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ABSTRACT: DNA evidence can pose interpretation challenges, particularly with low-level or mixed samples. It would be desirable to make
full use of the quantitative data, consider every genotype possibility, and objectively produce accurate and reproducible DNA match results.
Probabilistic genotype computing is designed to achieve these goals. This validation study assessed TrueAllele! probabilistic computer interpre-
tation on 368 evidence items in 41 test cases and compared the results with human review of the same data. Whenever there was a human
result, the computer’s genotype was concordant. Further, the computer produced a match statistic on 81 mixture items (for 87 inferred matching
genotypes) in the test cases, while human review reported a statistic on 25 of these items (30.9%). Using match statistics to quantify informa-
tion, probabilistic genotyping was shown to be sensitive, specific, and reproducible. These results demonstrate that objective probabilistic geno-
typing of biological evidence can reliably preserve DNA identification information.
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DNA evidence resides at the center of modern criminal justice
(1) and is used to help apprehend, convict, and exonerate sus-
pects (2). An ideal DNA system would provide identification
information with thoroughness, accuracy, and objectivity. These
desirable features are already found in the data generation pro-
cess, in which a largely automated DNA laboratory transforms
biological specimens into quantitative computer signals. How-
ever, the subsequent data interpretation process may not possess
these ideal attributes.
Rule-based human or computer (3) review can work well with

pristine DNA data, such as reference samples. Casework evi-
dence is usually not pristine, however. DNA evidence extracted
under real-world conditions is often mixed (having multiple con-
tributors), damaged (by heat or bacteria), or low template (thus
hard to discern with certainty).
The DNA data pattern that results from such evidence may

suggest multiple genotype possibilities, thereby reducing identifi-
cation information. Human review of ambiguous DNA can be a
time-consuming process that considers only some genotype pos-
sibilities, and does not fully elicit all the information that the
data contain (4). Moreover, human comparison of DNA evidence
and suspect genotypes may not be entirely objective (5–8).

Computer interpretation of DNA evidence overcomes these
issues. Specifically, quantitative computer modeling is:
• Thorough, with parallel computers considering virtually every

genotype possibility;
• Accurate, able to employ mathematical models that more

fully preserve the identification information residing in the
DNA data; and

• Objective, interpreting evidence without knowledge of any
suspect’s genotype.

Such computer processing can effectively handle the mixed,
damaged, and low-level DNA evidence that currently consumes
much of the human review effort.
Computers can thoroughly examine every genotype possibility

through statistical Markov chain Monte Carlo (MCMC) comput-
ing (9,10) on probability models (11,12). Probabilistic genotypes
have been recognized by regulatory bodies such as SWGDAM
(13) and standards organizations such as ANSI/NIST (14) as a
valid approach to DNA interpretation and reporting. Genotype
probability has a long scientific tradition in genetics (15–17) and
human identification (18–20), with statistical computer solutions
for DNA mixtures (4,21). Human review simplifies DNA data
and considers only some genotype possibilities (22). The well-
established laws of probability (23,24) and scientific inference
(25,26) permit a more complete interpretation.
This study examined Cybergenetics TrueAllele! Casework, a

probabilistic genotyping computer system that interprets DNA
evidence using a statistical model. We analyzed 368 items of
anonymized, adjudicated evidence from the New York State
Police (NYSP) Forensic Investigation Center (FIC). We studied
81 mixture items, focusing on contributors with mixture weights
between 5% and 95%; these contributors yielded 87 inferred
genotypes that matched a known suspect. We measured the sen-
sitivity, specificity, and reproducibility of these genotypes using
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match information. We compared computer results with those
from human review.
This study was submitted to the DNA Subcommittee of the

New York State Commission on Forensic Science as part of the
technology approval process mandated for NYS public DNA
laboratories. The DNA Subcommittee made a unanimous bind-
ing recommendation for TrueAllele approval on May 20, 2011,
which was ratified by the Commission on June 27, 2011.
In this paper, we first discuss computer methods for interpret-

ing quantitative DNA mixture data and information-based valida-
tion metrics. We then describe the case materials used in the
study and how we classified items. Finally, we present validation
results that quantify the sensitivity, specificity, and reproducibil-
ity of computer interpretation on this mixture data set.

