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Abstract

STR technology has enabled the rapid generation of highly informative DNA data for use in
human identification.  However, these data must be carefully analyzed.  With database samples,
there is now an acute shortage of skilled data reviewers.  With casework samples (including
mixtures), much information is not extracted from the data, despite considerable examiner effort.
We are rapidly developing novel computational, mathematical and statistical methods that help
overcome these limitations.  This report focuses on the collaborative validation of these
methods.

Convicted offender DNA databases must be accurate.  To minimize error, the original STR data
are carefully reviewed by two or more people.  Moreover, in a troubleshooting capacity, this
review helps to continuously maintain high quality lab data.  But there are not enough skilled
personnel for this arduous, repetitive task.  To alleviate this critical labor shortage, we
developed the TrueAllele™ expert system.  The computer program automates virtually every
human review function, and provides consistent quality assessment and allele designation.

The TrueAllele validation began with the original data from 50,000 CODIS genotypes.  System
parameters were adapted to the instruments (ABI/310, ABI/3700, Hitachi/FMbio) and panels
(ProfilerPlus, Cofiler, PowerPlex 1.2) used to generate the data.  Computer processing was then
done, with automated scoring of the high quality data, followed by limited human review.  The
computed expert system results were compared against manually scored results.  We report
here on the relative accuracy and efficiency of the automated approach.

In casework, DNA mixtures are analyzed to assess candidate suspects.  When inferred profiles
are matched against a convicted offender database, useful leads are generated.  When
matched against a known suspect, the mixture data can help convict or exonerate.  However,
data uncertainty leads to inherently complex and ambiguous analysis.  We have developed a
new technology, Linear Mixture Analysis (LMA), which uses multilocus quantitative data to
automatically eliminate this complexity.  LMA objectively resolves mixtures into candidate
profiles, and provides highly informative statistical measures.

The LMA validation involves both synthetic mixtures and actual casework profiles derived from
diverse panels and instruments.  After quantitative peak analysis (using TrueAllele) on the
original data, we applied LMA to automatically determine contributor profiles.  Database search
validation can be done by assessing the error rates of matching these profiles against existing
DNA databases.  Casework validation can be done by examining the LMA statistics relative to
known suspect profiles.  We report here our initial studies on LMA’s accuracy and
informativeness.

Our presentation describes novel computer-based methods for assuring data quality,
automating DNA database review, and analyzing the mixed DNA profiles found in casework.
We present here the objective results of our ongoing validation studies, and demonstrate the
feasibility of practical automated analysis.  Our primary objective is the rapid introduction of
validated intelligent data analysis systems for eliminating tedious human STR analysis.  This
contribution may help free up valuable DNA examiner time for serving justice through forensic
science.
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Introduction

STR technology has enabled the rapid generation of highly informative DNA data for
use in human identification (1).  However, these data must be carefully analyzed for
errors to assure forensic usability (2).  With database samples, there is a growing
shortage of skilled data reviewers for quality assurance (3).  With casework samples
(including mixtures), much information is not extracted from the data (4, 5), despite
considerable examiner effort.  We are rapidly developing novel computational,
mathematical and statistical methods that help overcome these limitations (6-8).  This
report focuses on the collaborative validation of these new scientific analysis methods.

We present this paper in three sections:
• Automated STR Analysis.  Current STR analysis is a labor-intensive effort

performed by expert forensic examiners.  It would be highly useful to deploy
expert computer systems that could automate much of their work.  This section
describes the TrueAllele™ expert system for automated STR analysis.

• Databasing Validation.  We have performed a validation study of the TrueAllele™
automated databasing solution on a variety of DNA sequencing instruments and
STR panels.  In this section, we outline our methods and present the main
validation results.

• Casework Studies.  We have recently initiated casework (mixture and nonmixture)
validation studies.  In this section, we motivate our casework technology, and
present some preliminary mixture validation results.

Automated STR Analysis

We describe here a computer-based solution to automated STR analysis that provides
quality assurance, rule-based diagnostics, and runs on most forensic platforms.  We
provide validation results for this TrueAllele™ expert system in subsequent sections.

