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ABSTRACT: DNA mixtures with two or more contributors are a prevalent form of biological evidence. Mixture interpretation is complicated by
the possibility of different genotype combinations that can explain the short tandem repeat (STR) data. Current human review simplifies this interpre-
tation by applying thresholds to qualitatively treat STR data peaks as all-or-none events and assigning allele pairs equal likelihood. Computer review,
however, can work instead with all the quantitative data to preserve more identification information. The present study examined the extent to which
quantitative computer interpretation could elicit more identification information than human review from the same adjudicated two-person mixture
data. The base 10 logarithm of a DNA match statistic is a standard information measure that permits such a comparison. On eight mixtures having
two unknown contributors, we found that quantitative computer interpretation gave an average information increase of 6.24 log units (min = 2.32,
max = 10.49) over qualitative human review. On eight other mixtures with a known victim reference and one unknown contributor, quantitative inter-
pretation averaged a 4.67 log factor increase (min = 1.00, max = 11.31) over qualitative review. This study provides a general treatment of DNA
interpretation methods (including mixtures) that encompasses both quantitative and qualitative review. Validation methods are introduced that can
assess the efficacy and reproducibility of any DNA interpretation method. An in-depth case example highlights 10 reasons (at 10 different loci) why
quantitative probability modeling preserves more identification information than qualitative threshold methods. The results validate TrueAllele� DNA
mixture interpretation and establish a significant information improvement over human review.
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Human review of DNA mixtures can often provide identification
evidence in criminal investigations (1). However, a genetic calcula-
tor can improve this review in several ways. First, computers can
increase human productivity by enabling each analyst to review
more cases, which helps eliminate DNA case backlogs. Also,
genetic calculators can often extract more identification information
from quantitative data, inferring a strong match statistic from weak
DNA signals. Finally, computers can guarantee objectivity by first
inferring an unknown genotype from DNA evidence and only after-
ward matching that genotype to a suspect genotype.

Cybergenetics TrueAllele� genetic calculator is a statistical com-
puter system that productively solves multiple DNA casework prob-
lems in parallel (2). The TrueAllele (TA) calculator infers an
informative genotype using all the available quantitative DNA data;
with uncertain genotypes, it determines the probability of each allele
pair. The calculator commits to this genotype answer and only sub-

sequently makes an objective comparison with a suspect genotype,
forming a likelihood ratio (LR) weight of evidence statistic relative
to a reference population.

In contrast, human DNA review takes a more qualitative
approach. The two most commonly used DNA mixture methods in
U.S. crime laboratories are combined probability of inclusion (CPI)
and combined likelihood ratio (CLR) (3). Both approaches apply
thresholds to the DNA data that cut off quantitative information.
While CLR considers the victim genotype, CPI makes no use of
this case information. Moreover, qualitative review may produce a
less objective genotype when inference refers to a known suspect
genotype (4).

Previous reports suggest that quantitative genetic calculator DNA
mixture interpretation can be more effective than qualitative manual
review of the same data. The NIST 05 interlaboratory DNA mix-
ture study showed that careful consideration of signal peak heights
and the victim reference could give a match statistic (1014) that
was 10 billion times greater than CPI (104) (5). Quantitative com-
puter interpretation of a DNA mixture using Markov chain Monte
Carlo (MCMC) methods (6) gave a match score (1016) that was 10
million times greater than a list of equally likely allele pairs (109)
(7). In a recent homicide case, TrueAllele interpretation of a two-
person mixture inferred a genotype for the 7% minor contributor
that produced an LR (1011) that was 10 million times more infor-
mative than CPI (104) (7). These comparisons invite a more thor-
ough investigation into the relative efficacy of quantitative and
qualitative DNA mixture interpretation methods.

An earlier study examined 40 two-person mixture samples of
known genotype composition, having varying mixture weights and
DNA dilutions (8). We compared quantitative TrueAllele
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interpretation to qualitative threshold-based methods, using log(LR)
information as our metric. We demonstrated a sensitivity level of
15 picograms (pg) of culprit DNA for quantitative computer
review, relative to a less sensitive 150 pg for qualitative human
review. Having already established an information gap between dif-
ferent mixture interpretation methods on laboratory synthesized
data, we turn here to a comparison study on casework data.

We collected 16 anonymized and adjudicated two-person case
mixture samples for which DNA match statistics had been reported.
Half of these cases used available victim information to determine
a CLR statistic, while the other half did not, and so reported a CPI
statistic. The forensic literature has arguments supporting various
mixture methods such as CLR (9,10) or CPI (3,11), but provides little
direct comparison data. In this work, we study such mixture case data
and make comparisons between quantitative computer-inferred match
information and reported qualitative human-inferred match scores.

All of these DNA match statistics, whether qualitative CPI and
CLR, or quantitative TrueAllele scores, are LRs (7). Moreover, the
logarithm of the LR is a standard measure of information (12).
Therefore, to compare the efficacy of two DNA mixture interpreta-
tion methods, we examine the pairwise differences of their respec-
tive log(LR) statistics on the same case, and the average of these
differences (13). We assess the reproducibility of a mixture inter-
pretation method by determining the within-case standard deviation
when duplicate interpretations have been made on the same case
(13). These efficacy and reproducibility measures can help deter-
mine the reliability of a mixture interpretation method, as well as
its suitability for forensic use.

We begin by describing the methods and materials that we used,
including computer inference, forensic data, and comparison statis-
tics. We next provide a motivating case example that illustrates rel-
ative efficacy and reproducibility of different mixture interpretation
approaches for both ‘‘with victim’’ (computer vs. CLR) and ‘‘with-
out victim’’ (computer vs. CPI) situations. We then present our
comparison results for the eight CLR cases and the eight CPI cases.
Finally, we discuss the need for rigorous scientific validation of
DNA interpretation methods, what we learned from the study, and
its potential impact on society. The appendices describe the statisti-
cal modeling and computation.

Interpretation Methods

Genotype Inference

The probability distribution of any random variable can be deter-
mined by Bayes theorem (14), which decomposes the calculation
into a prior probability and a likelihood function (15). At a particu-
lar genetic locus l, there is a fixed, finite set of possible allele pair
values X. Suppose that Q is a questioned genotype of one of the
(one, two, three, or more) contributors to DNA mixture evidence.
The prior genotype probability Pr{Q = x} is our belief that ques-
tioned genotype Q has the allele pair value x in set X before we
examine the evidence data. This genotype prior is well estimated
by the population frequency of allele pair x using the product rule.

The likelihood function assesses a genotype candidate value to
determine how well it explains the observed data. The likelihood is
larger when the quantitative data are better accounted for by a pre-
dicted peak height pattern based on the allele pair value. For the ith
data observation dl,i at locus l, the likelihood function for genotype Q
is the probability Pr{dl,i | Q = x, …} of the data conditioned on geno-
type value x, where ‘‘…’’ denotes the other model variable values.

Combining the prior genotype probability together with I inde-
pendent genetic data observations, we can compute the posterior

genotype probability using Bayes theorem as the product of prior
probability and joint likelihood

Pr Q ¼ xjdl;1; dl;2; :::; dl;i; :::
� �

/ Pr Q ¼ xf g �YI

i¼1

Pr dl;ijQ ¼ x; :::
� � ð1Þ

The proportionality ‘‘/’’ indicates that the product is
normalized by dividing by the total data probabilityP
x2X

Pr Q ¼ xf g �
QI
i¼1

Pr dl;ijQ ¼ x; :::
� �� �

, after considering all pos-

sible allele pairs x 2 X, to produce a genotype probability distribu-
tion that adds up to one. When we have a definite belief (say, over
99.5%) that there is only one feasible allele pair, for clarity we
shall round this genotype probability value up to one.

Short tandem repeat (STR) mixture data are inherently quantita-
tive, because peak heights appear in rough proportion to the rela-
tive amounts of each contributor genotype present in the data
(16,17). To make full use of the data and extract the most identifi-
cation information, the likelihood function must be a quantitative
model such as a multivariate normal (18) or gamma (19) distribu-
tion. We describe in the Appendix the quantitative Bayesian model
equations, and how to compute their solution.

Qualitative mixture interpretation offers an approximation that
can be performed by hand, instead of using a genetic calculator.
The CPI and CLR methods also use a genetic population prior.
However, rather than using quantitative peak height information,
qualitative methods truncate the data by applying a threshold that
reduces the peaks to qualitative all or none ‘‘allele’’ events. In this
study, qualitative review applied a predetermined relative fluores-
cence unit (rfu) threshold value to the STR peak data. The resulting
qualitative likelihood function then tests for set inclusion of allele
pair candidate values in a set of putative alleles. The likelihood
thus becomes a list of allele pair possibilities, each having equal
weight (7). As threshold-based methods do not use all the data, we
expect them to be less informative than quantitative mixture inter-
pretation (10).

In many cases, it is appropriate to assume the presence of the
victim’s DNA in a mixture sample. With quantitative inference
methods, this assumption reduces the number of unknown contribu-
tors by one (say, from two to one), thereby simplifying the geno-
type inference problem. With qualitative approaches, considering
the victim can reduce the list of allele pair possibilities, which con-
comitantly increases belief in the remaining candidates.