Methods and Materials

Interpreting Uncertain DNA Evidence

A definite genotype can be determined when a person’s DNA
produces clean data. However, when the data signals are less
definitive or when there are multiple contributors to the evi-
dence, uncertainty arises. This uncertainty is expressed in the
resulting genotype, which may describe different genetic identity
possibilities. Such genotype uncertainty may translate into
reduced identification information when a comparison is made
with a suspect.
The DNA identification task can thus be understood as a two-

step process (27):
• Objectively inferring genotypes from evidence data, account-

ing for allele pair uncertainty using probability, and
• Subsequently matching genotypes, comparing evidence with

a suspect relative to a population, to express the strength of
association using probability.

The match strength is reported as a single number, the likeli-
hood ratio (LR), which quantifies the gain in identification
information produced by having examined the DNA evidence
(28–30).
The TrueAllele Casework system is a MATLAB! (The Math-

Works, Natick, MA) computer implementation of this two-step
DNA identification inference approach. The computer objec-
tively infers genotypes from DNA data through statistical model-
ing (31,32), without reference to any suspect. To preserve the
identification information present in the data, the system repre-
sents genotype uncertainty using probability (33). These probabi-
listic genotypes are stored on a PostgreSQL relational database
(34) for persistent and secure storage (35). Subsequent compari-
son with suspects provides investigative and evidentiary identifi-
cation information. A user visually asks interpretation questions
of DNA case data, reviews the computer’s answers, and gener-
ates a report on the match statistics found.

Identification Information

This study uses identification information (36) to quantify the
sensitivity, specificity, and reproducibility of DNA interpretation
methods and for making comparisons between methods (37).
The LR logarithm (powers of ten or “order of magnitude”) pro-
vides an additive measure of match information (38,39) called
the “weight of evidence.”
With a strong DNA match between evidence and suspect, rel-

ative to a population, the LR is typically more than a million

(log(LR) > 6). The LR can be in the quintillions (log(LR) > 18)
when using 13 or more short tandem repeat (STR) loci on unam-
biguous DNA data. A mismatch will have a small LR under 1,
often less than a trillionth (log(LR) < !12). The LR thus quanti-
fies the extent of match, based on DNA data (40,41). A numeri-
cal presentation of scientific support is more precise than
qualitative words like “inclusion” or “exclusion” (42), which are
binary decisions perhaps best left to a trier of fact.
The weight of DNA evidence is used as an information metric

throughout this study (Results). For method sensitivity, log(LR)
measures the identification information inferred from DNA data.
Interpretation specificity is measured by a negative log(LR) value
between evidence and a nonmatching individual. We quantify
reproducibility through information variation within a case. The
productivity of DNA processing can be assessed by how often
an informative sample produces a reportable match statistic.

Genotype Probability

Uncertainty in DNA evidence translates into genotype uncer-
tainty. All mixture interpretation methods report out a list of
allele pair possibilities and assign a probability to each pair (43).
Prior to examining DNA data, our belief is that an evidence
genotype has an allele pair probability distribution based on
allele frequency in a human population. Observing data at a
genetic locus can change this belief, because some contributor
genotype possibilities become more likely than others, based on
how well they explain the data. Combining likelihood and prior
will form a new genotype, whose posterior probability distribu-
tion (44) typically eliminates hundreds of allele pairs and
concentrates on just a few probable ones.
DNA mixture interpretation methods differ by the likelihood

function they employ to explain the data. The most informative
methods have a likelihood function that uses all the quantitative
peak height data and other available information (45); these
include statistical computer modeling systems (21,46) such as
TrueAllele (47). Human interpretation often simplifies the
observed peak heights into qualitative all-or-none allele events to
form a list of allele pairs (27). Such threshold-based binary
likelihood functions can lose identification information, as they do
not use all of the available data (45). Combined likelihood ratio
(CLR) qualitative interpretation considers known (e.g., victim)
contributor genotypes, whereas combined probability of inclusion
(CPI) does not (22).

