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(57) ABSTRACT
An apparatus for determining probability of error in identi­
fying evidence includes a computer. The apparatus includes 
a non-transitory memory in communication with the com­
puter in which is stored a software program, and prior and 
posterior probability distributions from a plurality of inde­
pendent tests conducted on an item of evidence. For each 
test, the computer forms a factor distribution from the test’s 
probability distributions using the software program stored 
in the non-transitory memory of the computer. The computer 
convolves the independent factor distributions to form a 
joint factor distribution using the software program. The 
computer calculates a tail probability from the joint factor 
distribution using the software program to determine a 
probability of error in identifying the evidence. The com­
puter stores the probability of error in the non-transitory 
memory. A method. A computer program.

5 Claims, 6 Drawing Sheets
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METHOD, APPARATUS AND COMPUTER 
SOFTWARE PROGRAM FOR 

DETERMINING PROBABILITY OF ERROR 
IN IDENTIFYING EVIDENCE

CROSS-REFERENCE TO RELATED 
APPLICATIONS

This is a divisional of U.S. patent application Ser. No. 
15/223,666 filed Jul. 29, 2016, now U.S. Pat. No. 10,489, 
233, incorporated by reference herein.

FIELD OF THE INVENTION

The present invention is related to determining probability 
of error in identifying evidence. More specifically, the 
present invention is related to determining probability of 
error in identifying evidence, by convolving independent 
factor distributions to form a joint factor distribution and 
calculating a tail probability from the joint factor distribu­
tion with a computer.

BACKGROUND OF THE INVENTION

Statistical computing can provide an accurate match sta­
tistic for forensic identification. The resulting likelihood 
ratio (LR) quantifies the probative force of evidence, cap­
turing in a single number the strength of match. But the LR 
may be difficult to explain to a non-statistician. Nor does the 
LR convey the chance of error, often a juror’s foremost 
concern.

Error can be expressed as a false match probability 
(FMP). With biological evidence, a false match occurs when 
someone’s DNA is not present, but has a match statistic at 
least as large as the reported LR. FMP is the chance of this 
misidentification occurring.

This invention shows how to rapidly and accurately 
calculate the FMP. The approach permits FMP evaluation on 
very large sets, and provides sharper error estimates than the 
guaranteed 1/LR upper bound. Mathematical theory is pre­
sented, along with a DNA case example of sexual assault 
and database search. By reporting exact error rates on 
specific evidence data, FMP assists investigators, scientists, 
lawyers, jurors and judges in their forensic decision-making.

SUMMARY OF THE INVENTION

The present invention pertains to a method for determin­
ing probability of error in identifying evidence. The method 
comprises the steps of obtaining prior and posterior prob­
ability distributions from a plurality of independent tests 
conducted on an item of evidence. There is the step of 
entering the probability distributions into a non-transitory 
memory of a computer. There is the step of, for each test, 
forming a factor distribution from the test’s probability 
distributions with the computer using a software program 
stored in the non-transitory memory of the computer. There 
is the step of convolving the independent factor distributions 
to form a joint factor distribution by the computer using the 
software program. There is the step of calculating a tail 
probability from the joint factor distribution by the computer 
using the software program to determine a probability of 
error in identifying the evidence. There is the step of storing 
the probability of error in the non-transitory memory of the 
computer. There is the step of reporting the probability of 
error from the computer to a party interested in identifying 
the evidence.

1
The present invention pertains to a computer program 

stored in a non-transitory memory for determining probabil­
ity of error in identifying evidence by obtaining prior and 
posterior probability distributions from a plurality of inde­
pendent tests conducted on an item of evidence and entering 
the probability distributions into a non-transitory memory of 
a computer, the computer program comprising the computer 
implemented steps using the computer program of, for each 
test, forming a factor distribution from the test’s probability 
distributions with the computer. There is the step of con­
volving the independent factor distributions to form a joint 
factor distribution by the computer. There is the step of 
calculating a tail probability from the joint factor distribu­
tion by the computer to determine a probability of error in 
identifying the evidence. There is the step of storing the 
probability of error in the non-transitory memory of the 
computer. There is the step of reporting the probability of 
error from the computer to a party interested in identifying 
the evidence.

