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Abstract

Forensic DNA evidence often contains mixtures of multiple contributors, or is present in low template amounts. The
resulting data signals may appear to be relatively uninformative when interpreted using qualitative inclusion-based
methods. However, these same data can yield greater identification information when interpreted by computer using
quantitative data-modeling methods. This study applies both qualitative and quantitative interpretation methods to a well-
characterized DNA mixture and dilution data set, and compares the inferred match information. The results show that
qualitative interpretation loses identification power at low culprit DNA quantities (below 100 pg), but that quantitative
methods produce useful information down into the 10 pg range. Thus there is a ten-fold information gap that separates the
qualitative and quantitative DNA mixture interpretation approaches. With low quantities of culprit DNA (10 pg to 100 pg),
computer-based quantitative interpretation provides greater match sensitivity.
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Introduction

DNA identification is a powerful forensic tool for solving and
preventing crime [1]. However, DNA evidence is collected from the
field under real world conditions, and may produce less pristine data
than a reference specimen obtained from an individual in a controlled
setting. Two common sources of data ambiguity in biological evidence
are (a) DNAmixtures from multiple contributors, and (b) low template
DNA (LT-DNA) that is under 100 pg in the evidence sample.
DNA mixtures can be highly probative evidence in a sexual

assault crime (e.g., stranger rape), where a culprit’s semen mixes
with a victim’s epithelial cells [2]. Mixtures of culprit and victim in
other violent crimes (e.g., homicide) can help establish that a
suspect was involved in a criminal event. Property crime DNA
evidence [3] is often mixed, low template, or both. A low amount
of DNA template (in any type of crime) produces less amplified
signal, creating ambiguous data whose forensic interpretation may
yield less identification information [4].
These DNA challenges have a major impact on crime

laboratory practice. Difficult samples may consume inordinate
examiner time and produce suboptimal information, generating
DNA backlogs and inconclusive results [5]. Yet such challenging
evidence may be extremely important in protecting the public
from dangerous criminals. One laboratory estimated that timely
DNA examination of all property crimes and sexual assaults would
prevent 100,000 stranger rapes in the United States [6]. This is
partly because burglary and rape are both crimes of opportunity
perpetrated by similarly specialized career criminals [7], so
incarcerating burglars can help prevent rapes.
DNA data are generated through a linear amplification and

readout process in which quantitative allele events are combined

arithmetically. Such linearly generated DNA data can be
mathematically described through a quantitative linear model
[8,9]. Some practitioners do analyze mixtures using quantitative
peak information [10]. However, most forensic DNA interpreta-
tion currently uses instead a qualitative Boolean logic of all-or-
none allele events [11].
There is little consensus on the interpretation of LT-DNA and

mixtures. Qualitative methods begin by applying a peak height
threshold to the quantitative DNA signal to retain or discard data
peaks, removing peak height information. The current controversy
questions the choice of numerical threshold value (ranging from 50
to 300 units), and how many thresholds to apply (one [12], two
[13] or many [14]). Practitioners debate whether mixture
interpretation should account for known contributors [15,16], or
instead ignore victim genotypes [13,17]. Some scientists propose
how to interpret LT-DNA [4], while others decry the practice
altogether [18]. It has been recognized [19] that mathematically
modeling the quantitative data [8,20] could resolve these
‘‘threshold’’ issues, and there has been considerable progress in
statistical computer models for interpreting complex DNA
evidence [9,21,22,23].
This ongoing debate raises some important questions. What are

the true limits of DNA interpretation for mixtures and low
template samples? What available interpretation methods can
extract the most DNA information for identifying criminals? How
do quantitative DNA mixture interpretation approaches compare
with current qualitative practice? Understanding these issues can
help society allocate effective crime fighting DNA resources for
increasing public safety.
In this paper, we examine the information extracted by

quantitative and qualitative DNA interpretation methods. We
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apply both methods to the same mixture data set of varying
contributor weights and DNA quantities. We identify an information
gap between the two approaches: qualitative methods are limited to
culprit DNA quantities above 100 pg, whereas quantitative
methods can extend meaningful interpretation down to 10 pg.
We show how analyzing the information gap was helpful in
presenting DNA evidence in court. We conclude that quantitative
methods may be preferable when interpreting LT-DNA mixture
evidence.
The overall aim of the study was to compare the relative efficacy

of newer quantitative computer-based methods of DNA mixture
interpretation to current qualitative manual methods. We did this
by measuring the sensitivity of each method, exploiting a new
observation that a linear relationship exists between the (logarithm
of) DNA quantity and DNA match information. We observed that
quantitative mixture interpretation extends the current detection
limits of qualitative methods by an order of magnitude, thereby
achieving the aim of the study.

Methods

We examine alternative approaches to DNA mixture interpre-
tation. We first present a quantitative linear model for under-
standing the generation of mixed and low template STR data. We
explain how the probability model accounts for stochastic effects.
We then show how computer implementation of this quantitative
model can infer genotypes for the contributors to the data. We also
describe the current qualitative mixture interpretation methods
used in crime laboratories. We use an information measure based
on genotype match rarity that can be used to compare these
quantitative and qualitative inference methods. We also show how
standard DNA match statistics can be derived from this
information measure. For objectivity [24], we always first infer a
genotype (committing to an answer at all loci), and only afterwards
in a second step match it against another genotype [25]. We also
describe the data design, software and parameters used in this
study.

Mixture Data Model
In short tandem repeat (STR) genotyping, alleles correspond to

the length of an amplified polymerase chain reaction (PCR)
product, which is assayed by size separation on a DNA sequencer
[26,27]. A nanogram of DNA from a single individual produces
one or two tall allele peaks, along with smaller artifact peaks. A
DNA mixture, though, has multiple contributors and may produce
a more complex data pattern [20,28]. Lower DNA amounts
reduce the observed peak heights and increase stochastic effects. In
STR analysis, both PCR amplification and sequencer detection
are fundamentally linear processes, so a mixture of genotypes
produces a signal that is approximately the sum of the separate
genotype signals [29].
We can model the quantitative data at STR locus l (of L loci)

using several variables. Data vector dl forms a pattern that maps
DNA product lengths into their observed quantitative peak heights
(or areas). With K contributors to the data, we represent the kth

contributor genotype parameter at locus l as a vector gk,l , where
the DNA length entries contain allele counts that sum to 1 [8]. A
heterozygote genotype vector gk,l contains two 0.5 entries, while a
homozygote has a single 1 entry; all other vector entries are 0 [30].
The mixture weight parameter is represented as a vector w whose

components sum to 1 (i.e.,
PK

k~1

wk~1). The total DNA quantity at

locus l is given by the mass parameter ml . With these three
variables, a quantitative linear model of data pattern dl at locus l

has an expected vector value ml given by the weighted genotype
sum in equation (1).