Reviewing STR data

Human review (in duplicate) of forensic STR data is currently required to assure that
DNA profiles are correctly scored.  However, this human analysis step has become a
labor-intensive bottleneck impeding the rapid construction of high-quality DNA
databases.  Any useful scoring approach must address the following issues:

• Computer automation.  It would be desirable to have a computer-based analysis
technology that can automate most or all of the laborious human data review
process.

• Quality assurance.  What is the quality of the underlying STR data, including PCR
controls and size calibrations?  This data quality determines the reliability of the
scored genotypes.
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• Database integrity.  STR databases must be accurate in order to avoid database
matching errors.  With a false positive match, the wrong person is identified.
With a false negative nonmatch (the more likely error), the correct criminal may
never be found – even though their (incorrect) profile resides on the database.

• Casework and mixtures.  DNA databases of convicted offenders are created
primarily for the purpose of identifying suspects later on in casework applications.
With mixed or degraded DNA samples, the database match can become
inherently ambiguous.  Computational methods are needed that can increase the
specificity of the match.

In this paper, we explore all of these issues.

Any useful solution to the STR data review problem must achieve these key goals:
• No error.  Allele calling errors should be minimized.
• High throughput.  The process should rapidly review data, eliminating backlogs.
• Small staff.  Personnel numbers should remain constant as throughput increases.

The TrueAllele™ technology, described next, achieves all these goals.

TrueAllele™ technology

The TrueAllele™ process eliminates the STR human review bottleneck (7).  Since
Cybergenetics has innovated this automation technology for the past decade, its
multiple patents protect all aspects of automated STR analysis, including forensic
usage, quality scores, PCR stutter handling, and component processing steps (9).  Note
that the validation study described herein applies solely to the Cybergenetics TrueAllele
implementation of these patented expert system processes.

The input to the process is the original data generated from a gel, automated or
capillary DNA sequencer.  The fully automated TrueAllele software then processes the
STR data, running on most common computers (Macintosh, Windows, UNIX).
Automated processing steps include:

Color separation.  TrueAllele can dynamically separate the original channels into
their component dye colors.

Image processing.  With gel-based sequencers, the software analyzes each dye
plane image in two dimensions.

Lane tracking.  TrueAllele tracks the size standards to determine the in-lane size
calibration.  On gels, the program also automatically tracks the lanes.

Signal analysis.  The software transforms the signals, and identifies peaks.
Ladder building.  TrueAllele automatically analyzes the allelic ladders, and uses

these ladders for DNA length determination.
Peak quantification.  The technology models every peak, determining the best fit

between the set of modeled peaks and the observed signal data.  The result is
exquisitely accurate estimation of DNA concentration, enabling a highly
quantitative allele calling, quality checking and mixture analysis approach.
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Allele designation.  Using its internal database of DNA sizes and concentrations,
TrueAllele designates alleles in DNA length coordinates, using multiple allele
calling mechanisms.

Quality checking.  TrueAllele computes dozens of quality measures for each
genotype experiment, compiling statistics on the different phases of laboratory
data generation.  The program detects outliers (based on user-determined
thresholds), and can focus the user review on just the problematic data.

CODIS reporting.  The program automatically generates reports, including CMF files
for automated CODIS DNA database submission.

The software outputs quality assured STR profiles to DNA databases.

Automated processing

The TrueAllele process begins with automated input of the data.  A site uses an “auto
setup” template that knows the source computer directory of original sequencer data
runs.  Combining these data together with annotating information (sample lane layout,
marker information, DNA sequencer used, etc.), TrueAllele transforms the sequencing
data of multiple runs into an instrument-independent “DataDisk” format suitable for
downstream processing.

The second step is automated gel image or capillary signal analysis.  On all the
sequencer runs, the computer performs data filtering, baseline and primer removal,
color separation, lane and size tracking, and extraction of 1D lane (or capillary) signals
from pixel into size coordinates.  Once the computer has completed its work, users do
quality assurance (review, accept, edit, reject, etc.) in interfaces such as “ImageView”
(Figure 1A).  With good data, a run’s Q/A typically takes under two minutes.

In the allelic analysis (step three), the computer begins by analyzing the allelic ladders,
transforming the data into DNA length coordinates, and then (expending considerable
effort) accurately quantitating every DNA event (peak or band) in the data.  On every
genotype, allele calling uses multiple algorithms, assigns quality scores, and applies
dozens of rule checks when looking for possible data artifacts in each phase of
laboratory processing.  After the computer has allele called and quality checked all the
genotypes across all sequencer runs, it navigates the user’s quality assurance review
(accept, edit, reject) through the potentially problematic genotypes (Figure 1B), showing
its associated rule analysis (Figure 3).