Mixture Weight Probability

Individuals contribute their DNA to a mixture item in a cer-
tain proportion, or “mixture weight.” Analysts can infer this mix-
ture weight (mean and variance) for the DNA template from
quantitative peak height data and assumed contributor genotypes.
This human approximation uses only those genetic loci where
every allele peak can be unambiguously assigned to some con-
tributor. Computers can instead use all of the loci to infer the
mixture weight of the DNA template (32), achieving greater
precision.
Mixture weight is an auxiliary variable that can help assess

the complexity of a mixture item (Results). A small mixture
weight can produce a lower quantity of contributor DNA, which
may reduce match information through stochastic effects. In a
50:50 mixture interpreted without assuming a victim reference,
more allele pair combinations are possible, and this genotype
uncertainty can decrease DNA match information.
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Evidence Items

We reanalyzed 41 cases (39 adjudicated and two proficiency
tests) that had been previously analyzed by competent DNA ana-
lysts at the NYSP FIC. These 41 cases covered many interpreta-
tion situations commonly encountered in forensic casework. The
cases contained 32 sexual assaults (some having a victim refer-
ence) and homicides involving up to 30 evidence items with
multiple victims (Table 1A).
The 368 study items were derived from 206 distinct biological

source samples. These samples included diverse evidence sources,
such as vaginal swabs, anal swabs, oral swabs, penile swabs, dried
secretions, blood stains, semen stains, weapons, cigarette butts,
condoms, human hair, bite marks, and fingernail scrapings
(Table 1B).
The NYSP laboratory processed the items using Applied Bio-

systems (AB; Foster City, CA) ProfilerPlus! and Cofiler! STR
kits and generated electronic data .fsa files on an AB 3100-series
genetic analyzer. Cybergenetics uploaded these files to the Tru-
eAllele system for probabilistic genotyping. The data and results
were then available for a retrospective comparison with the cor-
responding case reports.
The TrueAllele-inferred mixture weights of these evidence

items were broadly distributed (Fig. 1). Our goal was to study
actual mixtures, rather than background contamination or single-
source samples. We therefore focused on the 87 inferred evi-
dence genotypes from the 81 matching items that had a mixture
weight between 5% and 95%. Different mixture interpretation
methods may define a match in different ways (e.g., by item,
contributor, or genotype). In this multimethod study, a match is
always between a genotype of an evidence contributor and a
known reference genotype.

Mixture Classification

Prior to computer analysis, mixture evidence items were clas-
sified as simple, intermediate, or complex and assessed by an
experienced DNA analyst. About half of the items were in the
simple category, with the remainder divided between the inter-
mediate and complex categories (Table 1C). The number and
nature of the contributors to the items were tabulated, as shown
(Table 2). Other mixture classifications (48,49) have been
tailored to manual mixture review protocols having limited sensi-
tivity and are not relevant to the study of data information con-
tent or statistical computer interpretation.
Most of the simple mixture case items had two contributors

(Table 2, simple) and came from sexual assault differential
extractions. Usually one contributor was known, and the task
was to infer the unknown second contributor. The DNA quantity
was adequate, and the data showed clear major and minor
contributors.
The intermediate mixture items were more challenging for

people to interpret. Some were derived from low-template DNA
sources, while others contained contributors in approximately
equal 50:50 mixture weights. They had two or three contributors,
with multiple unknown contributors appearing in most of the
items (Table 2, intermediate).
Complex mixture items had two or three contributors, usually

with multiple unknown contributors (Table 2, complex). The
STR data often showed peak height imbalance or equally
weighted contributors. There were low-template DNA items, and
several cases had multiple suspect or victim references.