Match Strength

Once a questioned genotype Q has been inferred from the evi-
dence, we want to compare it with a suspect genotype S relative to
a reference population genotype R to assess match strength. This
assessment is performed using an LR (12), expressed in the odds
form of Bayes theorem that factors out prior beliefs about guilt or
innocence. The LR is the gain in identification information resulting
from having observed evidence data. If H is the identification
hypothesis that the suspect contributed their DNA to the evidence
data d, then the LR is given by

LR ¼ O H djð Þ
O Hð Þ ð2Þ

In LR Eq. 2, O Hð Þ denotes the prior odds Pr Hf g=Pr H
� �

of
hypothesis H, and O H djð Þ the posterior odds Pr H djf g=Pr H dj

� �
,
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where �H is the alternative hypothesis that someone other than the
suspect was the contributor.

All the DNA match statistics used in this two contributor mix-
ture case study are LRs. The TrueAllele match score TA1 is the
LR when inferring one unknown contributor genotype using the
victim genotype, and TA2 is the TrueAllele LR when inferring two
unknown contributor genotypes. The reported CLR is already in
LR form, while CPI is an LR (7) that can be obtained from a
reported combined probability of exclusion by subtracting from one
and taking the reciprocal. The LR can be computed as a ratio of
probability-weighted likelihoods (Appendix)

LR ¼

P
x2X

kQðxÞ � sðxÞP
x2X

kQðxÞ � rðxÞ
ð3Þ

In LR Eq. 3, kQ(x) is the likelihood function of questioned evi-
dence genotype Q. The posterior probability mass functions (pmf)
r(x) and s(x) are for genotypes R and S, respectively. CPI and CLR
are special cases of Eq. 3 where kQ(x) assigns equal likelihood to
each feasible allele pair, and s(x) places all its mass on one allele
pair, yielding an LR statistic having a one divided by a sum of
genotype population frequencies. Although we could adjust Eq. 3
for population substructure (7,20) by introducing a co-ancestry
coefficient h, the reported CPI and CLR statistics did not make use
of this correction, and so we do not introduce it into this compari-
son study.

As we are working with adjudicated cases, throughout this study
we shall assume that the identification hypothesis H is true. Note
that interpretation methods that better preserve DNA identification
information will more accurately concentrate evidence genotype
probability on a perpetrator allele pair. This concentration yields
higher LRs when H is true and lower LRs when the alternative
nonidentification hypothesis is true. Thus, preserving identification
information will hinder the guilty and benefit the innocent. Con-
versely, methods that use less of the available data (e.g., not using
some loci or a known victim genotype) are not information ‘‘con-
servative.’’ Such less informative methods disperse genotype proba-
bility, forming weaker LRs that benefit the guilty and hinder the
innocent (21).

This study examines the efficacy and reproducibility of different
interpretation methods in extracting identification information from
DNA mixture data. The LR logarithm is a standard measure of
information (22) that we have on hand for every interpretation
result. We therefore use the base 10 logarithm log10(LR) as our
information measure.

Mixture Weight

There is some amount of DNA from each contributor present in
an evidence mixture sample. The proportions of each contributor in
the sample give the DNA template mixture weight vector, whose
components add up to one. Each STR locus experiment j on the
DNA template measures mixture weight. These measurements are
conditionally independent, given the template weight. The depen-
dence of the observed peak height data on mixture weight is
expressed through the likelihood function Pr{dj | W = w,…}, now
rewritten to emphasize the mixture weight variable W. Here, w is a
mixture weight vector, and ‘‘…’’ includes genotype and other val-
ues (18).

Combining these independent likelihood values together with a
(say, uniform) prior probability Pr{W = w} using Bayes theorem
gives the continuous posterior probability distribution

Pr W¼wjd1;d2; . . . ;dJ ; . . .f g/Pr W¼wf g�
YJ

j¼1

Pr djjW¼w; . . .
� �

ð4Þ

Mixture weight Eq. 4, and its hierarchical refinements (6), can
be solved using MCMC computation, as described in the
Appendix.

Data Uncertainty

There are two sources of data uncertainty affecting our confi-
dence in a peak height measurement. Variation in polymerase chain
reaction (PCR) amplification and template sampling accounts for
the different peak height patterns that are seen in multiple experi-
ments on the same DNA template. A greater mass of a DNA frag-
ment yields a more confident peak height y having a lower
coefficient of variation. So probability modeling (23) and empirical
observation (24) have us scale the amplification variance with the
peak height as y Æ r2 to account for stochastic effects.

There is also a signal detection variance that arises from the
DNA sizing instrument. This baseline variation can be modeled by
a constant background variance s2, which helps account for dropout
alleles. The use of two independent variance components y Æ r2

and s2 is in the spirit of current human review practice (3), which
may set separate peak height thresholds for an ‘‘inclusion’’ (amplifi-
cation) and ‘‘exclusion’’ (detection), respectively. Unlike human
review, however, statistical computing is able to infer this peak var-
iation directly from the quantitative evidence data (25).

The variance parameters have probability distributions deter-
mined by a prior and a likelihood. Data variance priors
Pr r2 ¼ s2
� �

and Pr s2 ¼ t2
� �

can be modeled using an inverse
gamma distribution (25). The likelihood Pr dj r2 ¼

���
s2; s2 ¼ t2; ::::g of observing peak heights dj at locus experiment j
describes the probability of the independent data peak events given
the data uncertainty variances and other parameters (genotype, mix-
ture weight, …).

We can combine the prior variance probability together with the
likelihoods of these J independent quantitative peak experiments.
Bayes theorem then produces the posterior probability variance
distributions

Pr r2¼ s2 d1;d2; :::;dj; :::
��� �

/Pr r2¼ s2
� �

�
YJ

j¼1

Pr dj r2¼ s2; :::
��� �

Pr s2¼ t2 d1;d2; :::;dj; :::
��� �

/Pr s2¼ t2
� �

�
YJ

j¼1

Pr dj s2¼ t2; :::
��� �

ð5Þ

The data uncertainty Eq. 5 can be solved using Metropolis-Has-
tings (26,27) statistical search (Appendix).

Materials

Computer Software

Cybergenetics TrueAllele Genetic Calculator uses a fully Bayes-
ian model of the STR data generation process, based on genotype,
mixture weight, and data certainty probability distributions (Eqs
[1], [4], and [5], respectively). The calculator accounts for PCR
stutter (17,28), relative amplification and other experiment factors.
Conditioning on the observed quantitative STR data, the TrueAllele
computer explores the model’s parameter space using MCMC
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statistical search to determine the posterior probability distribution
for every variable (Appendix). Results for variables of interest, such
as genotypes and mixture weights, are reported as probability distri-
butions (2). Match statistic results are reported as LRs (7,29). The
TrueAllele Visual User Interface (VUIer�) program lets a user
visually explore their STR data and computed results (e.g., geno-
types, matches, and mixture weights), as well as conduct ‘‘what-if’’
analyses.

In this study, when the victim genotype was known, we had the
TrueAllele system solve for one unknown contributor genotype,
sampling for 24,000 cycles following initial burn-in to equilibrium
(30). When no genotype was assumed, we asked TrueAllele to
solve for two unknown contributor genotypes, with 48,000 sam-
pling cycles after burn-in. To assess the reproducibility, the com-
puter solved all cases in duplicate. Markov chain convergence was
assessed using the Gelman-Rubin statistic (31) and by visual
inspection of the mixture weight chain. Match information was
computed as log10(LR), where the LR compared the inferred
unknown genotype to a suspect reference, relative to a population
(Appendix).

Mixture Cases

We reviewed 166 mixture samples that occurred in 40 adjudi-
cated cases and one proficiency test conducted in the New York
State Police (NYSP) Forensic Investigation Center (FIC) in Albany,
NY. About half of these mixtures were not included in this mixture
study because they had a clear major contributor whose genotype
could be reported using a single source match statistic, such as con-
ditional match probability. The computer found 86 mixture items
that matched a suspect (with an LR score), while the laboratory
reported a numerical match score for 26 of these items.

To make a numerical comparison, we focused on just the 26
items whose human review produced a quantifiable match score.
We identified 16 samples that had an unambiguous two-person
mixture that had been reported out using a CPI or CLR statistic
computed in the CODIS Popstats module. Eight of these statistics
were CPI, while the other eight were CLR. These 16 two-person
mixture samples comprise our study data.

Population Databases

The NYSP computes match statistics relative to four population
databases: African American (BLK), Caucasian (CAU), Southeast
Hispanic (SEH), and Southwest Hispanic (SWH). They use the
standard FBI allele databases (32) for these populations. All match
statistics reported in this study, whether from the original case or
computed in TrueAllele, were calculated using these population
databases.

Validation Methods

Efficacy

The outcome of any genotype inference from evidence data is a
probability distribution over allele pair values at each locus. These
probabilities arise from Bayesian inference, using a population prior
and a likelihood function. Computer-based modeling methods
(6,33), such as the TrueAllele system (2), employ a quantitative
likelihood function that compares proposed patterns with STR peak
heights.

A qualitative binary method, such as CPI or CLR, forms a geno-
type list of length N that contains reportable allele pairs, with each

one assigned an equal likelihood (7). An LR compares this evi-
dence genotype to a suspect genotype, relative to a population
genotype, through their pmfs to obtain match information (Appen-
dix). Thus, the LR provides a universal mechanism for comparing
match information between mixture genotypes inferred by different
methods, relative to the same suspect and population.

The log(LR) is a standard additive measure of information
(12,22). The match statistics TA1, TA2, CLR, and CPI can all be
viewed as LRs (7). Therefore, we can compare the relative efficacy
of two mixture interpretation methods by examining the difference
in their log10(LR) scores. For a set of cases, we can also look at
the mean value of these information differences. Statistical signifi-
cance between the pairwise differences can be measured using a
t-test.