ml~ml
:
XK

k~1

wk
:gk,l ð1Þ

A more complete model would also address PCR stutter, relative
amplification, degraded DNA, dye separation and background
noise [31]. A useful hierarchical refinement models mixture weight
individually at every locus, with each weight drawn from a
common DNA template mixture distribution [32].
There is random variation in the observed peak heights resulting

from PCR amplification and sequencer detection. PCR is a
branching process [33] where the random element comes from
DNA replication efficiency, modeled by a copy (or not) Bernoulli
event for each DNA molecule at every cycle [34]. Computer
simulations [35] in this Bernoulli model show that the amplification
variance scales with the peak height y, an estimate of DNA quantity.
Empirical studies demonstrate that PCR follows a stochastic Poisson
count distribution, where the product variance is proportional to
DNA quantity [36]. As with other event count models, it is useful to
add a dispersion factor s2 to account for model deviation [37], so we
model the amplification variance of a peak as y:s2. Sequencer
detection variation is independent of the DNA quantity, and can be
modeled separately by a constant variance t2 parameter. We also
note that the data peaks should be independent of one another.
With these considerations in mind, we write the data covariance

matrix Sl as in equation

Sl~s2:Vlzt2 ð2Þ

where s2 is the amplification dispersion, t2 is the detection
variation, and Vl is a diagonal matrix diag dlð Þ of peak heights. We
can then linearly model the data vector dl using a truncated (§0)
multivariate normal distribution Nz of the mean vector ml and
covariance matrix Sl [8] as in equation (3).

dl : Nz ml ,Slð Þ ð3Þ

Other square deviation data models can be used [38,39], as well as
nonnormal distributions [40].
We show an example data signal (Figure 1a) from the Penta D

locus of sample C3, described below in the Data section. There are
three alleles in the overlapping allele pairs of two contributor
genotypes g1,l ½13 14$ and g2,l ½12 14$. The mixture weight w1 of
the first contributor ‘‘A’’ is 70%, and the weight w2 of the second
contributor ‘‘G’’ is 30%. The weighted sum of the genotype
vectors forms an ascending peak pattern (Figure 1b). The total
allelic peak mass ml is 1,062 relative fluorescent units (rfu).
Visually, we see a good fit between the quantitative peak height
data pattern dl and the quantitative linear estimate of equation (1).

Quantitative Genotype Inference
Suppose that dQ is a questioned evidence sample. To make

comparisons with other genotypes, we want to infer a contributor
genotype Q for sample dQ. We are particularly interested in
situations where there is uncertainty in Q. Therefore, our task is to
infer genotype Q’s posterior probability mass function (pmf)
q xð Þ~Pr Q~xjdQ

! "
, say, for contributor k at locus l [21,22].

Allele pair x belongs to a finite set X of genotype values.
To infer the pmf q xð Þ of genotype gk,l , we use the joint

probability distribution over all the relevant random variables
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[41]. The likelihood function was given by equation (3). The prior
probability assignments are given in equations (4).

gk,l :
fi
2, i~j

2fifj , i=j

(

w : Dir(1)

ml : Nz 5000, 50002
# $

s{2 : Gam 10, 20ð Þ

t{2 : Gam 10, 500ð Þ

ð4Þ

The genotype prior probability Pr gk,l~x
! "

at allele pair x~ i j½ $
is a product of population allele frequencies fif g. The mixture
weight w has a uniform prior distribution over the K{1
dimensional simplex for the K contributors. The locus mass ml

prior is a (nonnegative) truncated normal distribution on feasible

total peak rfu values. The data variation parameters s2 and t2

have inverse gamma prior probability distributions.
The joint probability distribution is fully specified as the product

of the likelihood (3) and prior (4) distributions [42,43]. Therefore,
we can iteratively draw from the posterior probability distributions
of variables gk,l

! "
, w, mlf g, s2 and t2 using Markov chain Monte

Carlo (MCMC) computer methods [21,32]. After progressing
beyond the initial burn in cycles, the chain then samples from the
joint posterior probability distribution [44]. By marginalizing to
just the one genotype random variable gk,l for contributor k at
locus l, we obtain the desired probability function q(x) for
genotype Q.
Let us return to our example quantitative mixture data, with the

three observed alleles 12, 13 and 14. Assume (as the computer might
during an MCMC cycle) that the mixture weight is 70% and 30%
for the two contributors, respectively, and that the first genotype
(known victim) is ½13 14$. Since allele 12 should then be in the
second genotype (unknown culprit), there would be three feasible
allele pairings for the unknown second contributor (½12 12$, ½12 13$,
½12 14$). We show these three model patterns ml computed from
equation (1), based on each corresponding feasible allele pair
(Figure 2). Only one of these candidate patterns reasonably fits the
quantitative data observed in Figure 1. Therefore, accounting for
data peak variance and other parameters, the computer might
assign the ½12 14$ allele pair corresponding to that ascending peak
pattern a probability of one, and all other genotype values a
probability of zero (Figure 3, blue bar a).

Stochastic Effects
PCR is a stochastic process [34] that yields an uncertain amount

of amplified product [36]. Allele dropout can occur when either a

Figure 1. STR data can be modeled by linear superposition of genotype patterns. (a) The DNA sequencer data signal shows the Penta D
STR locus for a 0.25 ng 30% culprit DNA sample C3. (b) Linearly combining genotype values ½13 14$ and ½12 14$ in respective 70% and 30%
proportions forms a model of the observed allele peak height pattern.
doi:10.1371/journal.pone.0008327.g001
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visible allele peak falls below a qualitative interpretation threshold,
or the allele does not amplify at all [31]. Probability modeling of
quantitative peak data as described above can account for both
situations.
Suppose that an allele produces a small amount of amplified

product, with a correspondingly low peak height. Applying
qualitative review, if that height were under some interpretation
threshold, the peak would ‘‘drop out’’ from the analysis and be lost
to genotype inference. This drop out does not happen when using
a quantitative probability model, however. Instead, the data
variance model equations (2) and (4) enter into the likelihood
comparison (3) of the quantitative data pattern with any proposed
genotype combination (1) in forming a genotype probability. Since
the amplification variance component y:s2 scales with the peak
height y, the variance reflects the greater data uncertainty (viewed
as a coefficient of variation) when y is small. Moreover, when the
observed data pattern does not fit any genotype model particularly
well, the dispersion factor s2 increases, further increasing modeled
data uncertainty.
Now suppose that no detectable amplification occurs, so that an

allele has no peak at all (e.g., its rfu is zero). Here, the t2 detection
variation component of equation (2) comes into play. With low
data, peaks have small heights, and so their variances y:s2zt2 are
comparable to the t2 variance of missing alleles that have dropped
out. When considering these peak variance values, the likelihood
comparison (3) can assign genotype candidates a non-negligible
probability value, even when their alleles show no peaks in the
data.