The present invention pertains to an apparatus for deter­
mining probability of error in identifying evidence. The 
apparatus comprises a computer. The apparatus comprises a 
non-transitory memory in communication with the computer 
in which is stored a software program, and prior and 
posterior probability distributions from a plurality of inde­
pendent tests conducted on an item of evidence. For each 
test, the computer forms a factor distribution from the test’s 
probability distributions using the software program stored 
in the non-transitory memory of the computer. The computer 
convolves the independent factor distributions to form a 
joint factor distribution using the software program. The 
computer calculates a tail probability from the joint factor 
distribution using the software program to determine a 
probability of error in identifying the evidence. The com­
puter stores the probability of error in the non-transitory 
memory. The apparatus comprises a printer 18 in commu­
nication with the computer which prints out a report that 
reports the probability of error to a party interested in 
identifying the evidence, or a display in communication with 
the computer on which the computer displays the report.

The present invention pertains to a method for determin­
ing probability of error in identifying evidence. The method 
comprises the steps of obtaining prior and posterior prob­
ability distributions conducted on an item of evidence. There 
is the step of entering the probability distributions into a 
non-transitory memory of a computer. There is the step of 
examining the probabilities of at least a trillion possible 
outcomes. There is the step of forming a factor distribution 
from the probability distributions on the examined outcomes 
with the computer using a software program stored in the 
non-transitory memory of the computer.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a Histogram of binned (log f(x),p(x)) pairs at a 
locus that constructs a probability mass function.

FIG. 2 shows cumulative probability at a locus represents 
a log factor distribution.

FIG. 3 shows a joint non-contributor distribution for a 
genotype separated from DNA mixture evidence in the 
Southampton case, as computed by the TrueAllele computer 
and displayed in the user interface.

FIG. 4 shows CDFs for convolution-based log f  values 
(blue) and Monte Carlo simulated values (red).

FIG. 5 shows the joint non-contributor distribution 
(curve) in the Southampton case; arrows (bars) indicate the 
log factor values of retrieved DNA database genotypes.

FIG. 6 is a block diagram of the apparatus of the present 
invention.
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DETAILED DESCRIPTION OF THE 
INVENTION

The present invention pertains to a method for determin­
ing probability of error in identifying evidence. The method 
comprises the steps of obtaining prior and posterior prob­
ability distributions from a plurality of independent tests 
conducted on an item of evidence. There is the step of 
entering the probability distributions into a non-transitory 
memory 14 of a computer 12. There is the step of, for each 
test, forming a factor distribution from the test’s probability 
distributions with the computer 12 using a software program 
16 stored in the non-transitory memory 14 of the computer 
12. There is the step of convolving the independent factor 
distributions to form a joint factor distribution by the com­
puter 12 using the software program 16. There is the step of 
calculating a tail probability from the joint factor distribu­
tion by the computer 12 using the software program 16 to 
determine a probability of error in identifying the evidence. 
There is the step of storing the probability of error in the 
non-transitory memory 14 of the computer 12. There is the 
step of reporting the probability of error from the computer 
12 to a party interested in identifying the evidence.

The present invention pertains to a computer 12 program 
stored in a non-transitory memory 14 for determining prob­
ability of error in identifying evidence by obtaining prior 
and posterior probability distributions from a plurality of 
independent tests conducted on an item of evidence and 
entering the probability distributions into a non-transitory 
memory 14 of a computer 12, the computer 12 program 
comprising the computer 12 implemented steps using the 
computer 12 program of, for each test, forming a factor 
distribution from the test’s probability distributions with the 
computer 12. There is the step of convolving the indepen­
dent factor distributions to form a joint factor distribution by 
the computer 12. There is the step of calculating a tail 
probability from the joint factor distribution by the computer 
12 to determine a probability of error in identifying the 
evidence. There is the step of storing the probability of error 
in the non-transitory memory 14 of the computer 12. There 
is the step of reporting the probability of error from the 
computer 12 to a party interested in identifying the evidence.