In this study, we are chiefly concerned with comparing differ-
ences in identification information between quantitative and qualita-
tive mixture interpretation methods. When the victim genotype is
known and used, the information difference between computer and
human interpretation for one inferred genotype is log(TA1) )
log(CLR). This information difference is the same as the logarithm
of the LR information gain log(TA1 ⁄ CLR). When the victim is not
available for genotype inference, two unknown genotypes are
inferred, and this information improvement becomes log(TA2) )
log(CPI).

Reproducibility

An important aspect of scientific reliability is a method’s repro-
ducibility (34). The reproducibility of a set of measurements is con-
ventionally reported as the standard deviation of these numbers
(35). Any mixture interpretation method applied to some DNA data
will infer a genotype, which yields a single information log(LR)
measurement when compared with a suspect and population. Inde-
pendent interpretations using the same method on the same DNA
mixture data, relative to the same suspect and population, produce
a set of log(LR) values. From this set of information measurements,
we can assess the method’s reproducibility by computing a standard
deviation.

To sharpen the reproducibility estimate of a mixture interpreta-
tion method, we use more cases. The ‘‘within-case’’ standard
deviation rw (36) describes the method’s reproducibility over a
population of mixture cases (13). We can compute rw as the root
mean square deviation of replicated log10(LR) information scores,
relative to the mean value within each case (36), as shown in
Eq. 6.

r2
w ¼

PI
i¼1

PJi

j¼1
ðsij � �siÞ2

PI
i¼1

Ji

ð6Þ

Here, I is the number of cases, Ji is the number of independent
interpretations of the ith case, sij is the log10(LR) score of the jth
interpretation of the ith case, and �si is the mean score of the sij val-
ues within the ith case.

Case Example

To illustrate our comparison measures of efficacy and reproduc-
ibility, we examine two mixture samples from a sexual assault case
in some detail. In this case, buccal reference samples from the vic-
tim (item G) and suspect (A) were obtained. The items of evidence

PERLIN ET AL. • TRUEALLELE MIXTURE VALIDATION 1433



we consider here are a two-person vaginal swab (F) mixture, which
the laboratory reported using a CLR statistic, and a two-person anal
swab (E) mixture on which CPI was performed by a vendor labora-
tory. We begin with the simpler CLR analysis that assumes the
known victim contributor genotype and infers the genotype of the
unknown second contributor.

One Unknown Contributor

We start by examining the quantitative peak height data for evi-
dence item F (Table 1, column F). The four equal peak heights at
loci D18 and vWA suggest a 50:50 two-person mixture. The 2:1:1
peak height ratios at loci having three major peaks (e.g., D13, D16,
D21, D3, D5, and TPOX) further support this hypothesis. We see

that the victim alleles (Table 1, column G) are included in mixture
item F.

Dual human review of 50:50 mixture F was performed by the
NYSP FIC using the victim reference G. The inferred CLR geno-
types had one or three possibilities at each locus, with each poten-
tial unknown allele pair allocated equal likelihood, so that the
posterior probability was proportional to the population genotype
frequency (Table 2, columns CLR and Pop). The LR of the evi-
dence genotype (CLR) was computed relative to the suspect (A)
and four populations (Table 3, column CLR). We conservatively
show the BLK population, as it gave the smallest match score. The
FIC did not determine an LR score for D7 or CSF because at each
locus, the victim and suspect genotypes were equal (i.e., had the
same two alleles), and the NYSP does not report unknown geno-
types at loci where there is no indication of a second contributor.

After uploading the case data to the TrueAllele database, we set
up interpretation requests for inferring the victim, evidence and sus-
pect genotypes (Fig. 1). The evidence request was run in duplicate,
conditioning on the data (Table 1, column F) and the victim geno-
type. The computer searched for the unknown second contributor
genotype, without any knowledge of a suspect genotype. The
inferred definite evidence genotype (Table 2, column TA1, runs 1
and 2) was compared with the suspect (A) and population (BLK)
genotypes to find the LR that the suspect was present in the mix-
ture (7). The LR scores at each locus, and the joint match statistics
are shown (Table 3, column TA1, runs 1 and 2). TrueAllele
inferred the mixture weight of the unknown second contributor to
be 48.2% (48.6% in the duplicate run) with a standard deviation of
2.7%.

The computer extracted more identification information from
evidence item F (log(LR) = 17.65) than did the human review
(log(LR) = 13.52) (Table 3, joint LR information, columns TA1
and CLR). As the LR calculations use the same suspect and popu-
lation for comparison, the only difference was in the inferred geno-
type (7). So the explanation for the four orders of magnitude (104)
LR increase seen in the TA1 ⁄CLR ratio resides entirely in the
genotype probability distributions (Table 2, column F). With quan-
titative data from a well-amplified 50:50 mixture, and a known vic-
tim genotype, a genetic calculator can often infer a definite second
genotype, as in this case. The resulting probability distribution then
places all of its belief in one allele pair at each locus. In this case,
the resulting inferred evidence genotype is the same as the sus-
pect’s genotype.

Threshold-based CLR mixture interpretation does not use all the
peak height information. Therefore, many practitioners conserva-
tively infer a single allele pair only when the evidence shows two
nonvictim alleles. With three alleles, CLR infers three equally
likely allele pairs from the thresholded allele peak data. Loci with
matching victim and suspect genotypes were not included in the
laboratory’s reported statistic, a policy that can further reduce CLR
information.

However, quantitative peak height data (not used by CLR) can
often indicate just one definite genotype solution. The TrueAllele
VUIer Explain window provides a ‘‘what-if’’ analysis that lets a
user explore alternative genotype values and mixture weights.
Looking at locus D3, we see that of the three CLR reported allele
pairs, only the [15 17] possibility realistically fits the quantitative
data (Fig. 2). The other two candidates do not adequately explain
the peak heights, and so the likelihood function of Eq. 1 assigns
them essentially zero probability. Therefore, with Bayes theorem
having duly considered but ‘‘eliminated the impossible’’ (37), True-
Allele assigns the remaining allele pair [15 17] a rounded probabil-
ity of one at locus D3 (Table 2, column F).

TABLE 1—Data for case example.

Peak Height Data A F E G

Experiment Allele Suspect Evidence Evidence Victim

CSF1PO 10 791 554 431 661
12 550 556 333 706

D13S317 8 220 87 796
12 480 303 90 574
13 588 183 34

D16S539 9 385 293 719
11 884 658 371 816
13 899 361 104

D18S51 12 291 318 746
14 222 184 652
15 604 219 38
18 552 262 20

D21S11 28 186 139 970
29 508 538 168 603
35 603 175 34

D3S1358 14 437 202 813
ProfilerPlus 15 1006 678 261 707

17 813 374 46
D3S1358 14 331 229 789
Cofiler 15 918 472 411 595

17 789 324 53
D5S818 9 684 203 21

11 239 142 814
12 737 488 172 726

D7S820 10 468 420 94 412
ProfilerPlus 11 448 352 88 538
D7S820 10 570 351 166 570
Cofiler 11 393 301 151 514
D8S1179 13 283 169 640

14 249 215 666
15 1259 461 136

FGA 21 43 41
22 511 321 1620
23 527 235 49
27 563 186 74

TH01 7 710 563 1422
8 735 334 53
9 682 286 68

TPOX 8 289 252 889
9 666 558 259 801

10 688 284 54
vWA 14 826 285 118

15 831 347 93
17 414 323 702
18 436 252 802

Quantitative allele information is shown in separate columns for the sus-
pect (A), evidence (F and E), and victim (G) samples. The peak height (as
rfu) is given in each locus allele row for all the samples.
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TABLE 2—Genotypes for case example.

Evidence F Evidence E

Genotype TA1 TA2 Sus Pop

Locus Allele Pair CLR Run 1 Run 2 CPI Run 1 Run 2 A BLK

CSF1PO 10, 10 0.224 0.224 0.387 0.374 0.074
10, 12 0.499 1 1 0.499 0.610 0.624 1 0.163
12, 12 0.277 0.277 0.090

D13S317 8, 8 0.002 0.001
8, 12 0.011 0.012 0.035
8, 13 0.145 0.111 0.164 0.009
12, 12 0.030 0.024 0.234
12, 13 0.711 1 1 0.646 0.615 1 0.121
13, 13 0.144 0.191 0.176 0.016

D16S539 9, 9 0.075 0.039
9, 11 0.260 0.117
9, 13 0.313 0.138 0.066
11, 11 0.225 0.087
11, 13 0.542 1 1 0.239 0.972 0.972 1 0.097
13, 13 0.144 0.064 0.024 0.024 0.027

D18S51 12, 12 0.102 0.082 0.003
12, 15 0.850 0.868 0.020
12, 18 0.008 0.011 0.016
14, 14 0.011 0.008 0.004
14, 15 0.006 0.006 0.022
15, 18 1 1 1 0.013 0.015 1 0.045

D21S11 28, 28 0.010 0.009 0.047
28, 29 0.084 0.079 0.083
28, 35 0.475 0.044 0.042 0.012
29, 29 0.103 0.100 0.036
29, 30 0.003 0.069
29, 35 0.508 1 1 0.752 0.759 1 0.011
35, 35 0.017 0.001