In the final output step, TrueAllele automatically exports the data in format suitable for
automated database (e.g., CODIS) import.

Quality assurance

TrueAllele provides a number of data visualizations and reports that are used primarily
for quality assurance.  For example, showing the lane data for each marker in size
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coordinates provides much information about the relative sizing accuracy and the signal
quality (Figure 2A).  Also, it is useful to review the size standards and allelic ladders in
data views (Figure 2B), overlay plots, with the tracking results shown; large size
deviations or low signals can pinpoint potential problems.

Rule system

TrueAllele’s automated rule analysis provides detailed quality assurance information at
the individual genotype level (Figure 3).  Organized by laboratory DNA processing step
(extract, amplify, separate), the rules automatically perform a consistent and detailed
technical review.  Exportable Excel spreadsheets summarize the rule firings, and
highlight potential data problems; such information can be very helpful in
troubleshooting and for ongoing quality assurance.  Applying a lab’s standard operating
procedures, a site administrator can customize the values of rule thresholds, and
determine whether or not to use a rule.  TrueAllele’s technical documentation gives
detailed descriptions and illustrative examples of each rule.

The Hitachi genotype experiment shown (Figure 3) raises interesting quality assurance
issues.  If data bands have low optical density, but otherwise show every sign of high
data quality (no rules fired in this genotype’s Rule Analysis window), do these data
actually require any human review?  In one world view, the user-set rule criteria might
say “no,” and the data would be automatically accepted.  From another perspective, the
user’s rule criteria might say “yes,” with the computer enforcing the human review of all
such data.  Fortunately, TrueAllele is neutral here: the laboratory has the sole authority
(via settable rule parameters) to determine their own data review criteria.

Multi-platform engine

TrueAllele is designed to work with any data, from any DNA sequencing instrument.
Results from the Hitachi/FMBio, ABI/310, ABI/3700, and ABI/377 are described in this
report.  Shown is a TrueAllele run from 96-well plate ABI/3100 16-capillary data (Figure
4A), and the superb signals from Amersham’s 96-capillary MegaBACE sequencer
(Figure 4B).  We work closely with instrument manufacturers to ensure support for all
reasonable platforms.

TrueAllele is independent of any instrument or chemistry manufacturer.  It works with
and displays the actual data.  Manufacturer-provided software can always process data
extensively for consistently “beautiful” results.  TrueAllele, however, shows original STR
data, as they have been recorded.  We believe that our “never hide the truth” approach
is more useful (to prosecution, defense, and society) in a criminal justice setting.
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Databasing Validation

The key results of this paper center on our completed scientific study that validates
TrueAllele™ for DNA databasing applications.  We describe in this section our
validation methodology, the rule parameter settings, and accuracy and timing results for
the Hitachi FMBio, ABI 310 and ABI 3700 platforms, using both Promega and ABI STR
chemistries.  We also mention an earlier extensive TrueAllele validation study
conducted by the UK Forensic Science Service (FSS) using their SGMplus STR
chemistry on an ABI 377 sequencing platform.

Methodology

Our validation was a concordance study between automated computer results, and a
subsequent detailed human review that scrutinized every scored genotype.  In actual
production use, of course, one would not review genotypes that TrueAllele had
“accepted” without rule firings, since such extra human effort would be redundant and
inefficient.  However, for validation purposes, all genotypes were manually reviewed in
this study.  Our extensive developmental validation should permit forensic databasing
labs to use the validated TrueAllele process efficiently – without redundant human
review of TrueAllele’s “accepted” genotypes.

Obtain the original data.  The original data was sent to Cybergenetics on CD from
participating laboratories.  These STR data included:

• about 2,000 database samples of ABI/310 single capillary data amplified in both
ABI ProfilerPlus and Cofiler panels (Coffman, FDLE);

• about 2,000 database samples of ABI/3700 96 capillary data amplified in both ABI
ProfilerPlus and Cofiler panels (Coffman, FDLE);

• about 1,000 samples of Hitachi FMBio gel data amplified in the Promega
PowerPlex 1.2 panel (Crouse, PBSO); and

• developmental Hitachi FMBio data amplified in Promega STR panels from the
Virginia lab and their database vendor (Ban, DFS).