Figure 2. Different genotype combinations produce patterns that are compared with data to obtain a genotype probability. Linear
combinations of known victim contributor ½13 14$ with three different unknown contributor allele pair candidates are shown at STR locus Penta D.
The victim contribution is known to be 70%, and the culprit’s is 30%. The allelic peak height pattern that best fits the observed data (Figure 1a)
corresponds to the ½12 14$ candidate (rightmost column). The other two candidates produce patterns that have a very poor fit to the quantitative
data peaks. Therefore, based on a multivariate normal likelihood function, allele pair candidate ½12 14$ would have the greatest probability of arising
from the culprit genotype.
doi:10.1371/journal.pone.0008327.g002

Figure 3. Some genotype probability distributions are more
informative than others. The allele pair probabilities for six possible
genotype candidates are shown for three different DNA mixture
interpretation methods: (a) quantitative data modeling based on peak
heights; (b) qualitative listing of genotype possibilities, filtered by
consideration of an obligate culprit allele; and (c) unfiltered qualitative
genotype listing that includes all allele pairs, based on ‘‘allele peaks’’
over threshold. A higher probability for the correct genotype value
leads to greater match information.
doi:10.1371/journal.pone.0008327.g003
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In this way, quantitative STR data can convey their uncertainty
via the data variance into a genotype. Greater genotype
uncertainty is represented by a more diffuse probability distribu-
tion. And, as we shall presently see, a less certain genotype pmf
generally reduces match LR information.

Qualitative Genotype Inference
Qualitative genotype inference does not make full use of the

quantitative peak height pattern data. Rather, qualitative review
entails the sequential processing of several lists.

N Peaks. DNA sequencer software first analyzes an STR signal
to form an initial list of quantitative data peaks. An analyst
removes questionable peaks that show data artifacts (e.g., peak
morphology, spikes, elevated baseline), producing a final peak
list.

N Alleles. To form an initial allele list, an analyst applies a fixed,
preset peak threshold to the peak list, discarding all peaks
whose heights are below this threshold [45]. After accounting
for allele artifacts (e.g., stutter position, dye bleedthrough), the
acceptable alleles remain on the final list. The peak thresh-
olding process discards quantitative peak height data, creating
qualitative all-or-none allele events [13].

N Genotypes. All possible pairs are constructed from the allele
list, building an initial list of feasible genotype candidates. (This
listing may be implicitly formed by match statistic software.)
Some laboratories filter this list based on known genotype or
peak height information to create a smaller final list of
genotype values [10].

Qualitative genotype inference considers the allele pairs in the
final list to be equally likely [11]. That is, with N listed allele pairs,
the probability of each one is 1/N. A smaller list has a smaller N,
hence a more definite belief (i.e., a larger probability 1/N) in each
listed allele pair. Including more genotype values on the list
broadens the probability distribution, indicating less confidence in
any one particular choice.
To illustrate qualitative interpretation, apply a threshold of 100

rfu to our example quantitative mixture data, to obtain three
alleles, 12, 13 and 14 (Figure 4a). These alleles are now all-or-none
events, without quantitative peak height information and com-
bined using Boolean logic. (For example, thresholded alleles
cannot be arithmetically added together using mixture weights.)
Since the known victim genotype is ½13 14$, ‘‘obligate’’ allele 12
must appear in the culprit genotype. The three feasible genotype
candidates for the unknown second contributor (½12 12$, ½12 13$,
½12 14$) can logically combine with the ½13 14$ victim genotype to
reproduce the observed data alleles 12, 13 and 14 (Figure 4b).
Since all three candidates (in combination with the victim
genotype) produce the identical Boolean allele pattern, they share
the same probability of 1/3 (Figure 3, green bar b). Alternatively, a
different interpretation method that did not apply the victim
genotype information to the unfiltered allele pairs would infer all
six genotype values, each having probability 1/6 (Figure 3, orange
bar c).

Genotype Match Information
The likelihood ratio (LR) is the cornerstone of statistical forensic

inference [15]. The LR is a ratio of the probabilities of observing
evidence under two alternative hypotheses [46]. The odds form of
Bayes theorem [47] tells us that the posterior odds of a hypothesis
relative to its alternative is the LR times the prior odds before
observing evidence. Thus the LR is based solely on an evaluation
of the scientific evidence, uninfluenced by prior beliefs. Evidence

that favors the hypothesis has a LR.1, while unfavorable evidence
has a LR,1. Multiple independent sources of evidence can be
combined by multiplying their LRs.
Having inferred a probability distribution q(x) for questioned

genotype Q, the next step [25] is to quantify its identification
information by using a LR [48] that measures match rarity [31].
Suppose that we compare inferred genotype Q with a suspect
genotype S to obtain the specific genotype match probability
Pr Q~Sf g. We can normalize with respect to a match probability
Pr Q~Rf g between genotype Q and a random genotype R drawn
from someone other than the suspect. The ratio of the specific to
random match probabilities forms the match likelihood ratio
(MLR) [48] shown in equation (5).

MLR~
Pr Q~Sf g
Pr Q~Rf g

ð5Þ

The MLR is a LR that assesses the hypothesis that the suspect
contributed to the DNA evidence [48]. The MLR can be
calculated directly from the genotype pmfs q(x), r(x) and s(x) of
the respective genotypes Q, R and S. When genotype Q is inferred
independently of the suspect S, the MLR becomes a ratio of a sum

Figure 4. Qualitative genotype inference uses thresholds to
discard data and produce a uniform genotype probability
distribution. In qualitative genotype interpretation, a predetermined
threshold is applied to the peak height data, retaining all peaks whose
heights exceed the threshold, and discarding all other peaks. (a) This
threshold operation transforms the quantitative peak height pattern
into a qualitative all-or-none set of threshold-inferred alleles. (b) This
data allele set can then be compared with victim (black) and candidate
culprit (blue) genotype values in a match operation based on
qualitative set inclusion. When accounting for the victim’s genotype,
all possible culprit allele pairs that combine with the victim’s alleles to
reproduce the data alleles are assigned equal positive probability.
doi:10.1371/journal.pone.0008327.g004
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of probability products [48], as shown in equation (6). This
probability function formulation of the standard match LR
facilitates calculation with uncertain genotypes.

