributions

were examined. Across an entire ensemble of matches, the

random sampling inherent in casework should produce a

uniform log(LR) distribution. TrueAllele’s match distribution

was statistically uniform, which lends support to the overall

accuracy of its LR values. However, the manual methods each

clustered around their average match value, and so did not

exhibit a uniform distribution that would support their

accuracy.

DNA, whether single source or complex mixture, can provide

evidence that implicates criminals and exonerates the innocent.

Current manual review of DNA mixture data applies thresholds

that can discard valuable data and understate the evidential

import of the identification information. As demonstrated in this

casework comparison study, TrueAllele computer interpretation

more effectively preserves DNA evidence and match informa-

tion, relative to CPI and mCPI methods that use thresholds.

Both prosecutors and defense attorneys may benefit from use of

this validated computer technology to review complex DNA

mixture evidence.
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