The high quality PBSO Hitachi STR data had been generated for casework applications,
rather than for high-throughput database processing.  This lane arrangement led to
considerable manual set up time to determine the location of the single profile data,
preparing the gel data for automated analysis.

Process data in the TrueAllele expert system.  In broad overview, automated processing
entailed the following steps:

• auto-setup  The original data for each gel or capillary were put into a DataDisk
folder.  With ABI capillary instruments, these data are just the individual capillary
run files.  On the Hitachi platform, these data comprise the raw channel images,
along with a proto-layout file which indicates what has been run in each lane.  In
the AutoSetup process, the computer transforms these raw data formats into a
platform-independent representation suitable for downstream TrueAllele
processing.



Validating automated STR analysis Cybergenetics © 2001

Page 9

• process run  Automated TrueAllele processing was done.  ImageCall was run on
the data (ABI capillary, or Hitachi gel), with the computer automatically
processing the signals, removing the primer peaks, separating colors, tracking
the sizes and lanes, and extracting the signals in size (bp) coordinates.

• quality assurance  For Q/A, a human operator reviewed each run (ImageView for
gels; CapView for capillaries), performing any necessary editing, with an option
to reject the run.  On this data set, minimal review (typically several minutes) was
needed for each run.

• call alleles  AlleleCall was run on the 1D electropherogram signals.  The module
automatically performed peak quantitation, allele calling and quality checking on
the data of every genotype.  TrueAllele’s accurate peak quantitation enabled the
use of quantitative allele calling methods and quality checks.

• apply rules  Several dozen rules were applied to each genotype experiment.  The
rule thresholds used are described in the next section.

• check results  The operator then completed a checklist to ensure that all
processing steps were properly performed.

The result of this automated processing was the computer’s assignment to each
genotype experiment a label of “accept,” “edit,” or “reject.”

3. Review all the data.  A key concept in the optimized TrueAllele process is “one
person, many computers.”  Using the Timbuktu remote control software (Netopia,
Alameda, CA), one computer can control many others over a local area network.
Therefore, each TrueAllele operator had available one computer for display, and
multiple monitor-less computers for background processing.  This way, a person never
had to wait for a computer – they could work continuously on their review of the
automated processing.

In the TrueAllele process, the computer accepts, rejects or suggests review (with
possible editing) of each genotype.  Although, the user usually does not examine any
computer accepted results, in this validation study all genotypes were reviewed for
concordance.  The result of this manual review phase was the user’s assignment to
each genotype experiment a label of “accept,” “edit,” or “reject.”

4. Generate results and statistics.  Comparison of the computer and the user labels of
“accept,” “edit,” or “reject” was the core result of the study.  Other data were recorded,
such as the total human operator time expended on a subset of the runs.  The computer
generated useful statistics, such as rule firing summaries for every gel or marker; these
results helped in assessing the quality of the data.

Rule settings

TrueAllele’s rule thresholds are set by the user, preferably using Cybergenetics
optimization protocols.  We tuned the parameters on data samples different from those
used in the study.  Settings for the Hitachi gel data and the ABI capillary are shown
(Table 1).
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After gaining more experience with the Hitachi platform, we determined that 15,000
(rather than 9,000) was a better value for the High Signal rule.  Also, the Peak Height
Cutoff baseline should have been set to 200 (not 50).  We did not change these
threshold values during the course of the study.  However, we note throughout the
paper how using these proper values would have affected important results.

Hitachi/FMBio (PowerPlex)

On the Hitachi FMBio platform, using Promega’s PowerPlex 1.2 STR panel, we had
TrueAllele process 7,973 PBSO genotypes.  The computer performed all gel and allele
automated processing.  The computer decided that no review was needed for about
80% of these genotypes.  Subsequent human review disclosed that all these
designations were correct.  These results suggest that TrueAllele can eliminate human
review of most STR DNA databasing gel data.

The breakdown of the computer vs. human review comparison is shown (Table 2).  The
first row is for the data that the computer accepts as not requiring any human review;
this row provides the most important measures of effectiveness.