MLR~

P
x[X

q(x):s(x)

P
x[X

q(x):r(x)
ð6Þ

DNA Match Statistics
Each qualitative genotype inference method produces a specific

pmf q(x) for Q. When this probability function is inserted into
MLR formula (6), it reproduces a corresponding qualitative DNA
match LR statistic [48]. At a mixture locus, qualitatively inferred
genotype Q is a list of N allele pairs that are assigned equal
probabilities. Therefore, Q’s pmf has a uniform distribution

q xð Þ~
1
N , allele pair x included in the allele data

0, otherwise

(

These included allele pairs form a list G of included genotype
values.
Suppose that there is a matching genotype allele pair x0 at

which suspect genotype S has mass probability s x0ð Þ~1 (hence is
zero at other values), and that x0 appears in Q’s inclusion list G.
Substituting these probability functions q xð Þ and s xð Þ into MLR
equation (6), we obtain one over the sum of population frequencies
for the included genotype values, as derived in equation (7).

LR~

P
x[X

q(x):s(x)

P
x[X

q(x):r(x)
~

P
x[G

1
N
:s(x)

P
x[G

1
N
:r(x)

~
1
N
:1

1
N
: P
x[G

r(x)
~

1P
x[G

r(x)
ð7Þ

The initial qualitative genotype list comprises all possible allele
pairs, and so the MLR becomes the standard ‘‘Probability of
Inclusion’’ DNA match statistic [2]. When a victim genotype is
considered, its influence may filter this genotype list into a smaller
one that assigns larger probabilities to each candidate. This final
genotype list specifies a q xð Þ probability function from which
MLR constructs a (conventionally termed) ‘‘Likelihood Ratio’’
DNA match statistic [16].
With autosomal (or other independently segregating) STR loci,

the joint LR combines the individual locus LR results by
multiplying them together [1]. The resulting Combined Probabil-
ity of Inclusion (CPI) (also referred to as Random Man Not
Excluded (RMNE)) and Combined Likelihood Ratio (CLR) DNA
match statistics are widely used in the United States for reporting
mixture results [11,13], and are routinely calculated in the
Popstats program of the FBI’s CODIS database software [49].
We use CPI and CLR here as LR measures of match information
for assessing qualitative genotype inference, with respect to a
suspect and a population. Therefore, we must include all loci (both
matching and nonmatching) in order to obtain a valid total LR
statistic [50]. (Note that some forensic labs determine CPI and
CLR differently, and include only matching loci in their reported
statistic.)
With quantitative genotype inference, the pmf q xð Þ for

genotype Q need not be uniform, and can take on different
probabilities at different genotype values. When the victim
genotype is considered as a known reference in the mixture

interpretation, the resulting Q genotype is based on inferring just
one genotype, that of the unknown culprit. Substituting Q’s pmf
q xð Þ into MLR formula (6), we obtain a LR that we call ‘‘LR1’’ for
assessing one unknown genotype. In many DNA evidence
situations, no reference genotype is available. Then two unknown
questioned genotypes Q must be inferred from the mixture data,
and each one can be compared with the suspect genotype S by
substituting its q xð Þ into MLR formula (6). We call the resulting
likelihood ratio ‘‘LR2’’, since it assesses a two unknown genotype
inference.
When working with the logarithm of the LR, the joint log(LR) is

the sum of the component locus log(LR)’s. The biological sciences
conventionally use the common (base 10) logarithm, i.e., a
number’s ‘‘order of magnitude’’. The common logarithm
log10(LR) is a standard additive measure of information called
the ‘‘weight of evidence’’ [50]. Juries tend to find DNA evidence
highly persuasive once the total LR reaches a million-to-one [51],
so we shall use a weight of evidence of 6 (i.e., log10(10

6)) as the
threshold for evidentially useful match information.

Comparing Interpretation Methods
The strength of a mixture interpretation method resides in the

DNA match score it produces. This single number supplies the
weight of DNA evidence for investigative, evidentiary and
exculpatory purposes. Relative to a particular suspect and
reference population, the match statistic is entirely determined
by the (possibly implicit) genotype pmf inferred by an analyst from
the evidence data [48]. More informative methods obtain higher
match scores by inferring more informative genotypes.
Our study compares the efficacy of DNA interpretation

methods through the match information they each derive when
applied to identical data. Every match statistic used here can be
viewed as a LR:

N CPI is formally a LR, as previously observed [48, Illustrated
examples, Mixtures] and summarized in equation (7) and its
succeeding paragraph. We provide a detailed derivation
(Appendix S1) that starts from the PI definition, introduces
appropriate likelihood and prior probability functions for
genotype inference, and uses MLR to prove that CPI is a LR
for the standard identification hypothesis that the suspect’s
DNA is in the evidence.

N CLR is known to be a LR [16]. This fact can be formalized by
extending the LR derivation for CPI (Appendix S1) to the
CLR genotype listing using equation (7).

N LR1 and LR2 are calculated from computer-inferred geno-
types using MLR, and so are LRs [48].

Since the log(LR) is a standard additive measure of information
[50,52,53], it can be used to compare the relative information
efficacies of all these DNA interpretation methods.

Data
A set of STR data was generated to assess interpretation efficacy

over a spectrum of two contributor mixture cases [21]. The
experimental design has three axes: varying mixture ratios, serial
DNA dilutions, and different contributor pairs. As shown in
Table 1, the mixture weights were 10%, 30%, 50%, 70% and
90%. The DNA dilution amounts were 1 ng, 0.5 ng, 0.25 ng and
0.125 ng, standardized to a 25 ml PCR volume. DNA from two
unrelated pairs of individuals was used to create two distinct sets of
mixtures for a total of 40 (5 weights64 amounts62 pairs) mock
sexual assault cases. After receiving these premixed DNA
templates from the National Institute of Standards and Technol-
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ogy (NIST), we amplified them using a Promega PowerPlex16H
STR kit under standard thermocycling conditions. We then
detected the fluorescently labeled PCR products on an ABI 310H
capillary sequencer to obtain size separated STR data signals.