Results

The study examined 4958 alleles in 202 single-source profiles
across the 41 cases. The genotypes inferred by the TrueAllele
statistical computing system were in complete concordance with
human review of the same data. With single-source concordance
established, the remainder of the paper focuses on validating
DNA mixture interpretation.
Opinions vary about what genotype should be inferred from

DNA mixture data (45). Regardless of interpretation method, the

TABLE 1––Case items. Subtotals organized by (A) type of crime, (B) source
of biological sample, and (C) mixture classification.

(A) Type
Sexual assault 32
Homicide 3
Assault 4
Miscellaneous 2

41

(B) Source
Vaginal swab 17
Anal swab 7
Penile swab 1
Semen stain 39
Clothing item 10
Bedding item 3
Weapon 11
Cigarette butt 2
Condom 1
Dried secretion 8
Hair 3
Bite mark 2
Fingernail 9
Blood stain 69
Miscellaneous 24

206

(C) Category
Simple 39
Intermediate 18
Complex 24

81

FIG. 1––Study mixture weights. The distribution of mixture weight over the
case items’ matched contributors is shown as a histogram. The x-axis is the
TrueAllele-determined mixture weight of the matching contributor, binned in
groups of 10% (i.e., 0–10%, 11–20%, etc.). The y-axis is the number of
matches that fall within each mixture weight bin. The total number of counts
(87) is the number of reported computer matches.
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log(LRmethod) of any inferred genotype, relative to a known sus-
pect and reference population, provides a measure of identifica-
tion information in a single number. Human (e.g., CPI, CLR)
and computer (e.g., TrueAllele) mixture interpretation methods
thus share a common information vocabulary, so we can quanti-
tatively assess and compare DNA interpretation methods through
their match statistics.

Sensitivity

Identification information measures sensitivity, quantifying
how well an interpretation method preserves the log(LR) weight
of DNA evidence. We examined TrueAllele sensitivity on a set
of 87 matches, comparing inferred genotype information from
simple, intermediate, and complex cases (Fig. 2). These
histograms show that the computer preserved considerable

identification information. Simple cases (blue) had an average
log(LR) of 14.92, intermediate cases (green) averaged 12.05,
and the complex case (orange) average was 10.47 (Table 3,
h = 1%). These log(LR) averages correspond to match statistics
at the quadrillion, trillion, and billion levels, respectively.
With current manual mixture interpretation methods, not all

items of evidence will yield a reportable match statistic. Prior to
SWGDAM’s 2010 mixture interpretation guidelines, a DNA ana-
lyst might have reported an item using qualitative “consistent
with,” “cannot be excluded,” or “insufficient” language, without
attaching a match number. Now, under current SWGDAM
guidelines, a laboratory’s newly elevated peak threshold may
result in no statistic (50).
The TrueAllele computer, however, has no choice but to infer

a genotype that can be used later on in a statistical match com-
parison. The computer is programmed to report a LR value at
every locus in a genotype comparison, unlike human review (5).
If the data are uninformative, that fact is reflected in a diffuse
genotype distribution and a low LR score.
The weight of DNA evidence in this study ranged from a log

(LR) of 2.02 (hundred) to 21.35 (sextillion), with a median value
of 14.50 (quadrillion). On mixtures found in forensic practice,

TABLE 2––Item complexity. The rows are organized into three groups, based on our simple, intermediate, and complex mixture classification. In the left half
of the table, the number of contributors is shown, arranged by total, known, and unknown contributor columns. The right half shows the number of inferred
genotypes, giving the number having a TrueAllele match statistic, how many of those were reported by the human review laboratory with an associated match
statistic, and the corresponding fraction of human to computer reporting (the computer always generated a match statistic when human review produced a

statistic).