• The row’s first column gives the efficiency factor (72.5%) of the proportion of STR
data that is safely scored automatically without requiring human review.  That is,
both computer “accept” and user “accept” decisions.  In fact, the true efficiency
was appreciably greater (82.0%) after reprocessing the data with properly tuned
Hitachi threshold rule and baseline settings, as indicated above.

• The next two columns measure accuracy; specifically, the false negative error rate
(0.0%).  This critical measure describes how many genotypes might be
incorrectly called (computer “accept”), but would actually require human review
(user “edit” or “reject”).  We want this number to equal (or be very near) zero.

The clear conclusion is that TrueAllele provides both efficient and accurate automated
review of STR data for DNA databases on an Hitachi/Promega platform.  (Because we
used Hitachi data for nonautomation casework, with most human time spent sorting
through data rather than actually processing it, there are no useful timings to report.)

ABI/310 (ProfilerPlus & Cofiler)

On the ABI 310 platform, using ABI’s ProfilerPlus and Cofiler STR panels, we had
TrueAllele process 23,723 FDLE genotypes.  The computer performed all capillary and
allele automated processing.  The computer determined that no review was needed for
about 85% of these genotypes.  Subsequent human review disclosed that all the
properly set up designations were correct.  These results suggest that TrueAllele can
eliminate human review of most STR DNA databasing capillary data.

The breakdown of the computer vs. human review comparison is shown (Table 3).  We
look closely at the first row for computer accepted data, i.e., results that should not
entail any human review.
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• An efficiency factor (computer “accept,” user “accept”) shows that a high proportion
(86.4%) of the STR data was safely scored automatically without requiring
human review.  Another useful efficiency measure is the sum of the second row
entries (computer “edit”) that the computer asks the user to edit (13.3%).

• The accuracy shown in the last two columns of the first row (computer “accept,”
user “edit” or “reject”) gave a zero false negative error rate (0.0%).  In fact,
because of incorrect STR sizing windows (based on manufacturer guidelines),
there were several missized alleles.  However, after properly adjusting the sizing
windows to actual data, all such computer errors were eliminated.

The human processing time for AlleleView editing (95% of the total effort) was recorded
for 43% of the data (10,208 genotypes) as 11.25 hours, or 675 minutes.  Reducing this
time by the efficiency gained from reviewing only computer “edit” data (13.3%, from the
second row), the effective review time was only 90 minutes.  Dividing the number
(10,208 genotypes) by the time spent (90 minutes) yields an average human review
time of 113 genotypes per minute, or almost 2 reviewed genotypes per second.  This
rate far exceeds the data generation capability of current sequencer technology.  For
example, one would need to run a 16-plex panel over 4 sequencers each having 96
lanes or capillaries every hour to generate 100 genotypes per minute.  This data
generation rate would be on par with the scoring rate of one TrueAllele-enhanced full-
time equivalent (FTE) data reviewer.

When people never wait for computers (i.e., “one person, many computers”), the human
operator review time was about two genotypes per second.  Properly configured,
automatically applying 22 data artifact detection rules to every genotype, no false
negative scoring errors were observed in ~24,000 genotypes.  That is, TrueAllele
provided a thorough, diligent and objective automated process that was accurate and
entailed relatively little human effort.  These results suggest that the expert system may
be useful for automated review of STR data for DNA databases on ABI capillary
platforms.

ABI/3700 (ProfilerPlus & Cofiler)

On the ABI 3700 platform, using ABI’s ProfilerPlus and Cofiler STR panels, we applied
TrueAllele to 17,014 FDLE genotypes.  The computer performed all capillary and allele
automated processing.  The computer decided that no review was needed for about
85% of these genotypes.  Subsequent human review disclosed that all the designations
were correct.  These results suggest that TrueAllele can eliminate human review of
most STR DNA databasing capillary data.

The breakdown of the computer vs. human review comparison is shown (Table 4).
• An efficiency factor (computer “accept,” user “accept”) shows that a high proportion

(84.9%) of the STR data was scored automatically without requiring human
review.  The sum of the second row entries (computer “edit”) that the computer
asks the user to edit was low (14.9%).
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• The accuracy shown in the last two columns of the first row (computer “accept,”
user “edit” or “reject”) gave a zero false negative error rate (0.0%).