D3S1358 14, 14 0.034 0.015
14, 15 0.180 0.072
14, 17 0.219 0.120 0.049
15, 15 0.241 0.034 0.021 0.086
15, 17 0.586 1 1 0.320 0.962 0.977 1 0.118
17, 17 0.195 0.106 0.041

D5S818 9, 9 0.025 0.000
9, 11 0.452 0.013 0.010 0.007
9, 12 0.523 1 1 0.210 0.187 1 0.010
11, 11 0.037 0.046 0.069
11, 12 0.139 0.150 0.187
12, 12 0.598 0.604 0.127

D7S820 10, 10 0.340 0.340 0.030 0.023 0.105
10, 11 0.486 1 1 0.486 0.802 0.824 1 0.145
11, 11 0.174 0.174 0.165 0.152 0.050

D8S1179 13, 13 0.156 0.500 0.571 0.050
13, 14 0.306 0.030 0.021 0.149
13, 15 0.444 0.172 0.096
14, 14 0.150 0.028 0.030 0.112
14, 15 0.434 0.168 0.019 0.014 0.143
15, 15 0.122 1 1 0.047 0.421 0.361 1 0.046

FGA 21, 22 0.014 0.014 0.057
21, 23 0.259 0.171 0.032
21, 27 0.176 0.115 0.006
22, 23 0.027 0.037 0.057
22, 27 0.011 0.011 0.010
23, 23 0.010 0.004 0.016
23, 27 1 1 1 0.496 0.638 1 0.006
27, 27 0.003 0.000

TH01 7, 7 0.249 0.194
7, 8 0.256 0.009 0.010 0.164
7, 9 0.244 0.328 0.364 0.128
8, 8 0.066 0.034
8, 9 1 1 1 0.126 0.662 0.623 1 0.054
9, 9 0.060 0.021

TPOX 8, 8 0.408 0.136
8, 9 0.314 0.013 0.018 0.134
8, 10 0.678 0.148 0.275 0.273 0.069
9, 9 0.060 0.033

Continued
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Two Unknown Contributors

We now turn to the quantitative peak height data for evidence
item E (Table 1, column E). The four allele data of locus vWA
suggests the presence of two unknown contributors: one major and
one minor. The victim genotype is not used in this interpretation
because it was not available to the vendor analyst who conducted
the manual mixture interpretation. Therefore, the task is to infer the
genotypes of both unknown contributors and then compare them
with the suspect.

Human review of two-person mixture E was performed by a vendor
laboratory using an allele inclusion analysis. This CPI approach exam-
ined all peaks with heights of at least 50 rfu, considering them to be
alleles. There were five loci (D13, D18, D21, D5, and FGA) at which

some peaks had heights that were under threshold, but matched the
suspect; these loci were not used in computing the CPI statistic. (Allele
dropout LR methods that might incorporate such low peak data (9)
were not yet approved for forensic DNA interpretation use in NYS.)

At the remaining loci, a PI match statistic was computed using
the population frequencies of I observed alleles as

PI ¼ 1

PI
i¼1

fi

� �2 ð7Þ

where fi is the observed frequency of allele i at locus l. The PI Eq.
7 can be viewed as comparing an inferred genotype Q having

TABLE 2—Continued.

Evidence F Evidence E

Genotype TA1 TA2 Sus Pop

Locus Allele Pair CLR Run 1 Run 2 CPI Run 1 Run 2 A BLK

9, 10 0.261 1 1 0.057 0.702 0.702 1 0.034
10, 10 0.061 0.013 0.009
vWA 14, 14 0.017 0.004

14, 15 1 1 1 0.063 0.992 0.997 1 0.031
14, 17 0.097 0.024
14, 18 0.068 0.018
15, 15 0.058 0.056
15, 17 0.178 0.087
15, 18 0.125 0.064
17, 17 0.136 0.034
17, 18 0.191 0.050
18, 18 0.067 0.018

The inferred genotype probability distributions are shown for evidence samples F and E, along with the suspect and BLK population reference genotypes.
Allele pair values are shown up to a cumulative probability of 0.99. When no genotype was inferred at a locus, its probability entry was left blank. Mixture
sample F was interpreted using combined likelihood ratio (CLR), and so the feasible allele pairs were assigned one or three equal likelihoods, producing prob-
abilities proportional to the population prior. As the victim was known, and the mixture peak height data was informative, the TA1 computer method inferred
a unique (maximally informative) genotype. Without a victim profile, both human (combined probability of inclusion, CPI) and computer (TA2) interpreta-
tions of mixture E, produced uncertain genotypes, represented as probability distributions. Note that the computer’s TA2 probability is higher than the human
CPI probability at every suspect-matching allele pair.

TABLE 3—Likelihood ratios for case example.

LR of F and A with BLK LR of E and A with BLK

Likelihood Ratio (LR) CLR TA1 CPI TA2

Locus Consensus Run 1 Run 2 Consensus Run 1 Run 2

CSF1PO 6.17 6.17 3.06 3.76 3.89
D13S317 6.83 8.27 8.27 6.16 5.79
D16S539 5.26 10.34 10.34 2.31 10.04 9.54
D18S51 22.97 22.59 22.59 0.77 1.89
D21S11 42.78 93.54 93.56 77.26 75.11
D3S1358 4.88 8.52 8.52 2.63 8.20 7.83
D5S818 57.68 100.88 100.81 10.51 10.37
D7S820 6.93 6.93 3.33 5.59 5.67
D8S1179 3.53 21.85 21.85 1.68 14.41 12.61
FGA 180.18 178.84 178.84 93.96 87.59
TH01 18.54 18.62 18.62 1.68 11.44 11.19
TPOX 8.98 29.59 29.59 2.41 22.22 21.41
vWA 31.75 31.92 31.92 2.58 31.67 30.59
Joint 3.34 · 1013 4.55 · 1017 4.56 · 1017 1.09 · 103 7.27 · 1013 1.13 · 1014

Information 13.52 17.65 17.66 3.04 13.86 14.05

The LR scores are shown for the inferred evidence genotypes, relative to the suspect and BLK population genotypes. The first three columns show the
inferred genotype F locus LRs for combined likelihood ratio (CLR) and duplicate TA1 runs, where the victim genotype is known. The last three columns give
locus LRs of the inferred genotype E for combined probability of inclusion (CPI) and duplicate TA2 runs, where two unknown contributors were inferred; the
LR is for the matching contributor genotype. The last two rows give the joint LRs and their base 10 logarithms.
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N ¼ I I þ 1ð Þ=2 equally likely (included) allele pairs to a matching
suspect genotype S, relative to a population genotype R. Substitut-
ing these genotypes Q, R, and S into Eq. 2 shows that PI is an LR
(7). Therefore, CPI can be compared with other LR match statistics
to measure information differences.

The human-inferred PI evidence genotype Q allocates equal like-
lihood 1 ⁄ N to each individual allele pair, producing a posterior
probability proportional to the population prior (Table 2, column E,
CPI). With just two allele peaks (CSF, D7), each allele pair is
assigned likelihood 1 ⁄ 3. With three peaks (D16, D3, D8, TH01,
and TPOX), the PI likelihood is 1 ⁄ 6. Four alleles (vWA) generate
10 possibilities, each receiving from PI a likelihood of 1 ⁄ 10. CPI
only reports a statistic at suspect-matching loci that have all allele
peaks over a preset threshold (e.g., D21’s allele 35 is under thresh-
old, and so that locus is not included in the combined PI). The
resulting CPI LR scores are shown (Table 3, column CPI), giving a
combined LR product of 1090.

We also analyzed this sample as a two unknown case in the
TrueAllele system. The computer solved for the two genotypes and
the mixture weighting, along with other variables, using MCMC
search of the hierarchical Bayesian model (Appendix). The geno-
type results, run in duplicate, are shown for the nonvictim minor
contributor (Table 2, column E, TA2, runs 1 and 2). (The inferred
major contributor genotype perfectly matched the victim, and is not
shown.) We see that the allele pair probabilities at each locus
within a run are not equal. The mixture weight of the suspect-
matching minor contributor was 23.4%, with a standard deviation
of 4.1% (Fig. 3). The LR was around 100 trillion (Table 3, column
TA2, runs 1 and 2), reproduced in two independent computer geno-
type inferences.

The computer-inferred TA2 LR information of 1014 for evidence
E is 11 orders of magnitude greater than the human CPI LR result
of 103. There are several reasons for this 100 billion-fold TA2 ⁄ CPI
ratio information improvement.

1. By using quantitative peak height data, the computer can ana-
lyze the identification information in every peak, including
those that are below the human review threshold. The system
models amplification variance y Æ r2, which accounts for
stochastic effects at each peak of height y. Introducing a
detection variance s2 permits meaningful comparisons down to
a peak height of zero (e.g., complete allele dropout). For
example, at locus D13, a matching allele 13 peak with (under
threshold) height 34 rfu precludes any CPI analysis (Tables 1
and 2, column E). But computer modeling can account for
this greater data peak uncertainty and assign a probability of
over 60% to the suspect’s [12 13] genotype (Table 2, column
E), yielding an LR locus contribution of 6 (Table 3, column
TA2).