Software
For quantitative genotyping, we applied Cybergenetics TrueAl-

leleH Casework implementation of the described inference model
to these STR data. After generating quality checked quantified
peaks in the TrueAllele Analysis module, we then uploaded these
data peaks to the TrueAllele database. We had TrueAllele
quantitatively interpret the 40 mixture samples using a victim
reference (as a one unknown contributor process), and also not
using the reference (as a two unknown contributor process).
Following quantitative TrueAllele inference, the genotype pmf
q(x) in each case was compared with the known suspect genotype
s(x) relative to a random genotype r(x) constructed from the
alleles of 5,000 anonymous (actual, not simulated) individuals to
form a log(LR) match score.
In the qualitative genotyping procedure, we applied a fixed

threshold of 100 rfu to the peak data at each locus of a case
experiment to generate its allele lists. For the CPI method, the
computer formed a genotype list of all N allele pairs and associated
a uniform probability q xð Þ~1=N with each allele pair candidate
x. For CLR, whenever there were no more than four peaks over
threshold and the victim’s alleles were included in those peaks, the
computer filtered the candidate list using the victim reference
genotype; otherwise, the initial ‘‘all allele pairs’’ list was used.

Parameters
A match comparison Q=S at a locus between questioned

genotype Q and suspect genotype S tests whether some Q
genotype value equals some S genotype value. When such a match
occurs, it has a positive probability value, i.e., 0vPrfQ~Sg !SS 1.
For example, in qualitative comparisons, this would mean an
‘‘inclusion’’ of suspect genotype S alleles in the data peak allele set.
Alternatively, with no genotype value in common, event Q=S is
not observed and there is a genotype mismatch, with
PrfQ~Sg~0. With a quantitative likelihood statistic, a zero
match probability is not meaningful, e.g., it has an undefined
logarithm.
Clearly, a match probability estimate based on real data can

never actually equal zero – there is inherent scientific uncertainty
that precludes making such a definite statement. Instead, we

recognize that an STR experiment may produce uninformative
data. We can use the probability of observing such data to impose
a practical lower bound on the reported LR value. A log(LR)
becomes negative when the probability of a specific match
PrfQ~Sg is less than that of a random match PrfQ~Rg.
Assuming (fairly conservatively with ambiguous mixture or low
template STR data) that uninformative data arises at least once in
a thousand experiments (i.e., has a probability$1023), we set a
lower bound of 23 on negative log10(PrfQ~Sg) values. Also, to
avoid potential confusion, the following data analyses only include
case results having a positive total information value when all the
(positive and negative) locus log(LR) values are added together.

Results

We compared the described mixture interpretation methods on
a DNA data set of varying mixtures and quantities, using log(LR)
as a measure of DNA match information. We show that
quantitative interpretation methods work much better than
qualitative ones. We then analyze the effect of mixture weight
on match information. Using linear regression on a log-log scatter
plot, we explore the relative sensitivity of these different methods
by examining the effect of DNA quantity on match information.
Finally, we describe our experience in using these quantitative
DNA interpretation efficacy comparisons in a courtroom setting.

Match Information Comparison
We want to determine whether there is any appreciable

difference between quantitative modeling and qualitative inclusion
genotype inference methods. Since our task is DNA identification,
we use as our metric the log(LR) match rarity statistic [54], which
summarizes the relevant investigative and evidentiary identifica-
tion information. The MLR assesses the identification information
extracted from the data inferred by a genotype Q, as represented
in its posterior pmf q(x). Different DNA mixture interpretation
methods typically produce different genotypes and distributions.
When the victim genotype is not known during interpretation,

we can compare the two-unknown quantitative modeling method
LR2 with the qualitative CPI inclusion method (CPI threshold set
at 100 rfu). Of the 40 cases (B1, B2, …, F4) processed using the
two methods, LR2 produced a positive log(LR) in 39 of them,
whereas CPI had a positive log(LR) in 23 cases. The ratio
log(LR2/CPI) of these statistics for a given case equals the
difference log(LR2)2log(CPI), which gives the order of magnitude
improvement in match information of one method relative to the
other. A histogram of these information differences for the 23
comparable cases is shown (Figure 5a), having a mean improve-
ment of 8.57 log LR units and a standard deviation of 2.10. Thus
we conclude that quantitative genotype inference is more
informative than qualitative inference on this set of mixture cases
having two unknown contributors.
With victim genotype A assumed to be known for mixture

interpretation, we can compare the one-unknown quantitative
modeling method LR1 with the qualitative CLR inclusion method
(CLR threshold set at 100 rfu). Of the 40 cases (B1, B2, …, F4)
with known profile A processed using the two methods, LR1
produced a positive log(LR) in all cases, whereas CLR had a
positive log(LR) in 25 cases. A histogram of the match information
differences log(LR1)2log(CLR) for these 25 comparable cases is
shown (Figure 5b), having a mean increase of 7.90 log LR units
and a standard deviation of 2.25. We therefore conclude that
quantitative genotype inference is more informative than this
qualitative approach on these mixture cases with one unknown
contributor.

Table 1. Forty DNA mixture samples were used in the study.

10% 30% 50% 70% 90%

A+G pair 1.0 ng B1 C1 D1 E1 F1

0.5 ng B2 C2 D2 E2 F2

0.25 ng B3 C3 D3 E3 F3

0.125 ng B4 C4 D4 E4 F4

H+N pair 1.0 ng I1 J1 K1 L1 M1

0.5 ng I2 J2 K2 L2 M2

0.25 ng I3 J3 K3 L3 M3

0.125 ng I4 J4 K4 L4 M4

There are two contributor pairings, female A with male G, and female H with
male N. The culprit mixture weights are 10%, 30%, 50%, 70% and 90%. The total
DNA quantities used in a 25 ml PCR volume were 1.0 ng, 0.5 ng, 0.25 ng and
0.125 ng.
doi:10.1371/journal.pone.0008327.t001
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Mixture Weight Effect
To understand why quantitative genotype inference noticeably

improves on qualitative inference, we examine the effect of
mixture weight. For each case interpretation, we show its culprit
mixture weight (x-axis) and log10(LR) match information (y-axis, in
log10(LR) units) on a scatter plot (Figure 6). Each interpretation
method is assigned its own color: for the quantitative methods, the
one unknown LR1 as blue and the two unknown LR2 as green,
and for the qualitative methods, the one unknown CLR (purple)
and the two unknown CPI (red). Each of the five mixture weight
columns shows scatter plots for all eight cases (four DNA
quantities, two individual pairs) in each of four interpretation
methods. Only positive log(LR) values are shown.