The human processing time was recorded for 35% of the data (5,880 genotypes) as 8.5
hours, or 510 minutes.  Reducing this time by the efficiency gained from reviewing only
computer “edit” data (14.9%, from the second row), the effective review time was 76
minutes.  Dividing the number (5,880 genotypes) by the time spent (76 minutes) yields
an average human review time of 77 genotypes per minute, or over 1 reviewed
genotype per second.  These results provide additional support for the use of the
TrueAllele as an automated review expert system for DNA databases.

UK FSS: ABI/377 (SGMplus)

The British Forensic Science Service (FSS) has introduced TrueAllele into database
production after rigorous evaluation and validation.  In the FSS automation process,
TrueAllele scores the STR data and assesses data quality.  TrueAllele’s allele calling
results are checked by another expert system (STRess) developed in-house by the
FSS.  A person then reviews only a fraction of the data, as indicated by TrueAllele’s rule
firings.  The human checked data are then sent to the UK national database.

The UK requires that suppliers to its national database maintain an error rate of under
one genotype error per 2,000 samples.  This quality is continually checked by double-
blind rerunning of ~5% previously processed database samples.  Since the FSS
validated their TrueAllele process as meeting these quality assurance standards, no
“second scorer” review is needed.  This approach maintains high database quality and
throughput, with reduced personnel requirements.

The FSS validated their TrueAllele process on the ABI/377 gel sequencer platform
using the SGMplus panel.  They allocated significant resources to this validation project,
including:

• data – roughly 22,000 genotypes.
• people – six managers and six data reviewers.
• time – eight weeks of data gathering, and four weeks for reporting.

To summarize some of the key components of their validation study, the FSS:
• correlated the peak height between TrueAllele’s modeled peaks and their previous

GeneScan system;
• established the baseline height for error-free allele calling and rule checking;
• measured the designation accuracy of TrueAllele relative to their previous manual

system;
• determined their software, hardware and network computer environment; and
• developed their quality management system QMS documentation.

Their main results were finding:
• a greater data yield using TrueAllele, and
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• no errors observed with high quality STR data.

The FSS validation project was done by their Concept Development group (Trident
Court, Birmingham, UK), led by Richard Pinchin.  The FSS intends to submit their
validation methodology and TrueAllele results for scientific publication.

Casework Studies

DNA casework entails the forensic analysis of crime scene evidence.  Indeed, convicted
offender DNA databases are created primarily to facilitate casework.  Mixed DNA
samples can present additional complications, particularly when useful statistics are
required for court.

We are currently validating a new set of methods for automated casework and mixture
analysis based on using quantitative DNA concentration estimates (e.g., “peak
heights”).  These methods are based on our recently described linear mathematical and
statistical models for multi-locus analysis of mixed DNA samples (8).  (Appropriate
patents have been filed on these and related methods.)  The use of quantitative STR
data was advocated early on by the FSS (10), with the development of associated
statistical descriptions (11).

Our studies are examining data sets in several casework areas, including nonmixture
cases, mixed DNA samples, rape kits and their automation, disaster scene analysis, low
copy number (LCN) and single nucleotide polymorphism (SNP) mixtures.  We describe
some of this work in progress.

Statistical information

STR match probabilities, for both single and mixed DNA stains, are based on the allele
frequencies at each locus (12).  This leads to the probabilities (or likelihoods) of an STR
profile, based on the component alleles, under varying contributor assumptions.
However, the component alleles are generally assumed to be either present or absent
(4).  Some forensic DNA examiners might believe that the use of DNA concentration
estimates in mixture analysis (i.e., the degree to which a peak is present or absent) can
affect the genotype probability.  They would be correct: the probability of an STR profile
in a mixed DNA sample, based on the quantitative presence of the component alleles,
can be millions of times more informative.

Our linear mixture analysis (LMA) paper described SGMplus STR data for two person
DNA mixtures in known proportions (8).  For the ten loci used, considering only the
typical 2, 3 and 4 allele cases, multiplying the possibilities at each locus implies that
there are 100,000,000 theoretically possible STR profiles.  However, using our LMA
methods, one can compute that for a 30% unknown contributor, there is actually only
one statistically feasible STR profile.  And, even for a 10% unknown contributor, there
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are only about 100 statistically feasible profiles at a 99% confidence level.  The
comparison of statistically feasible (1 or 100) profiles based on peak heights, to
theoretically possible (100,000,000) profiles based on allele presence, shows a factor of
one million or more separating common practice from our new methods.  It might not
serve justice to routinely discard this information.  Moreover, providing one name
(instead of dozens) from a CODIS match would reduce unnecessary policework.