2. The computer searches for two unknown genotypes that can
explain the quantitative data, thereby separating the data into
two different contributor genotypes. For example, at locus
vWA, TrueAllele uses the quantitative peak height pattern
(two low, two high) (Table 1) to determine a suspect-matching
contributor [14 15] allele pair and a second victim-matching
contributor [17 18] genotype value with over 99% certainty
(Table 2). But CPI allocates only a 10% likelihood to the [14
15] suspect genotype, because it treats equally all 10 pairwise
combinations of the four alleles (Table 2). The more definite
TrueAllele-inferred genotype has an LR of 30, while CPI’s less
distinct genotype distribution produces an LR of only three
(Table 3).

3. Calculating the mixture weight variable facilitates the genotype
separation in this 75:25 situation. This informative use of mix-
ture weight is seen at locus D16, where there are three alleles
of varying peak heights (Table 1, column E). Weighting the
contributor allele pairs [9 11] and [11 13] (matching victim
and suspect, respectively) in a 3:1 proportion produces a pat-
tern that fits the observed data (Fig. 4). The computer assigns

FIG. 1—Setting up interpretation requests. The TrueAllele VUIer Request module shows annotated data signals (left column), DNA items (middle), and
interpretation requests (right). The user proceeds from left to right, grouping short tandem repeat (STR) data rows to form DNA items, and then grouping
these items to form requests. Request ‘‘1’’ (right column, middle row) sets up a one unknown contributor genotype inference. When the user selects Request
‘‘1’’ (right), the VUIer highlights the DNA items involved—victim reference G and mixture evidence F (middle)—along with the STR data used (left column,
first four rows).
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this explanatory genotype combination a probability of 97.2%
(Table 2), giving a locus LR of 10 (Table 3). CPI, on the other
hand, does not employ quantitative mixture weight and only
gives an LR of 2.3 (Table 3).

4. The TrueAllele-inferred genotypes are not limited to having equal
likelihood values. Instead, their distributions assign higher likeli-
hoods to more likely genotype values that better fit the quantita-
tive data. This genotype inference result is seen at locus TPOX,
where matching allele pair [9 10] has a probability of 70%, allele
pair [8 10] a chance of 27%, and value [8 9] only 2% (Table 2).
The objectively inferred genotype happens to place greater
weight on the matching allele pair, so the LR is 21 (Table 3). CPI,
however, distributes its likelihood equally across the six allele
pair possibilities (Table 2). This less informative genotype distri-
bution reduces the LR 10-fold to just 2.4 (Table 3).

5. To be objective, the computer solves for genotypes at all loci,
without having any knowledge of a suspect genotype. While
severe artifacts (e.g., spikes) may occasionally render a locus
experiment unusable, generally all the data are used. In item E,
locus D21 has a suspect-matching 35 allele with a peak height
of 34 rfu (Table 1). As this matching peak is below threshold,
CPI does not use this locus. But TrueAllele must—it models

FIG. 2—Explaining interpretation results. The quantitative data peak TA1
method inferred only one genotype possibility [15 17] for the unknown sec-
ond contributor at locus D3 of evidence sample F. However, the qualitative
combined likelihood ratio (CLR) method inferred three possibilities ([14 17],
[15 17], [17 17]), assigning them each one an equal likelihood. The TrueAl-
lele Explain window shows why the probability model considers some allele
pairs to be more likely than others, relative to the quantitative data. The vic-
tim genotype allele (gray) and unknown contributor alleles (blue) combine in
proportion to their mixture weights to form a base pair versus rfu pattern
(bars) that can be compared with the short tandem repeat (STR) data (curve).
Comparison (A) for genotype value candidate [14 17] shows large deviations
between peak and model heights at alleles 14 and 15, so this is a highly unli-
kely possibility. Similarly, Explain window comparison (C) for candidate [17
17] is extremely unlikely, because of large data and model disparities at
alleles 15 and 17. The visual comparison (B) for candidate [15 17] shows a
close fit of the model pattern to the data signal at all alleles. As there is no
other genotype value with a good quantitative fit, TrueAllele assigns value
[15 17] a probability of one. The qualitative CLR method treats the data
alleles 14, 15, and 17 as having indistinguishable peak heights, and so it can-
not differentiate between the three allele pairs with obligate allele 17. There-
fore, CLR assigns each pair an equal likelihood of 1 ⁄ 3.

FIG. 3—Mixture weight interpretation results. The TrueAllele VUIer Mix-
ture Weight window shows (A) a histogram that gives the probability distri-
bution of mixture weight. This histogram bins the (B) different template
mixture weight values visited during the Markov chain problem solving,
which is viewable as a chain history. The mixture weight distribution of the
unknown contributor has a mean of 23.4% and a standard deviation of
4.1%.
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quantitative data under all possible two contributor genotype
scenarios, inferring probabilities for all allele pairs. It assigned
a 75% probability to [29 35] (Table 2), which matched the
suspect with an LR of 75 (Table 3). Not all loci need increase
the weight of evidence, as we shall see next.

6. A valid genotype probability inference specifies a prior distri-
bution from Eq. 1 that comes into play when the data are
missing or uninformative. Locus D18 has two low-level non-
victim data peaks: allele 15 with peak height 38 rfu, and
allele 18 at 20 rfu (Table 1). These low peaks appear in some
low likelihood genotype values, so the population frequency
prior is helpful here. The matching [15 18] allele pair has
only a probability of 1.3% (run 1), with an LR of 0.77
(Tables 2 and 3). This LR value is less than one and so
decreases the weight of evidence. CPI could not provide any
statistic at locus D18 as the two matching allele peaks are
below threshold.

7. TrueAllele uses a quantitative likelihood function that compares
data peaks with a genotype model pattern. This comparison is
seen at locus TH01, where there is a tall victim allele peak at
7, and two smaller allele peaks at 8 and 9 (Table 1). The com-
puter assigned a 2 ⁄3 probability to allele pair [8 9] and half
that probability to [7 9] (Table 2). Looking at the data peaks
and hypothesized model patterns (Fig. 5), we see that neither

candidate gives a perfect fit to the data. However, candidate [8
9] accounts for the low peak at allele 8, which [7 9] does not,
and so the computer gives that allele pair a higher probability,
yielding an LR information value of 11 (Table 3). CPI has a
less informative likelihood function that qualitatively assigns
the same weight to every individual allele pair and a zero to
the others (7). With six possibilities, dividing the likelihood
into six equal parts irrespective of the observed quantitative
peak heights, CPI reduces the LR match score 10-fold to 1.7
(Tables 2 and 3).

8. Bayes Theorem requires us to consider all allele pairs (15) when
inferring a mathematically valid genotype. This is because in
Eq. 1, every genotype candidate x 2 X (even an apparently unli-
kely one) enters into the denominator’s total probability. At locus
D5, allele 9 has a peak height of only 21 rfu (Table 1). Well
below the 50 rfu threshold, this suspect-matching allele is invisi-
ble to qualitative review, and so CPI is silent about the locus
(Tables 2 and 3). However, TrueAllele must assess each geno-
type candidate relative to the quantitative data and so discovers
that suspect-matching allele pair [9 12] has a probability of about
20%, which contributes a D5 locus LR of 10 (Tables 2 and 3).

9. Efficient statistical inference has us include all data affected by
a variable in a likelihood function (15). At locus D3, we have
independent experiments on item E from both the ProfilerPlus

FIG. 5—Explaining the genotype possibilities. The TrueAllele VUIer
Explain window shows two explanations at locus TH01 of mixture sample
E. The second contributor’s genotype is inferred to be [7 7] (orange). But
there are two genotype possibilities for the suspect-matching first contribu-
tor (blue). (A) Genotype candidate [7 9] does not quantitatively account for
the allele 8 peak as well as (B) candidate [8 9]. Therefore, allele pair [8 9]
has a higher probability.

FIG. 4—Mixture model fits the data. TrueAllele VUIer Explain views are
shown for locus D16 of sample E. (A) The weight combination of first (blue)
and second (orange) contributor genotype alleles forms a pattern that fits
the observed data. (B) A model pattern (gray) is shown which further
accounts for PCR stutter and relative amplification effects, providing a clo-
ser fit to the data.
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and Cofiler STR panels (Table 1). Therefore, we form the
product of likelihoods, together with the genotype prior, to
infer the genotype via Eq. 1 (Table 2). We see the fit of the
genotype patterns to the two independent D3 experiments
(Fig. 6). Note that the three allele ProfilerPlus experiment
shows high background peaks, while the Cofiler experiment
has a taller middle peak (411 rfu, instead of 261 rfu). Neither
data experiment provides a perfect fit, so each one in isolation
would confer uncertainty to the genotype. However, taken
together, a joint likelihood function over all the data gives a
probability of 97% to matching allele pair [15 17] (Table 3).
This TA2 genotype yields an LR of eight. As CPI cannot statis-
tically assess quantitative data, it just distributes equal likeli-
hood over its six hypothesized D3 genotype values, for an LR
of 2.6 (Tables 2 and 3).

10. The joint LR is formed by multiplying together the independent
locus LRs (1). Considering all loci, TrueAllele forms a product
of these 13 numbers as 1014, or 100 trillion (Table 3). In con-
trast, the CPI method does not use five loci because of data
peaks that are below their reporting threshold, a practice that
may not always be conservative (38). CPI multiplies together
the item’s eight remaining locus LR scores to obtain a joint LR
of 103, or 1000. Objectively using all 13 loci (regardless of low
peaks), TrueAllele computes an LR that is 1011 (i.e., 1014 ⁄ 103,
or 100 billion) times greater than CPI’s LR score.