Beginning at the right (Figure 6) with the easiest major
contributor cases having a 90% culprit mixture weight, we see
that all four methods produced some positive result. The known
victim LR1 quantitative method (blue) yielded the most informa-
tion, closely followed by the two contributor LR2 modeling
method (green). The qualitative inclusion methods extracted less
information, with the known victim CLR method (purple) being
more informative than the data-only CLR approach (red).
With a 70% major unknown contributor, the quantitative

methods (blue, green) largely retain their information (Figure 6).
Some of the qualitative known victim CLR cases (purple) remain
informative, though others produce locus mismatches that reduce
the log(LR) to near zero. The qualitative CPI method becomes far
less informative than it was with a 90% culprit contributor.
A 50% mixture has equal contributions from both contributors,

but with a known victim reference most information is retained
(blue, purple). With two unknown contributors, there is a marked
reduction in identification information (green, red). While unequal
contributions can help identify which genotypes go with which
unknown contributor, an equal 50% mixture weighting does not
facilitate this identification, so (as with the qualitative approach) all
the different genotype combinations become possible, thereby
reducing information.
With a 30% minor culprit contributor, the quantitative methods

(blue, green) retain considerable information. For most of these
cases, the two unknown LR2 information (green) increases greatly
relative to the 50% situation, reflecting the better separation of
contributor genotypes. However, the qualitative methods do not
perform as well with a minor contributor mixture – we see that
about half of them no longer produce a positive log(LR). The
remaining cases tend to have less information than in a 50%
mixture.
At a 10% mixture weight, the quantitative methods still provide

positive identification information (blue, green). One of the LR2
cases (green) has disappeared, but all the other LR1 and LR2 cases
have positive log(LR). By comparison, there are no informative

Figure 5. Histograms show how match information increases
when using quantitative interpretation methods. The within-
case log(LR) match information differences between quantitative and
qualitative interpretation methods. (a) The information improvement
log(LR2/CPI) between the LR2 (quantitative interpretation) and CPI
(qualitative interpretation) match statistics on the same cases, when
there are two unknown contributor genotypes. (b) The information
improvement log(LR1/CLR) between the LR1 (quantitative method) and
CLR (qualitative method) match statistics on the same cases, when the
victim genotype is known, and there is one unknown contributor
genotype.
doi:10.1371/journal.pone.0008327.g005

Figure 6. Match information as a function of mixture weight
and interpretation method. A scatter plot of log(LR) match
information (y-axis) versus culprit mixture weight (x-axis). Each of the
five culprit weights (10%, 30%, 50%, 70% and 90%) has four columns,
one for each of the mixture interpretation method match statistics (CPI
in red, CLR in purple, LR2 in green, and LR1 in blue). In each column,
there are up to eight mixture cases; a case is not shown when its log(LR)
is negative.
doi:10.1371/journal.pone.0008327.g006
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results for any of the CPI or CLR qualitative mixture methods, as
indicated by the absence of red and purple cases.

DNA Quantity Effect
We can refine our initial observations about statistical difference

and mixture weights by modeling the effect of DNA quantity on
match information. The quantity of culprit DNA present in a
mixture is the product of mixture weight and total DNA quantity.
These properties are known from the study design for every case
(Table 1), and so we know the culprit DNA quantity as well. It is
instructive to examine a scatter plot that graphs LR information
versus culprit DNA quantity for the cases. We present such plots
on a log-log scale for all four interpretation methods (Figure 7).
Consider the quantitative LR1 method on the data set

(Figure 7a, blue). For each of the 40 cases, a scatter plot shows
the base ten logarithm of the quantity of culprit DNA (x-axis) and
the match information log10(LR) (y-axis). Notice that in the 10 to
100 pg region (1 to 2 log mass units), the match case data linearly
ramp up to the maximum match information value of 22. Beyond
that point, in the 100 to 1000 pg region (2 to 3 log mass units), the
information data remains constant at this maximum. The linear
ramp along the left edge of the scatter plot shows how match

information decreases with decreasing culprit DNA quantity. The
linear regression line fits these case data with r2 = 0.83. This
regression line intersects the million to one LR level at a log value
of 1.24 (circle), or 17 pg. Thus the sensitivity of the LR1 method
for detecting an evidentially useful DNA match on this data set is a
culprit DNA quantity of 17 pg (Table 2, LR1).
The quantitative LR2 method (without a victim reference) is

shown (Figure 7b). We performed the same regression ramp
analysis as above on the LR2 data points, producing a linear
regression line (r2 = 0.63) that is shifted 0.19 log mass units to the
right of the LR1 regression line. The LR2 line intersects the 106

evidentiary threshold line at 27 pg. Not using the victim genotype
reduces the sensitivity of quantitative genotyping, as measured by
match information (Table 2, LR2).
We conducted this match information sensitivity analysis for

both qualitative inclusion methods (Figures 7c and 7d). With
abundant culprit DNA, the CLR method is seen to be more
informative than CPI. At lower DNA template amounts, the
culprit’s allelic mixture peaks begin to fall below the preset
threshold (e.g., 100 rfu). When the threshold discards true alleles,
these qualitative methods can no longer infer a correct culprit
genotype. The resulting locus mismatches then reduce the LR. On

Figure 7. Determining DNA mass detection sensitivity by linear regression of match information versus DNA quantity. Scatter plots
showing log(LR) match information (y-axis) versus log(culprit DNA) (x-axis) for four different mixture interpretation methods: (a) LR1 (blue), (b) LR2
(green), (c) CLR (purple), and (d) CPI (red). For each method, the scatter plots show an increasing ramp function that levels off when the maximum
match information has been attained. The left ramp component is fitted to a regression line. The point at which this line intersects the horizontal
million-to-one match information level gives the sensitivity of the interpretation method, measured in picograms of culprit DNA.
doi:10.1371/journal.pone.0008327.g007
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this data set, the CLR method (which uses the victim genotype) has
a sensitivity of 117 pg, while the two unknown genotype CPI
approach is seen to be the least informative, with a sensitivity of
162 pg (Table 2, CLR and CPI).
There is an order of magnitude information gap between the

quantitative and qualitative interpretation methods, evident from
the scatter plot data, regression lines, and match sensitivities.
Visually, the gap appears as a one logarithmic mass unit shift to
the right of the qualitative methods (Figure 8). Whereas
quantitative modeling has a match sensitivity limit in the ten
picogram range, the less informative qualitative inclusion sensitiv-
ity is in the hundred picogram range (Table 2). The information
difference between using quantitative data with a known victim
genotype (Figure 8, blue; Table 2 LR1) and a qualitative review
that ignores both quantitative data and the known genotype
(Figure 8, red; Table 2 CPI) is a ten-fold sensitivity factor (17 pg vs.
162 pg) in the interpretable DNA quantity.
The actual sensitivity levels will vary between different data sets.