Complexity

Contributors Matches

Total Number
in DNA Item

Number of
Knowns

Number of
Unknowns

Number Reported by
TA with LR Statistic

Number Reported by
Laboratory with DNA Statistic

Fraction Reported by
Laboratory with
DNA Statistic

Simple 2 1 1 32 17 0.531
2 0 2 4 0 0.000
3 1 2 4 0 0.000

40 17 0.425
Intermediate 2 1 1 8 2 0.250

2 0 2 7 2 0.286
3 1 2 4 0 0.000
3 0 3 1 0 0.000

20 4 0.200
Complex 2 1 1 7 2 0.286

2 0 2 15 0 0.000
3 1 2 5 2 0.400

27 4 0.148
87 25 0.288

LR, likelihood ratio.

FIG. 2––Genotype information sensitivity. The distribution of genotype
match information (as inferred by TrueAllele) is shown as a log(LR) histo-
gram of counts for each complexity category, with theta at 1%. The simple
items (blue) are distributed more to the right than the intermediate items
(green). The leftmost distribution is for the complex items (orange), which
tend to be less informative.

TABLE 3––Sensitivity and reproducibility. The rows organize the evidence
genotypes by their mixture item classification as simple, intermediate, or
complex. The middle columns give the DNA match information (mean and
within-group standard deviation) in each category on a log(LR) scale. To
account for co-ancestry, theta values of both 0% and 1% were used. The
mixture weight distribution is presented for each category in the rightmost

columns.

Mixture
Category N

log(LR) Information Mixture Weight

h = 0% h = 1%

Mean (%) SD (%)Mean SD Mean SD

Simple 40 15.78 0.117 14.92 0.125 54.9 23.2
Intermediate 20 12.99 0.232 12.05 0.249 48.9 25.2
Complex 27 11.41 0.584 10.47 0.519 50.1 30.0
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TrueAllele can produce match statistics comparable to
single-source DNA random match probabilities. This occurs
when there is clear genotype separation of the component
contributors.

Specificity

When two genotypes are dissimilar, their match information
can be negative. The greater the dissimilarity, the greater the
magnitude of the negative log(LR) value. Equivalently (30),
when a person did not contribute their DNA to the biological
evidence, the support in the STR data for their having contrib-
uted is generally far less than the alternative view that some else
contributed, that is,

LR ¼ Prfdatajperson contributedDNAg
Prfdatajsomeone else contributedg\1

so that log(LR) is negative. The degree of negativity can be
used to quantify how specifically an interpretation method
discriminates between nonmatching genotypes.
We compared each of the 87 matched mixture evidence geno-

types with the (<87) reference genotypes from the other 40
cases. Each of these 7298 comparisons should generate a mis-
match between the unrelated genotypes from different cases and
hence a negative log(LR) value. A genotype inference method
having good specificity should exhibit mismatch information
values that are negative in the same way that true matches are
positive.
The (empirical) distribution functions of information are

shown in Fig. 3 for the simple, intermediate, and complex items
on a log(LR) scale with theta at 1%. The average weight of evi-
dence was !22.65 for the simple genotypes, with a maximum of
!6.55 (Table 4). Restated linearly, the average statistic of a mis-
matching simple item was under one in sextillion and never
exceeded one in a million. The information distribution of inter-
mediate items moved to the right, having a mean of !20.46 and
a maximum of !4.70. Complex items shifted further, averaging
!19.56, but not exceeding !3.67. While less definite genotypes
gave less definitive mismatch statistics, the log(LR) was always

less than zero and was well separated from the positive values
of matching genotypes.