Validation data sets

The validation data in this study are provided by our collaborators, including government
laboratories in Florida, Virginia, New York, Washington DC (FBI), and the UK (FSS), as
well as private forensic labs.  The data sets are comprised of synthetic DNA mixtures,
casework samples, rape kits, and disaster specimens.  For each case, the input into our
automated LMA software is a small database of quantitated peaks, as automatically
exported by TrueAllele.  Our study methodologies include direct comparison,
concordance with expert examiner results, as well as automation of laboratory data
generation, analysis and reporting processes.

Unknown suspect (rape kit)

This problem presents a two person mixture that includes a victim of known genotype,
and an unknown suspect.  The task is to infer the genotype of the unknown suspect.
We created artificial rape kit situations using a set of lab data prepared by the Florida
groups (FDLE, PBSO).  Six pairs of DNA samples were selected, and mixed in known
ratios of 9:1, 7:3, 5:5, 3:7, and 1:9.  These data provided 60 synthetic cases (6 pairs x 2
orderings x 5 ratios).

In one representative minor unknown contributor case, the proportions were 70% victim,
and 30% unknown suspect.  Using LMA, the computer inferred from the data a mixing
proportion of 71% victim and 29% unknown suspect (well within pipetting error).

We illustrate the software’s operation with some visual examples.  Figure 5 shows the
original quantitative data for two loci in the SGMplus multiplex, along with the
computer’s modeling based on inferred mixture proportions and genotypes.

• In the four allele case at locus D5S818, there are (at least) ten theoretically
possible genotypes.  When the computer performs a multi-locus analysis of peak
quantities, only one of the ten possible unknown suspect genotypes is found to
be statistically feasible (Figure 5A).

• At locus TPOX, there is inherent data ambiguity in this three allele case, which has
six theoretically possible genotypes.  Indeed, the computer finds two possible
genotype solutions in the confidence set.  These solutions are visually shown,
along with derived genotype probabilities  (Figure 5B).

The result of this higher dimensional quantitative analysis is an exact reporting of the
data uncertainty via confidence sets of feasible genotypes.
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Disaster data review

We assessed the automated scoring and quality assessment of highly degraded DNA.
To do this, we constructed serial dilutions of DNAse (Coriell, Camden, NJ), and used
these to digest 9947A control samples (Promega, Madison, WI).  We amplified each
digest with Promega PowerPlex 16, size separated the PCR product on an ABI/310
(Applied Biosystems, Foster City, CA), and then automatically processed the original
data in TrueAllele (Cybergenetics, Pittsburgh, PA).  With no DNAse, the full profile
appeared; at high DNase concentration, no amplifications were seen.  At intermediate
DNase levels, more DNase reduced the observed amplification.

With 0.1 unit of DNase, the peak heights of most alleles were under 100 RFU (Figure
6A).  However, TrueAllele called the STRs correctly (Figure 6A), with only the “low
signal” rule suggesting user review.  From the TrueAllele quantitation fit window (Figure
6B), the true alleles appear unambiguously correct.  With user confidence in the
combined power of the other 20+ Q/A rules, one might set a much lower low signal
threshold when working with degraded DNA.  This lower setting would eliminate manual
review of high-quality, low-signal genotype data.

Conclusion

We have conducted a concordance validation study of the TrueAllele expert system for
DNA database applications.  We processed 48,710 genotypes using diverse STR
panels (Promega PowerPlex, ABI ProfilerPlus and Cofiler) and automated DNA
sequencers (ABI/310, ABI/3700 and Hitachi FMBio).  We demonstrated that our
automated analysis and quality assurance system is accurate, and that it can reduce
the human time, error, effort and costs associated with conventional labor-intensive
review of CODIS data.

We also presented our ongoing casework validation studies.  This preliminary work
suggests that it may be feasible to automate much of the current technical review for
STR casework, including complex DNA mixtures.  Our multi-dimensional mathematical
LMA approach is highly specific, and should produce just one suspect from a CODIS
match.  This greater statistical power would help reduce policework, provide more
information for the courts, and decrease the cost to society of DNA-based evidence.
Moreover, our automated methods are objective (done by computer) and
comprehensive (enabling analysis of all DNA samples), providing for more uniform
application of DNA forensic technology.
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Figure 1.  Automated processing.  Quality assurance on Hitachi data after automated
(A) gel analysis (step 2) and (B) allelic analysis (step 3).