Key factors in this variation include sample preparation, the extent
of allele overlap between the genotypes contributing to the
evidence, the suspect genotype, and allele population frequencies.
However, the following case example further supports the

observed ten-fold sensitivity improvement of quantitative over
qualitative interpretation.

Forensic Evidence
One of the authors recently had the opportunity to apply these

DNA gap linear regression results in a criminal trial (Common-
wealth of Pennsylvania v. Kevin J. Foley, Indiana County,
No. 1170, Crim 2009). In April, 2006, dentist John Yelenic was
slashed to death in his Blairsville home in Pennsylvania (PA).
Although the murder weapon was never found, DNAwas recovered
from the victim’s fingernails. The FBI laboratory’s STR analysis
produced quantitative data at the 13 CODIS loci, showing that
most of the DNA came from the victim, and only 6.7% from an
unknown contributor. The victim’s estranged wife’s boyfriend, PA
State Trooper Kevin Foley, had a scratch on his forehead after the
crime. The FBI compared their STR fingernail evidence data with
suspect Foley’s genotype, and reported a CPI match statistic (at 11
loci) of 13 thousand relative to a Caucasian population.With the key
physical evidence well below the million to one persuasion level
[51], the prosecution brought in Dr. Perlin as an outside DNA
expert to provide a quantitative computer review of the data.
The outside expert ran the TrueAllele system on the two

contributor mixture data, searching for one unknown genotype.
(The victim was assumed to contribute to his own fingernail
specimen; moreover, his genotype comprised 93.3% of the
mixture.) The TrueAllele interpretation yielded a genotype Q,
along with a pmf q(x), at 12 STR loci; the TPOX locus was not
used because of bleed-through artifact. The MLR of genotype Q
with defendant Foley’s genotype S (relative to the population
genotype R) was 189 billion, much greater than the jury
‘‘convincing threshold’’ of one million. The defense lawyers
sharply questioned the computer’s statistically inferred LR, given
its seven order of magnitude improvement over the FBI’s CPI
result. The prosecution presented the DNA information gap
(Figure 8) to show that the observed match score disparity was
entirely expected, as follows.
The expert explained the linear regression in the log-log LR1

validation study scatter plot to the court, using the regression line
as a calibration curve (Figure 9). The TrueAllele computer had
determined that the unknown culprit comprised 6.7% of the
mixed specimen; the FBI laboratory measured the starting DNA
quantity as 1 ng (in a standard 25 mL volume). Therefore, the
unknown culprit DNA quantity was 67 pg (i.e., 6.7% of 1,000 pg).
Locating 67 pg on the x-axis, we see that it intersects the
calibration line at a y-axis value of 14.75 log10(LR) information
units. Since our analysis used only 12 of the validation study’s 15
STR loci, we take 80% of this additive 14.75 information value to
find an expected log10(LR) result of 11.80. The standard deviation
about the regression line is 2.28, so (accounting for the 80%
shrinkage) the 95% confidence interval at 67 pg is [8.15, 15.45].
The observed match information of 11.28 (or, log10(1896109)) is
centered within the confidence interval, near the predicted 11.80
regression value.
The validation data in this paper therefore do not support the

defense hypothesis that the quantitatively inferred LR of 189
billion is unexpectedly high. Nor is the FBI’s reported CPI match
statistic of 13 thousand unexpectedly low. As the FBI has reported,
their qualitative threshold-based CPI method does not extract
much match information from LT-DNA mixture evidence [18].
This is understandable – CPI ignores the victim genotype, and
discards quantitative peak height data. It is generally accepted in
the forensic inference and statistics community that the more
informative ‘‘LR approach is preferred’’ since it ‘‘makes full use of
the evidence’’ in these low DNA situations [16]; our DNA

Table 2. The mass detection sensitivity of different DNA
mixture interpretation methods.

Quantitative Qualitative

LR1 LR2 CLR CPI

Sensitivity 17 pg 27 pg 117 pg 162 pg

95% Interval [9, 33] [11, 64] [82, 168] [98, 266]

The sensitivity of each DNA mixture interpretation method on the data set was
determined as the culprit DNA mass (in picograms) at which the log-log
regression line intersected the million-to-one match information level.
Confidence intervals for culprit mass DNA detection are shown for each
method.
doi:10.1371/journal.pone.0008327.t002

Figure 8. The information gap in detection sensitivity between
quantitative and qualitative DNA interpretation methods. Two
log-log scatter plots are shown of LR match information (y-axis) versus
culprit DNA quantity. There is an order of magnitude information gap
between the more sensitive quantitative LR1 interpretation method
(blue) and the less informative qualitative CPI method (red).
doi:10.1371/journal.pone.0008327.g008
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information gap (Figure 8) results support this broad consensus
view. After hearing testimony on both (the qualitative and
quantitative) DNA match statistics, the jury convicted former
Trooper Foley of first-degree murder.

Discussion

DNA evidence can be used to establish a match between
biological specimens. However, the match result and its statistical
rarity may depend on how this evidence is interpreted. In the STR
process, both the essential PCR amplification and DNA sequencer
readout steps are linear operations, combining materials additively
to produce a total quantitative signal. This additive feature can be
modeled mathematically, enabling prediction of the observed
quantitative data pattern from underlying statistical parameters.
Using modern computational methods, this linear model can be
used to quantitatively interpret the data, inferring underlying
genotypes as probability distributions that can then be matched
against other genotypes.
Although some American laboratories are moving to quantita-

tive modeling of DNA mixture data, most still use CPI [13,55].
Their analysts apply thresholds to data peaks to decide whether or
not they believe that an evidence peak represents an allele in the
genetic material. With large quantities of culprit DNA, this
determination can be reliable. In such cases, the analyst assembles
lists of alleles, translates them into lists of genotypes, and
afterwards makes match comparisons to suspect genotypes.
However, more complex data that has mixtures or LT-DNA
limits the applicability of such qualitative procedures [13,18].