To summarize, the computer can mathematically set up a proba-
bility problem, and solve it using statistical search. By modeling
the STR molecular process (Appendix), the solution can account
for the contributor genotypes, the DNA template composition, PCR
artifacts, and the statistical certainty of data peaks (e.g., stochastic
effects and allele dropout). Moreover, the Bayesian reasoning quan-
titatively assesses all genotype possibilities. But CPI’s qualitative
approach just looks at thresholded peaks and does not invoke these
biological or mathematical modeling considerations. Therefore, it
cannot extract comparable identification information from low-
level, minor contributor DNA evidence such as item E.

Results

We present the validation results for adjudicated mixture samples
having two contributors, describing both efficacy and reproducibil-
ity in terms of log(LR) match information. We first examine eight
cases with the victim reference considered (TA1 vs. CLR) and
afterward turn to interpretation without using a victim reference
(TA2 vs. CPI).

One Unknown Contributor

Cybergenetics used the TrueAllele system to interpret two-person
mixture evidence items from eight different adjudicated cases,
using the victim reference genotype and solving for the unknown
second contributor genotype. Comparison in TrueAllele of each
inferred genotype with its respective suspect genotype, relative to
four ethnic subpopulations, produced LR match scores. The LR
hypothesis here is that the unknown contributor is the suspect; the
alternative is that he is not. The log10(TA1) match information
values for these one unknown solutions are shown for duplicate
computer runs of the eight cases. We conservatively show just the
minimum LR value among the four subpopulation statistics
(Table 4, TA reps 1 and 2). For reference, we also show the
TrueAllele-inferred mixture weight of the unknown second
contributor.

The NYSP FIC laboratory had previously analyzed the same eight
evidence items. They similarly used the victim reference to help infer
an unknown second contributor genotype. The analyst then used the
CODIS Popstats software to compare each inferred evidence geno-
type with a suspect, relative to four subpopulations, and determine
their reported CLR statistic. We show the CLR value corresponding
to the smallest TrueAllele population statistic (Table 4, CLR).

Comparing log(LR) match information values, we see that the
two repetitions of the TrueAllele TA1 computer runs agree well
with each other (Fig. 7; Table 4). In every case, the computer’s
TA1 match score improves on the CLR value from human review.
The average information improvement log10(TA1 ⁄CLR) between
the computer and human interpretation is 4.67 log units, or about
50,000-fold (Table 4, information gain). This difference is
statistically significant, with a t-test showing a p-value <0.001.

These information differences vary somewhat according to mix-
ture weight (Fig. 8). A small contribution of the unknown fraction
(around 20%) indicates that there is less perpetrator DNA present
in the sample. The resulting data uncertainty correctly reduces the
LR, because it is based on a less certain genotype. At higher mix-
ture weights (over 40%), we see that the information improvement
remains steady at about 4.5 log units.

In case 1A, there was a greater difference in the amount of pre-
served information—11 log units (100 billion improvement)—
despite the presence of a 60% major contributor (Table 4, Case
1A, information gain). This outlier occurred because the mixture

FIG. 6—Using all the data. Two independent short tandem repeat experi-
ments were performed at locus D3 of sample E, one in the (A) ProfilerPlus
panel and another using (B) Cofiler. While neither experiment has a perfect
fit to the genotype model, considering both experiments together in a joint
likelihood function produces a more informative genotype.
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data had five loci at which just one or two allele peaks were above
threshold. All of these alleles matched the victim genotype, without
developing any potential unknown alleles. As no obligate alleles
could be assigned, a CLR was not reported at these loci (3). But
the continuous TA1 method was able to use all the peak data and
infer a genotype and LR at every locus. The TA1 information dif-
ferences between the two independent replicate TrueAllele runs of
each case are very small (Fig. 7; Table 4, TA reps 1 and 2).
Indeed, the average within-case square deviations of Eq. 6 yield a
standard deviation of 0.036 log units (Table 6). This small standard
deviation indicates that on this validation data set, the TrueAllele
one unknown mixture interpretation method is highly reproducible.

Two Unknown Contributors

For the eight case items that did not have a victim reference, Cy-
bergenetics ran TrueAllele to interpret the evidence by searching

for the two unknown contributor genotypes. The statistical compu-
tation represented uncertain genotypes using probability distribu-
tions that assigned higher weight to locus allele pair combinations
that better explained the quantitative STR data. Following genotype
inference, the computer compared the two inferred genotypes to a
suspect genotype, and computed LRs relative to four ethnic subpop-
ulations. The LR here measured the weight of evidence for the
identification hypothesis that the suspect contributed to the evi-
dence. The log10(TA2) match information scores are shown for
duplicate computations of the eight cases relative to the subpopula-
tion that gave the smallest score (Table 5, TA reps 1 and 2). We
also show the TrueAllele computed mixture weight of the suspect-
matching contributor.

Before the start of this study, the NYSP laboratory had con-
ducted a dual human review of these two-person mixtures. As no
victim reference was available, they examined thresholded peak
height data, enumerating alleles at every locus to (implicitly) infer
a contributor genotype. A human analyst then entered these alleles
into CODIS Popstats software to compare the inferred evidence
genotype with a suspect, relative to four subpopulations, and calcu-
late CPI statistics. We show these CPI scores, conservatively using

FIG. 7—Match information comparison with one unknown contributor. The log10(LR) information values are shown for every case, with results for two
replicate TA1 computer runs (blue, green) and the reported combined likelihood ratio value (orange). The cases are sorted by descending information
difference.

FIG. 8—Match information improvement by mixture weight for one
unknown contributor. In this scatterplot, each point’s x coordinate is the
mixture weight of the unknown contributor, while the y coordinate is the
information improvement expressed as log10(TA1 ⁄ CLR). Results are shown
for eight combined likelihood ratio (CLR) cases, each conservatively com-
puted at the ethnic subpopulation with the smallest LR score.

TABLE 4—Information comparison with one unknown contributor.

One Unknown Log(LR) Information

Case Weight TA rep 1 TA rep 2 CLR Gain

1A 0.590 20.38 20.34 8.20 11.31
1B 0.423 20.02 20.01 14.91 4.51
1C 0.584 18.63 18.64 15.03 3.61
1D 0.748 15.30 15.30 10.53 4.77
1E 0.486 17.66 17.66 13.52 4.13
1F 0.199 13.83 13.87 12.24 1.00
1G 0.556 17.43 17.46 11.87 5.52
1H 0.213 15.26 15.45 12.85 2.51

17.31 17.34 12.40 4.67

The table shows log10(LR) match information results for eight victim-
known DNA mixture cases. Genotypes were inferred from two-person mixture
data using a victim reference. Corresponding LRs were computed relative to a
known suspect and a reference population. Each row corresponds to one
case item and is identified in the first label column. The second label col-
umn gives the computed mixture weight of the unknown contributor. The
likelihood ratio (LR) is conservatively computed relative to the ethnic sub-
population that produces the lowest TrueAllele score. The first two columns
show the TrueAllele replicate runs using the TA1 method. The next two
columns show the reported combined likelihood ratio (CLR) match results
and the difference between TrueAllele and CLR match information. The last
row provides column averages for each method.
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the population that minimized the TrueAllele score for each item
(Table 5, CPI).

There is good agreement between the log(TA2) scores of the
two replicate TrueAllele computer runs (Fig. 9; Table 5). Com-
pared with the log(CPI) values from the reported inclusion proba-
bility results, the computer is more informative in every case, with
an average match information gain log10(TA2 ⁄CPI) of 6.24 log
units, or 1.72 million (Table 5, CPI). Examination of pairwise dif-
ferences by a t-test shows a statistically significant improvement
with a p-value <0.01.

These information differences are markedly affected by mixture
weight composition (Fig. 10). With an imbalanced DNA mixture,
the computer can productively use mixture weight to separate out
the two contributor genotypes, giving an average information
increase over CPI of about eight log units. But there is a smaller
information advantage with a 50:50 mixture, where we see a gain

of only two and half log units. As most cases are not 50:50 mix-
tures, quantitative statistical interpretation has an average gain of
about six log units.

Duplicate computer solutions of the same case let us quantitate
the reproducibility of the TrueAllele two unknown TA2 mixture
interpretation method. We see that the two log(LR) values are simi-
lar for each ethnic subpopulation within a case (Fig. 9; Table 5,
TA reps 1 and 2). We use Eq. 6 to calculate a within-case standard
deviation of 0.175 log(LR) units (Table 6). This relatively small
variation shows that on this validation data set, the TrueAllele two
unknown mixture interpretation method is highly reproducible.

Information Comparison

For one unknown contributor, TrueAllele solutions of two-person
mixtures using a victim reference on our eight cases had an aver-
age log(LR) match information efficacy of 17.33 and a within-case
reproducibility of 0.036 (Table 6, column 1). By comparison, the
reported CLR human review score on the same cases averaged
only 12.66 log units. The TrueAllele genotype inference and match
LR were more informative in every case, with an average improve-
ment of 4.67 log units.

With two unknown contributors, without using a victim refer-
ence, TrueAllele inferred both genotypes, matching the suspect with
an average log(TA2) information efficacy of 13.26 (Table 6, col-
umn 2). On this second set of eight cases, the reproducibility was a
within-case standard deviation of 0.175 log units. On these same
cases, relative to the same populations, the reported human CPI
value had an average logarithm of only 7.03. Thus, the computer
showed an average match information improvement over manual
review of 6.24 log units and was more informative in every case.