Reproducibility

We measured interpretation reproducibility by examining the
information variation of duplicate computer runs on the same
evidence item. These log(LR) variations can be combined across
many case items in the same category to compute a within-group
standard deviation (4). The computer lends itself to reproducible
solutions—it is far easier to rerun a program on the same data
than have people arduously rework the same problem manually.
We had previously observed that one unknown mixture prob-

lems are more reproducible than two unknown problems (4).
Across the spectrum of the 87 inferred matching genotypes from
mixture items in this study, we again see that more informative
results tend be more reproducible (Fig. 4). In this figure, the two
replicate TrueAllele runs (blue, green) are shown sorted by
descending information, with a median log(LR) of 14.50. As
identification information decreases (from left to right), we see
increasing divergence between an item’s two inferred log(LR)
values (red line).
This information divergence is a natural consequence of statis-

tical sampling and is independent of any particular mathematical
model or data interpretation method. Lower DNA quantity
increases a data peak’s coefficient of variation, which in turn dif-
fuses genotype probability. Because less probable allele pairs are
sampled by the computer less frequently, they exhibit greater
match statistic fluctuation. TrueAllele’s information variation is
relatively small (Table 3).

FIG. 3––Genotype information specificity. The distribution of genotype
mismatch comparison information (as inferred by TrueAllele) is shown as a
log(LR) histogram of counts for each complexity category, with theta at 1%.
The simple items are most specific (blue), distributed more to the left than
the intermediate items (green). The rightmost distribution is for the complex
items (orange), which are the least specific.

FIG. 4––Replicate genotype information. The inferred genotypes are sorted
by descending match information, with theta at 1%. For each matched geno-
type, the first (blue bar) and second (green bar) independent TrueAllele com-
puter runs’ match statistics are shown on a log(LR) scale. The information
difference between the two genotype replicates is shown (red line).

TABLE 4––Specificity. The rows organize the evidence genotypes by their
mixture item classification as simple, intermediate, or complex. The columns
give the DNA match information (mean, standard deviation and maximum)

in each category, on a log(LR) scale with theta at 1%.

Mixture
Category N

log(LR) Information

Mean SD Maximum

Simple 3380 !22.65 3.300 !6.55
Intermediate 1664 !20.46 4.111 !4.70
Complex 2254 !19.56 4.964 !3.67

1462 JOURNAL OF FORENSIC SCIENCES



Categorizing items by their complexity confirms that more
informative data produce (on average) more reproducible inter-
pretation (Table 3, h = 1%). The simple items had a within-
group log(LR) standard deviation of 0.125. The intermediate
samples doubled that variation to 0.249, while complex ones
more-than-doubled the spread yet again to 0.519. The observed
with-in group standard deviations (Table 3) were all less than
the match statistic variation due to population sampling, typically
one power of ten with standard population databases having over
a hundred individuals (51). TrueAllele mixture interpretation was
thus reproducible in all the data situations examined.

Case Reporting

A DNA match statistic should be reproducible. When report-
ing a case, Cybergenetics will process an item in (at least) two
independent TrueAllele computer runs. When duplicate runs
yield match statistics that differ by more than two log units, one
of the Markov chain solutions may have failed to properly sam-
ple from the posterior distribution.

This difference is resolved by rerunning the same request a
third time for genotype consensus. Such resolvent computer runs
attained concordance in every case, identifying the aberrant run
and providing greater reproducibility in the reported results.
Triplicate computer interpretation for the six cases having log
(LR) values under 5 (Fig. 4, extreme right) confirmed the previ-
ous solution in two cases, slightly increased the statistic in three
cases, and, in one case, eliminated the equivocal match.