(A)

(B)
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Figure 2.  Quality assurance.  Some of TrueAllele’s many visualizations for viewing the
quality of (A) STR data and (B) ladder controls.

(A)

(B)



Validating automated STR analysis Cybergenetics © 2001

Page 19

Figure 3.  Rule system.  The AlleleView navigator, shown together with the Rule
Analysis.  Although the optical density of the Hitachi bands might be considered “low,”
the user-set criteria here lead the computer to decide that the data are good (no rules
fired), and therefore no human review is necessary.  Different user criteria might lead to
a different computer decision (e.g., firing a rule).  The rule criteria are customized to the
needs of the individual laboratory.

Good data. 
“Low” optical density?

User sets criteria.
No need to review.
No rules fired. 
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Figure 4.  Multi-platform engine.  TrueAllele runs on most DNA sequencers, including
(A) the 16-capillary ABI/3100 (one 96-well plate in six runs) and (B) the 96-capillary
Amersham MegaBACE.

ABI/3100 plate

(A)

MegaBACE

(B)
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Figure 5.  Unknown suspect (rape kit).  Shown are the original quantitative data
(green), along with the computer’s modeling based on inferred mixture proportions and
genotypes.  The victim (blue) and suspect (red) contributions are indicated separately.
(A) When there is a unique solution (D5S818), all but one of unknown suspect
genotypes are eliminated.  (B) When there is inherent data ambiguity (TPOX), there
may be more than one possible genotype solution in the confidence set.

11//1010

(A)

22//66

(B)
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Figure 6.  Disaster data review.  With degraded DNA samples, (A) peak heights are
greatly reduced, but (B) automated data scoring is unambiguously correct.

(A)

(B)
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Table 1.  Rule parameter settings.  Rule settings used for the Hitachi gel and ABI
capillary platforms.

GEL CAPILLARY
PHASE RULE Status Value Status Value
EXTRACT Dispersion On 0.6 On 0.8

Extra Allele On 0.25 On 0.15
High Signal On 9000 On 10000
Low Signal On 150 On 300
Low Homozygote On 250 On 500
Third Peak On 0.23 On 0.15

AMPLIFY Check Control On On
Conflict On On
High n Peak On 0.3 On 0.3
Negative On On
Noise On On
Relative Area On 0.5 On 0.5
Relative Height On 0.5 On 0.5
Stutter On 0.2 On 0.15

SEPARATE Lane to Lane Off Off
Off Ladder On 0.4 On 0.4
Peak Morphology On 0.5 On 0.2
Uncorrelated On 0.4 On 0.4

OTHER Amelo On On
Crossover On On
Dye to Dye Off Off
Overlap On On
Rare On On
Unexpected On 0.25 On 0.15
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Table 2. Hitachi/FMBio (PowerPlex) results.  A table comparing the computer decisions
(accept, edit, reject) with the human decisions (accept, edit, reject).  *With more
appropriate threshold settings, the accept-accept efficiency rate was actually 82.0%.

Table 3. ABI/310 (ProfilerPlus & Cofiler) results.  A table comparing the computer
decisions (accept, edit, reject) with the human decisions (accept, edit, reject).

Table 4. ABI/3700 (ProfilerPlus & Cofiler) results.  A table comparing the computer
decisions (accept, edit, reject) with the human decisions (accept, edit, reject).

HUMAN REVIEW
Accept Edit Reject

COMPUTER Accept 7 2 . 5 % * 0.0% 0.0%
PROCESS Edit 23.0% 4.2% 0.3%

Reject 0.0% 0.0% 0.0%

HUMAN REVIEW
Accept Edit Reject

COMPUTER Accept 86.4% 0.0% 0.0%
PROCESS Edit 10.9% 2.1% 0.3%

Reject 0.3% 0.0% 0.0%

HUMAN REVIEW
Accept Edit Reject

COMPUTER Accept 84.9% 0.0% 0.0%
PROCESS Edit 10.8% 3.3% 0.8%

Reject 0.2% 0.0% 0.0%