Using a victim genotype generally retained more identification
information than when not using such a reference (Table 6). On
average, the computer information log10(TA1 ⁄ TA2) increased 4.07
log units by using a victim (Table 6, first row). An even greater
information gain log10(CLR ⁄ CPI) of 5.63 log units was seen
between the reported CLR and CPI (Table 6, second row).

Overall, TA1 computer inference with a victim reference was
the most effective mixture interpretation method, averaging 17.33
log units. At the low end, CPI human interpretation without using

TABLE 5—Information comparison with two unknown contributors.

Two Unknown Log(LR) Information

Case Weight TA Rep 1 TA Rep 2 CPI Gain

2A 0.652 17.89 17.54 7.01 10.49
2B 0.379 15.23 14.91 7.83 6.84
2C 0.333 14.74 14.63 5.87 8.22
2D 0.594 12.88 13.12 5.49 7.51
2E 0.520 10.11 9.73 7.53 2.32
2F 0.403 10.32 10.96 6.86 3.79
2G 0.464 9.07 8.71 6.24 2.65
2H 0.385 16.16 16.17 7.24 8.06

13.30 13.22 6.76 6.24

The table shows log10(LR) match information results for eight DNA mix-
ture cases, without using a victim reference. Genotypes were inferred from
two-person mixture data, and the corresponding LRs were computed relative
to a known suspect and a reference population. The case item of each row
is identified in the first label column; the second label column is the mix-
ture weight. The likelihood ratio (LR) is conservatively computed relative to
the ethnic subpopulation that produces the lowest TrueAllele score. The first
two columns show the TrueAllele replicate runs using the TA2 (two
unknown) method. The remaining columns show the reported combined
probability of inclusion (CPI) match results and the difference between Tru-
eAllele and CPI. The last row provides column averages for each method.

FIG. 9—Match information comparison with two unknown contributors. The log10(LR) information values are shown for every case, with results for the
two replicate TA2 computer runs (blue, green) and the reported combined probability of inclusion (CPI) value (orange). The cases are sorted by descending
information difference.
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a victim genotype was least effective, averaging only 7.03 log
units. The information difference log10(TA1 ⁄ CPI) of 10.30 between
these two extremes is 10 orders of magnitude (10 billion), reflect-
ing how effectively the different mixture interpretation methods
make use of DNA data.

Prior and Posterior Probability

In principle, more informative priors could be obtained through
a laboratory-specific calibration. A Bayesian framework, though,
permits the use of generic prior probabilities. Therefore, such cali-
bration is not necessary here and was not performed in this study.

In forming a posterior probability, the likelihood function
addresses the observed data, whereas the prior probability does not.
With STR data, the likelihood component typically overwhelms the
prior contribution. For example, in the two unknown contributor
case item 2A, the prior amplification variance r2 had a mean value
of two. But after likelihood examination of the STR peak height
data, the average r2 parameter value increased to 8.61.

A reporting level can affect how much of the posterior genotype
probability distribution is displayed. A genotype credible level lists
all allele pairs, starting from the most probable, until the aggregate
probability reaches or exceeds the reporting level. For example, in
the two unknown contributor case example E, locus D21 shows six
allele pairs at a 99% cumulative level (Table 2, locus D21S11, Evi-
dence E, TA2). However, at a 99.9% credible level, run 1 lists
seven new allele pairs and run 2 has 13 new ones, with their inter-
section containing values [28 30], [29 32.2] and [35 35]. At a
99.99% level, run 1 lists a total of 21 allele pairs, while run 2 lists
26 values. This probability diffusion is expected at higher levels,
given the inherent uncertainty of the nonvictim allele peak 35,
which has a height of only 34 rfu.

The preceding example highlights the importance of the LR,
which is unaffected by reporting level. The LR measures the likeli-
hood concentration at a suspect genotype value, relative to its dis-
persal over a population genotype distribution. As such, the LR
(unlike lists of alleles or allele pairs) is less subject to arbitrary
reporting thresholds.

Discussion

Science (39) and the law (40) prefer forensic expert testimony
that has a sound scientific basis. To demonstrate the reliability of
DNA testing, forensic scientists conduct extensive validations of
their STR data generation methods (41–43). Given the wide dispar-
ities found in DNA mixture interpretation results (5) and the

ongoing controversy surrounding mixture interpretation methods
(3,44), clearly these methods should similarly be subject to scien-
tific scrutiny. However, most mixture interpretation methods have
not been validated to determine their efficacy and reproducibility.
Without such rigorous validation, though, mixture interpretation
may be subject to challenge in court (45).

Two analysts may independently review the same mixture data
and arrive at different allele (or genotype) lists (5). It can be hard
to quantify these qualitative discrepancies or to make comparisons
between different methods. Fortunately, in a validation study, the
LR match statistic provides a single number that captures the identi-
fication information extracted from the data, relative to a known
subject and a reference population. For DNA mixture interpretation
methods currently in use (including CPI, CLR, and TrueAllele),
their match statistic numbers are all LRs (7). As log(LR) is a stan-
dard measure of information (12), these numbers can be compared
both within and between case interpretations to form the basis of a
quantitative statistical validation study (13).

The advent of genetic calculators enables a computer interpreta-
tion of DNA evidence. While computers have been inferring geno-
types from genetic data for quite some time (46), they have only
recently been used for forensic identification (18,47,48). Computers
offer three principal advantages in the interpretation process:

• Productivity. Computer review can help the analyst conduct
rapid and accurate DNA data review (49). Reliable computing
can eliminate the (often time-consuming) human review of
cases that are impossible to solve, infer genotypes from extre-
mely difficult mixture samples, and accelerate the processing of
straightforward data.

• Information. Human review typically makes simplifying
assumptions that can discard considerable identification informa-
tion contained in the DNA evidence (3). A computer can use a
statistical model to fully examine the quantitative peak height
data.

• Objectivity. Human mixture interpretation methods sometimes
use the suspect genotype to help infer or report results (4). A
mathematically programmed computer can infer a genotype
directly from the evidence data without using any suspect infor-
mation and then afterward compute a match LR statistic from
this genotype.

FIG. 10—Match information improvement by mixture weight for two
unknown contributors. In this scatterplot, each point’s x value is the mixture
weight of the matching unknown contributor, while the y value is the infor-
mation improvement expressed as log10(TA2 ⁄ CPI). Results are shown for
eight combined probability of inclusion (CPI) cases, each conservatively
computed at the ethnic subpopulation that produces the minimal LR match
value.

TABLE 6—Summary information comparison.

Log(LR)
One Unknown
(with Victim)

Two Unknown
(without Victim)

TrueAllele computer log(TA1) = 17.33
r = 0.036

log(TA2) = 13.26
r = 0.175

Reported match log(CLR) = 12.66 log(CPI) = 7.03
Information gain log TA1

CLR

	 

¼ 4:67 log TA2

CPI

	 

¼ 6:24

The average log10(LR) information results are summarized and compared.
The first column shows results for the one unknown contributor mixture
problem, while the second column is for two unknown contributors. The
rows give TrueAllele computer results, the reported match scores, and the
net information gain. For the replicated computer results, we also provide
the within-case standard deviation as a measure of reproducibility. CLR,
combined likelihood ratio; CPI, combined probability of inclusion; LR, like-
lihood ratio.
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There is currently some controversy regarding the manual inter-
pretation of uncertain DNA evidence. Some scientists dispute the
proper way to qualitatively examine DNA mixtures (3,10,50,51),
with particular concern about stochastic effects and setting thresh-
olds. However, a quantitative data variance model (Eqs [5], [10],
[11], and [12]) can determine the probability distributions of the
peak data. In this way, the TrueAllele computer system exploits
stochastic effects for more informative genotype inference and
obviates the need for thresholds.

Forensic scientists also debate ways to objectively examine DNA
evidence (52–55). The concern is that prematurely exposing a
human examiner to a suspect profile can introduce observer bias.
The TrueAllele method, however, uses a two-step probability
approach: first inferring genotypes from the evidence and only
afterward making any LR comparison with the suspect. This ‘‘paral-
lel unmasking’’ of independent evidence and suspect genotypes
eliminates entirely any such objectivity concerns.

The recently released mixture interpretation guidelines (56) of
the Scientific Working Group on DNA Analysis Methods (SWG-
DAM) specifically address stochastic effects and objectivity. One
suggested SWGDAM human review approach is to introduce a
‘‘stochastic threshold,’’ which can lead to a less informative result.
For example, in the two unknown contributor case item E, applying
a typical stochastic threshold of 150 rfu would eliminate the sus-
pect’s alleles at every locus, producing no CPI match score, with
log(LR) = 0. However, SWGDAM also approves of using a vali-
dated computer system for probabilistic genotypes (56, paragraph
3.2.2), as described in this article. Whereas the stochastic threshold
procedure would reduce item E’s DNA identification information
1000-fold from a reported CPI of 103 to an uninformative match
score of 100, the probabilistic genotype approach instead increased
the reported LR 100 billion-fold to 1014.

The DNA subcommittee of the NYS Commission on Forensic
Science has approved further ‘‘validation studies of TrueAllele by
the NSYP’’ on active property crime cases. This ongoing evidence
study is applying both quantitative TrueAllele and qualitative
threshold methods to the same DNA data, comparing how well
they each preserve DNA identification information. The low
amount of (often mixed) DNA found in property crime evidence
should be particularly amenable to a quantitative probabilistic geno-
type approach that uses all the locus data.