The present invention pertains to an apparatus 10 for 
determining probability of error in identifying evidence, as 
shown in FIG. 6. The apparatus 10 comprises a computer 12. 
The apparatus 10 comprises a non-transitory memory 14 in 
communication with the computer 12 in which is stored a 
software program 16, and prior and posterior probability 
distributions from a plurality of independent tests conducted 
on an item of evidence. For each test, the computer 12 forms 
a factor distribution from the test’s probability distributions 
using the software program 16 stored in the non-transitory 
memory 14 of the computer 12. The computer 12 convolves 
the independent factor distributions to form a joint factor 
distribution using the software program 16. The computer 12 
calculates a tail probability from the joint factor distribution 
using the software program 16 to determine a probability of 
error in identifying the evidence. The computer 12 stores the 
probability of error in the non-transitory memory 14. The 
apparatus 10 comprises a printer 18 in communication with 
the computer 12 which prints out a report that reports the 
probability of error to a party interested in identifying the 
evidence, or a display in communication with the computer 
12 on which the computer 12 displays the report.

The present invention pertains to a method for determin­
ing probability of error in identifying evidence. The method 
comprises the steps of obtaining prior and posterior prob­

3
ability distributions conducted on an item of evidence. There 
is the step of entering the probability distributions into a 
non-transitory memory 14 of a computer 12. There is the 
step of examining the probabilities of at least a trillion 
possible outcomes. There is the step of forming a factor 
distribution from the probability distributions on the exam­
ined outcomes with the computer 12 using a software 
program 16 stored in the non-transitory memory 14 of the 
computer 12.

After the forming step, there may be the additional steps 
of:

e. Calculating a tail probability from the factor distribu­
tion by the computer 12 using the software program 16 to 
determine a probability of error in identifying the evidence;

f. Storing the probability of error in the non-transitory 
memory 14 of the computer 12; and

g. Reporting the probability of error from the computer 12 
to a party interested in identifying the evidence.

The examining step may take no more than one minute of 
computer 12 time. The factor may be related to a likelihood 
ratio. The factor may be used for forensic identification. The 
item may be biological evidence. The tests may involve 
DNA analysis. The item may be fingerprint evidence. The 
item may be firearm evidence. The factor distribution may 
provide exclusionary information about the evidence. They 
factor distribution they provide inclusionary information 
about the evidence. The probability of error may help 
identify an investigative lead. They probability of error may 
assist a trier of fact in understanding the evidence. The test 
may conduct a biometric measurement. The test may be for 
a genetic disease. The test may be for determining parentage. 
The factor may assist a physician in assessing an outcome of 
a diagnostic test.

In the operation of the invention, it is often desired to 
compare a questioned item Q with a known exemplar K, and 
measure a degree of association between them. For example, 
one might want to pick out a known face from a large crowd. 
Or, have the Shazzam app recognize a song that is playing. 
Forensic scientists compare questioned DNA evidence with 
a genotype from a known person to calculate a numerical 
match statistic.

The concern here is the error in this numerical association. 
How often is this association wrong? Specifically, what is 
the chance that a random (hence incorrect) exemplar might 
have an association strength at least as large as the number 
observed?

Suppose each known exemplar corresponds to a certain 
type and that it can determined the type of a questioned item 
up to probability. Let X be the set of all possible types.

In a population, each type appears with some frequency. 
Let p(x) be the probability Pr{xEX} of type x appearing in 
the population. Prior probability p(x) is also the chance that 
a questioned item has type x, before examining data.

Informative data changes ones belief in an item’s type 
(O’Hagan and Forster 2004). After examining data from a 
questioned item, q(x) is the posterior probability 
PrjxEXIdata} that the item is of type x.

The Bayes factor, or just factor J(x), is the posterior to 
prior probability ratio q(x)/p(x). For any known type xK, the 
factor a=;f (x̂ -) expresses how much more a questioned item 
Q matches a known exemplar K than coincidence. The 
numerical association ,f(x) is a likelihood ratio (Good 1950), 
which measures the probative force of evidence and factors 
out prior prejudice.
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The error set Ea is the subset of types {xGXI f(x)>a} for 
which the factor f(x) equals or exceeds factor a. When 
a=if(xx:) corresponds to a known exemplar K, Ea describes 
all the types x whose numerical association f(x) with 
questioned item Q is at least as great as with xK.

The size of this error set Ea, relative to the random 
population p(x) distribution is of interest. The false match 
probability (FMP) Pr{xEEa} is the sum

Y  pW

of prior probabilities p(x) taken over all types in the error set 
Ea. A small error probability indicates a small chance of a 
false positive that erroneously associates an exemplar type 
with a questioned item.