The two person mixture sensitivity results presented here show
that the match information depends on both the DNA quantity of
the unknown contributor and on the interpretation method. Below
a million-to-one LR, jurors begin to question the persuasiveness of
DNA evidence. Quantitative linear models that use peak height
patterns can form data-adapted genotype probability distributions
that provide the requisite 106 match information with a sensitivity
level of around 10 pg. However, qualitative threshold-based
methods produce flat genotype distributions that are less
informative, with a sensitivity level of around 100 pg. The less
sensitive qualitative approach may therefore be less relevant below
this DNA mass level.
Crime laboratories interpret DNA evidence within the sensitiv-

ity limits of their interpretation methods. When using qualitative
threshold-based methods, they seek criteria for processing only
those samples having enough DNA to elevate data peaks above
threshold [18,56]. Another strategy is to report only genotype
matches for major contributors to a mixture [12]. Given the
100 pg match sensitivity limit for qualitative interpretation
(Table 2), it makes sense for them to not expend considerable
effort qualitatively analyzing DNA evidence that has low amounts
of culprit DNA.
A more proactive solution is to recognize the inherent information

gap between the match sensitivity of older qualitative and newer
quantitative interpretation methods. While the 10 pg to 100 pg
DNA sensitivity range may be impervious to qualitative review,
these low template data are amenable to more informative
quantitative interpretation. Moreover, these resolvable DNA levels
commonly occur in property crime, as well as in ‘‘difficult’’ sexual
assault and homicide evidence. Informative genotypes and
matches can help law enforcement make DNA identifications of
dangerous criminals. Crime laboratories need not ignore or
discard LT-DNA evidence. Instead, society can have them employ
appropriately informative DNA interpretation methods for
resolving and preventing crime.

Supporting Information

Appendix S1 Probability of inclusion is a likelihood ratio (proof).
Found at: doi:10.1371/journal.pone.0008327.s001 (0.37 MB
PDF)
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Appendix: Probability of Inclusion is a Likelihood Ratio

The probability of inclusion (PI) is traditionally viewed as a DNA match statistic quite distinct

from a LR [13,16].  This is because PI makes a statement about allele sets, rather than genotypes,

making it difficult to formulate a hypothesis for a LR about genotype assumptions.  However,

the standard data LR can be expressed as an equivalent match LR in terms of genotypes and their

pmfs [48].  Within this match LR framework, we show that PI is, in fact, a LR.

Constructing Genotypes

We begin by constructing a canonical genotype Q that PI implicitly forms from a set of alleles I.

This allele inclusion set I is obtained from STR locus data by retaining K alleles whose peak

heights exceed some predetermined threshold.  The pmf of genotype Q is a probability

distribution completely characterized by a prior probability and a likelihood function [57].  The

hallmark of PI is its symmetry in treating alleles, which is the source of both its simplicity and its

loss of information.  A natural prior !(x) that expresses this symmetry is the uniform distribution

on genotypes.

We can form an inclusion likelihood function "(x) for the inclusion method.  The only

included allele pairs x are those for which both alleles are included in allele inclusion set I, so we

define a genotype value inclusion subset G of X as

G = i j[ ] i, j ! I ,i " j{ }

that contains just these allele pairs.  From the symmetry of PI, we then define its genotype

likelihood function "(x) as the indicator function on support set G, or

! x( ) = "G x( )

=
1, x #G
0, otherwise

$
%
&

'&
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From Bayes theorem, the posterior probability distribution q(x) for PI is the product of

!(x) and likelihood "(x) as

q x( )!" x( ) # $ x( )

With K alleles in I, there are N = K K +1( ) 2  distinguishable allele pairs in genotype support set

G.  After normalizing so that the sum of the pmf probability values equals one, we obtain the PI

pmf q(x) as

q(x) =
1
N
, x !G

0, otherwise

"

#
$

%
$

Now suppose that there is a suspect with genotype S having a unique allele pair g that is

included in the PI genotype set G.  The pmf s(x) is

s x( ) =
1, x = g
0, otherwise

!
"
#

$#

To form a LR, we specify a reference population having genotype R and pmf r(x), where

r x( ) =
pi

2 , homozygote x
2pi pj , heterozygote x

!
"
#

$#

Here, pi is the frequency in the population of allele i.

The Match Statistic

The PI match statistic is defined by the allele frequencies of included alleles as [2]

PI!=! 1

pi
i!I
"
#

$
%

&

'
(

2

Expanding the sum of products in the denominator gives

=
1

pi
2

i!I
" + 2pi pj

i, j!I ,i# j
"
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The first summation describes the population frequencies of all the included homozygote

genotypes, while the second describes the included heterozygote genotype frequencies.  We can

combine these using the pmf r(x) of population genotype R as

=
1
r x( )

x!G
"

restricted to the inclusion genotype set G.

Since matching allele pair g is in genotype inclusion set G, s x( )
x!G
" = 1 .  So we can write

PI =
s x( )

x!G
"

r x( )
x!G
"

Multiplying numerator and denominator by 1 N , and distributing this constant value into the

sums, we then have

=

1
N
! s x( )

x"G
#
1
N
! r x( )

x"G
#

But this uniform weighting of 1 N  on genotype support set G is just the evidence pmf

q(x), and so

=
q x( ) ! s x( )

x"X
#
q x( ) !r x( )

x"X
#

where the summation now ranges over the entire set X of possible genotype values.

The probability of genotype equality Pr Q = S{ }  can be written [48] as a summation of

genotype pmf products q x( ) ! s x( )
x"X
# .  Similarly [48], Pr Q = R{ } = q x( ) ! r x( )

x"X
# .  Therefore,

PI can be written as

PI =
Pr Q = S{ }
Pr Q = R{ }
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This ratio of genotype match probabilities is a likelihood ratio for the standard inclusion

hypothesis that the suspect's DNA is in the evidence [48].  Therefore, PI is a LR.

We have demonstrated that by constructing a canonical inclusion evidence genotype Q,

the usual PI statistic can be viewed as a LR.  This means that the strengths and weaknesses of the

inclusion method can be understood through its genotype Q and uniform pmf q(x).  Moreover,

treating PI as a LR enables us to examine its information content log(LR), and make meaningful

comparisons with other LR results.