Human Comparison

Human review may not always produce a numerical match
value. For the 40 computer-matched genotypes inferred from
simple items, human review in this study yielded a statistic (e.g.,
CPI, CLR) 42.5% of the time (Table 2, fraction reported by lab-
oratory with DNA statistic). The human yield was less on the 20
intermediate items, with people generating a statistic for just
20% of the inferred genotypes. On the 27 computer-inferred
genotypes from complex items, only 14.8% resulted in a statistic
upon human review. Overall, the laboratory’s human review
reported a numerical DNA match statistic for 25 of the 87 com-
puter genotype matches (28.8%), or 25 statistics produced for
the 81 evidence items (30.9%).
We can represent the relative information yield for these mix-

tures in a chart that shows the amount of preserved identification
information, along with the mixture interpretation method
(Fig. 5). The TrueAllele weight of evidence (blue) is shown in
the background and sorted in descending log(LR) order for the
87 computer-inferred genotype matches. For the 24 recorded
human interpretation numerical scores, a LR equivalent match
result is shown, with bars for the 4 single-source conditional
match probability (gray), 8 mixture CLR (green), and 12 mix-
ture CPI (orange) results. Overall, we see less human-derived
match information, both in the number of reported match statis-
tics and in the statistic’s value.
The human inferred log(CLR) statistic of 8.20 (Fig. 5, third

green bar from left) was appreciably lower than its CLR neigh-
bors, which had statistics of 15.03 and 13.52 (the corresponding
computer log(LR) values were all around 18). This match statis-
tic reduction occurred because the human interpretation reported
on just 8 of the 13 STR loci in this case. At the other five loci,
the unknown 60% major contributor shared its alleles with the
victim. Many laboratories do not report victim genotypes, which
can reduce the match score. The computer is not restricted in

FIG. 5––Computer versus human match information. The blue background
shows the computer-inferred match information for each genotype, as in
Fig. 4. The foreground bars show logarithms of human match statistics
obtained on the same DNA mixture genotypes. The human review methods
used were conditional match probability (CMP) (gray), combined likelihood
ratio (CLR) (green), and combined probability of inclusion (CPI) (orange).
The TrueAllele LRs were calculated with theta at 0% for CLR and CPI and
at theta = 3% for CMP, to correspond to the reported laboratory results.

FIG. 6––Mixture weight comparison. The mixture weights of items having two contributors were determined by two different quantitative allele peak methods.
TrueAllele used all of the peak height data at all loci in a Markov chain computation. Human calculation was made on a spreadsheet that used peak heights
from alleles that could be separated by assumed contributor. A histogram of the differences is shown, with the x-axis showing the difference in inferred mixture
weight between human and computer and the y-axis showing the number of such occurrences.
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this way and, instead, infers and reports contributor genotypes at
every locus.

Productivity

TrueAllele interpretation produced a match statistic for every
item. With human review, however, three mixture items were
examined for each match statistic that was produced (Table 2).

People may restrict their interpretation to those biological speci-
mens that yield simple DNA results, thus forcing the laboratory
to process more evidence items to identify such specimens.
A probabilistic computer interprets every item (regardless of
complexity) and so can find a DNA match statistic sooner.
Reducing the number of examined DNA samples could acceler-
ate turnaround time, consume fewer reagents, and reduce human
effort (52).

Mixture Weight

For comparison purposes, we manually computed the mixture
weights on Excel spreadsheets for 45 two person mixtures, con-
sidering only those loci where the contributor allele sets did not
overlap. At each locus, the contributor peak height sum was
divided by the allele peak height total to estimate mixture
weight. Examining the differences between TrueAllele-computed
mixture weight (using all loci in a probability model computa-
tion) and these less exact human spreadsheet estimates, we found
good agreement between the computer and human solutions
(Fig. 6).
For each of the three classifications, we paired each DNA

match’s log(LR) (h = 1%) together with its mixture weight.
These scatter plots show how greater item complexity is associ-
ated with reduced match information and somewhat lower mix-
ture weight (Fig. 7). On average (Table 3), the simple mixture
contributor genotypes (Fig. 7A) had more information (log(LR)
of 14.92) and a higher mixture weight (54.9%). Intermediate
genotypes (Fig. 7B) showed less identification information
(12.05) and somewhat lower mixture weights (48.9%). The com-
plex items (Fig. 7C) had the least information (10.47) and about
the same mixture weights (50.1%).
There is an apparent simple category outlier in the bottom left

corner of the scatter plot (Fig. 7A), having a mixture weight of
7% and a log(LR) of 2.02 (see also Fig. 2, leftmost blue bar).
The item had two contributors, each with its own matched geno-
type. The item classification was based on the (easier to inter-
pret) major contributor genotype, rather than on the minor
contributor genotype involved in the match shown. Human
review examines unseparated item data peaks, whereas a proba-
bilistic computer infers and compares a mathematically separated
contributor genotype with a reference genotype.