In this study, we validated the TrueAllele genetic calculator for
DNA mixture interpretation using statistical measures of efficacy
and reproducibility based on log(LR) match information. When a
victim reference was available, the computer was four and a half
orders of magnitude more efficacious than human review on the
same data. Without a victim reference, the average efficacy of the
computer increased to six orders of magnitude. The computer
methods were highly reproducible, as measured by within-case
log(LR) standard deviation on duplicate runs. The computer could
extract more information from a 50:50 mixture when it used a vic-
tim reference. Without a victim reference, the computer TA2
method extracted less information from 50:50 mixtures than from
imbalanced mixtures, though considerably more than the human
CPI method. Having a victim reference enabled the computer TA1
method to extract comparable identification information from both
50:50 and imbalanced mixtures.

Scientifically validated computer systems that can reliably solve
DNA mixture cases could have a positive impact on criminal jus-
tice. For the forensic scientists and their laboratory, a computer
assistant can help reduce the time, cost, and uncertainty of DNA
mixture review. Moreover, when testifying in court, scientists who
report on match results using validated mixture interpretation

methods will be less subject to challenge. By extracting (on aver-
age) a million times more identification information than the preva-
lent inclusion method from the same DNA evidence, quantitative
computer interpretation provides the police with greater investiga-
tive power, the prosecutor with greater evidentiary power, and the
defense with greater exculpatory power. Widespread deployment of
these objective, information-rich computer-based productivity tools
may help society by enhancing public safety.
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Appendix

Appendix A: Hierarchical Bayesian Model

We model the quantitative data at STR locus l (of L loci) using
several variables. Data vector dl forms a pattern that maps DNA
product lengths into their observed quantitative peak heights. With
K contributors to the data, we represent the kth contributor geno-
type parameter at locus l as a vector gk,l, where the DNA length
entries contain allele counts that sum to one (18). A heterozygote
genotype vector gk,l contains two 1 ⁄ 2 entries, while a homozygote
has a single one entry; all other vector entries are zero (17). The
mixture weight parameter at locus l is a vector wl whose K
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contributor components sum to one, so that
PK

k¼1 wk;l ¼ 1. The
total DNA quantity at locus l is given by mass parameter ml. A
quantitative linear model of data pattern dl at locus l has an
expected vector value ll given by the weighted genotype sum

ll ¼ ml �
XK

k¼1

wk;l � gk;l ð8Þ

Additional model variables can include PCR stutter, relative
amplification, DNA degradation, and dye separation (57).

A hierarchical model of mixture weight at every locus provides
a better fit to the data (6). We therefore draw each individual locus
weight wl as a hierarchical prior from a common DNA template
mixture weight w using a truncated (simplex) multivariate normal
distribution as

wi�N½0;1�K�1ðw;w2 � IÞ ð9Þ

The mixture weight covariance is an identity matrix scaled by a
mixture variance w2.

We write the peak data covariance matrix Rl as

Rl ¼ r2 � Vl þ s2 ð10Þ

where r2 is amplification dispersion, s2 is detection variation,
and Vl is a diagonal matrix diag dlð Þ of peak heights. We line-
arly model the data vector dl using a truncated (‡ 0) multivari-
ate normal distribution N+ of the mean vector ll and covariance
matrix Rl (18) as

dl � Nþ ll;Rlð Þ ð11Þ

Other square deviation data models can be used (47,58), as well
as nonnormal distributions (19).

To infer the pmf q xð Þ of genotype gk,l, we form the joint proba-
bility distribution of Eq. 1 over all the relevant random variables
(25). The likelihood function elements Pr dl;ijgk;l ¼ x; :::

� �
are

given by Eq. 11. The prior probability assignments are given in
Eqs (9) and (12).

gk;l �
f 2
i ; i ¼ j

2fifj; i 6¼ j

(

w � Dirð1Þ
ml � Nþð5000; 50002Þ

r�2 � Gam ð10; 20Þ
s�2 � Gam ð10; 500Þ
w�2 � Gam ð1=2; 1=200Þ

ð12Þ

The genotype prior probability Pr gk;l ¼ x
� �

at allele pair x = [i
j] is a product of population allele frequencies fif g. The template
mixture weight w is assigned a uniform prior probability over the
K contributor simplex. The locus mass ml prior is a (nonnegative)
truncated normal distribution on feasible total peak rfu values. The
data variation parameters r2 and s2 have inverse gamma prior
probability distributions, as does the mixture variance w2.

Appendix B: Statistical Computing

Our goal is to determine uncertain genotype Q, described by its
pmf q(x) for each contributor at every locus. We described the pos-
terior probability distributions of the key random variables Q, w,

r2, and s2 in Eqs ((1), (4), and (5). We use the joint probability
distribution over all the data and variables to compute Q (15).

The joint probability distribution is fully specified (59,60) as
the product of the likelihood and prior distributions, given in
Eqs (11) and (12). Using a Metropolis-Hastings sampler (26),
we iteratively draw from the posterior probability distributions of
variables gk;l

� �
, wlf g, mlf g, w, r2, s2, and w2 using MCMC

computer methods (2,6). Once beyond the initial burn-in phase,
the Markov chain produces samples from the joint posterior
probability distribution (15). Marginalizing these posterior sam-
ples to each genotype random variable gk,l for contributor k at
locus l, we obtain the desired posterior probability functions q(x)
for genotype Q.

Appendix C: Likelihood Ratio for Uncertain Genotypes

The likelihood ratio (LR) is the information gained in the
hypothesis H odds by having observed data (12)

LR ¼
O H dQ; dR; dS

��	 

O Hð Þ ð13Þ

Here, hypothesis H is that the suspect contributed to the DNA
evidence, and the DNA data comprises the questioned evidence
dQ, the reference population allele frequencies dR and suspect
profile dS. Standard Bayesian rearrangements (29) tell us that the
LR can also be written as the ratio of conditional probabilities

LR ¼
Pr dQ H; dR; dSj
� �

Pr dQ H; dR; dS

��� � ð14Þ

where H is the alternative hypothesis that someone else contributed
to the evidence (Proof A).

Suppose that there is uncertainty in the evidence genotype Q
having pmf q xð Þ or in suspect genotype S with pmf s xð Þ. Then,
this genotype uncertainty is expressed in the LR as

LR ¼

P
x2G

kQ xð Þ � s xð ÞP
x2G

kQ xð Þ � r xð Þ ð15Þ

where kQ xð Þ is the likelihood function of the evidence genotype Q
and r xð Þ is the pmf of reference population genotype R (Proof B).
Although this LR shares many useful features of the match LR
approximation (7), this exact LR equation uses likelihood function
kQ xð Þ instead of posterior probability q xð Þ. When genotype Q is
inferred using a population prior R, likelihood kQ and posterior q
are easily interconverted by renormalizing with prior r, because
q xð Þ / kQ xð Þ � r xð Þ.

Proof A.

We begin in the conventional way by expanding the LR odds
definition (13) into probability ratios

LR ¼
O H dQ; dR; dS

��	 

O Hð Þ

¼
Pr H dQ; dR; dS

��� ��
Pr H dQ; dR; dS

��� �
Pr Hf g

�
Pr H
� �

Rearranging denominators we have
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¼
Pr H dQ; dR; dS

��� ��
Pr Hf g

Pr H dQ; dR; dS

��� ��
Pr H
� �

By Bayes theorem, the posterior probability of H can be inter-
changed with its likelihood, renormalizing appropriately. Doing this
separately for numerator and denominator, we obtain

¼
Pr dQ H; dR; dSj
� ��

Pr dQ

� �
Pr dQ H; dR; dS

��� ��
Pr dQ

� �
Canceling out the total probability factors Pr dQ

� �
yields the

desired Eq. 14.

Proof B.

We start from Eq. 14 with the conditional probability form of
the LR

LR ¼
Pr dQjH; dR; dS

� �
Pr dQjH; dR; dS

� �
Using the law of total probability (or, ‘‘extending the conversa-

tion’’), we consider every possible allele pair x 2 G for genotype Q.

¼

P
x2G

Pr dQ H; dR; dS;Q ¼ xj
� �

� Pr Q ¼ x H; dR; dSjf gP
x2G

Pr dQ H; dR; dS;Q ¼ x
��� �

� Pr Q ¼ x H; dR; dS

��� �

The likelihood’s probability of the data Pr dQ . . .j
� �

is unaffected
by hypothesis H or H. In the numerator, the evidence genotype Q
under hypothesis H that the suspect contributed to the evidence,
Pr Q ¼ x H; . . .jf g becomes the suspect’s genotype S. Similarly, in
the denominator the genotype Q under hypothesis H that someone
else contributed Pr Q ¼ x H; . . .

��� �
becomes the population geno-

type R. We therefore derive the ratio

¼

P
x2G

Pr dQ dR; dS;Q ¼ xj
� �

� Pr S ¼ x dR; dSjf gP
x2G

Pr dQ dR; dS;Q ¼ xj
� �

� Pr R ¼ x dR; dSjf g

Eliminating noninfluential conditioning variables, we then have
that

¼

P
x2G

Pr dQ Q ¼ xj
� �

� Pr S ¼ x dSjf gP
x2G

Pr dQ Q ¼ xj
� �

� Pr R ¼ x dRjf g

Substituting in our notation for the evidence likelihood kQ xð Þ,
and posterior pmfs for the suspect s xð Þ and population r xð Þ geno-
types, we obtain the desired result, Eq. 15.
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