Conclusions

In today’s forensic laboratory, a greater range of biological
evidence undergoes DNA analysis (e.g., property crimes, touch
DNA), with ever more challenging items submitted (e.g., low-
template mixtures). Many laboratories have responded by intro-
ducing automation into their workflow. This greater analytical
capacity, in turn, has created bottlenecks in data interpretation
and technical review. To overcome these bottlenecks (53), we
tested how Cybergenetics TrueAllele Casework statistical model-
ing system could provide automated DNA data interpretation.
The study reanalyzed 41 previously reviewed cases spanning

diverse interpretation situations commonly encountered in forensic
casework. There were 368 evidence items across many categories
of evidence, including 81 mixture items that yielded 87 genotype
matches. We found genotype concordance in all the items, verify-
ing the computer’s ability to accurately separate genotypes across
a wide range of mixture weights and complexities.
A thorough mixture interpretation considers all genotype pos-

sibilities, whether or not they are immediately evident from the

FIG. 7––Mixture weight versus information. For each category, a scatter
plot is shown of information versus mixture weight for all genotypes in that
category. The (A) simple items tend to have more identification information
and higher mixture weights than other items. The (B) intermediate items
have less information and lower mixture weights, while the (C) complex
items have the least information, on average. The likelihood ratio values
were calculated with theta at 1%.
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peak height data. Thorough statistical review also determines
allele peak uncertainty directly from the observed data (54),
obviating the need for a less precise threshold approach to
addressing stochastic variation. Such thoroughness is needed for
robust probability inference (44). Computers can achieve this
thorough examination through statistical sampling (9,10),
whereas a person might take many years to explore one mixture
problem’s vast variable space.
The interpretation of STR DNA data by TrueAllele probability

modeling provides objectivity, eliminating examiner bias in forensic
DNA casework (8). The evidence genotypes are inferred from the
data without any knowledge of a suspect genotype (4). Using this
system, a genetic testing laboratory could design their workflow to
ensure that analysts complete their evidence examination and record
inferred genotypes, before they see a suspect’s genotype (7).
The TrueAllele system achieves greater genotype accuracy in

probabilistic inference from mixture data than does current man-
ual review (13,22). The system preserves more of the identifica-
tion information present in the evidence by making better use of
the data (45). When human review does report a match statistic,
the computer’s positive log(LR) can provide greater sensitivity.
When the data do not support a match, the computer quantifies
its specificity through a negative log(LR). With inconclusive
human review on informative data, the computer will typically
produce a match statistic (55,56).
The study showed that TrueAllele’s statistical processing was

reproducible across independent replicated computer runs (4).
This reproducibility, coupled with greater accuracy, establishes
the validated system’s reliability for forensic casework and
experimental science (57).
A reproducible DNA interpretation method permits standardiza-

tion of mixture reporting in the laboratory. Current human review
approaches can lead to very different match statistics on the same
DNA data (45,58,59). Trained TrueAllele analysts, however, can
produce statistically similar results when interpreting the same data.
In summary, we have shown that TrueAllele Casework is a

reliable way to interpret mixed and single-source DNA evidence.
The system provides a forensic DNA laboratory with a standard-
ized interpretation approach that thoroughly examines data, elim-
inates examiner bias, accurately preserves identification
information, quantifies match strength (whether positive and neg-
ative), and yields reproducible results.
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