When examining questioned DNA evidence Q, compari­
son is made between an evidence genotype and a known 
exemplar genotype K to calculate a match statistic a=;f (x^). 
The FMP Pr{xEEa} measures the chance of falsely match­
ing someone who did not contribute their DNA to the 
evidence. This can happen when their genotype x has a 
match statistic f(x) that coincidently reaches or exceeds 
match level a.

A contributor is a person who contributed their DNA to 
biological evidence. Contributor types follow the posterior 
probability distribution q(x). A non-contributor is someone 
who did not contribute DNA to biological evidence. Non­
contributor types follow the prior probability distribution 
p(x).

Other forensic scientists have estimated FMP computa­
tionally (Gill, Curran et al. 2008; Slooten and Egeland 
2015). Some have approximated the likelihood ratio distri­
bution (Nothnagel, Schmidtke et al. 2010; Corradi and 
Ricciardi 2013). Monte Carlo simulation can count how 
frequently randomly generated genotypes exceed a reported 
match level (Slooten and Egeland 2014). Branch and bound 
algorithms help prune the search when genotype error set Ea 
is small (Dorum, Bleka et al. 2014), while divide and 
conquer methods can extend the search to larger sets 
(Kruijver 2015). When genotyping systems consider all 
possible allele values independently of the data (Perlin, 
Legler et al. 2011) the search space may increase exponen­
tially beyond the range of such combinatorial methods. 
Some scientists avoid FMP altogether, either by using a 
generic LR upper bound (Taylor, Buckleton et al. 2015), or 
by electing to not report LR error (Kruijver, Meester et al. 
2015; Taroni, Bozza et al. 2016).

This paper describes how to rapidly and accurately cal­
culate the false match probability Pr{xEEa}. For concrete­
ness, the presentation will describe the discrete genotypes 
used in DNA identification, and their probability mass 
functions (pmf). Flowever, the approach is entirely general, 
and works with any measurable set X having measurable 
probability functions (Wheeden and Zygmund 1977), or 
with multi-dimensional tuples of types.

Starting with a natural upper bound on the size of the type 
error set Ea. Then a logarithmic non-contributor distribution 
for factor f(x) is examiner, showing how to exactly calculate 
the size of Ea . The contributor distribution is also reviewed, 
and some useful population genetics correction factors. The 
error method is empirically verified, and its use in forensic 
DNA casework is shown.

5
Reciprocal Match Bound
It is always true that the FMP Pr{xEEa} cannot exceed 

the reciprocal match statistic 1/a. This well-known fact 
follows from Markov’s Inequality in elementary probability 
theory (Feller 1968), and the definition of the factor f(x) as 
q(x)/p(x) (Good 1950), as shown here.

The FMP Pr{xEEa} is the total prior probability mass

Y  pW
xgE@

in the error set Ea={xEXI,f(x)>a}. That is,

Pr{x e Ea) = Y j P M
XSEq

6

Since f(x)>a for every xEEa, yields

 ̂-  Y  /W ' pW * ^
x^E q

Writing the factor f(x) explicitly as the posterior to prior 
ratio

q{x)l p{x) = -  Y  ^4  'PW

and cancelling the positive prior probability p(x) appear­
ing in both numerator and denominator leaves

Clearly the partial sum of positive probabilities q(x) over 
the error set {xEEa} cannot exceed the total sum over all 
genotypes xEX, since EaCX, yielding the inequality

(2) < -  V q(x)
xeX

But the total probability

x e X

must be 1, yielding

_ l
a
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8

This establishes that the FMP is always bounded above by 
the reciprocal of the match statistic, or

1
Pr{x e Ea ] < -a

This upper bound provides a useful measure theoretic (or 
“frequentist”) observation for a Bayesian match statistic. 
After comparing questioned evidence having probability 
function q(x) with a known exemplar xK to calculate a match 
statistic a=f(x^), one can always state: “the chance that a 
non-contributor has a match statistic of at least a  is no more 
than 1/a.” So the statement tells us that the frequency of 
making a false positive match statistic error is inherently 
bounded by the reciprocal of the match statistic.

The upper bound of 1/a is inexact because of two 
inequalities in the derivation. The first inequality (1) occurs 
because within error set Ea yields

7

a  = min/  < f(x ),Eq

and so

x s E q  x ^ E q  x  e  E q

Dividing through by the prior probability mass

x^E q

to obtain an average value of the factor f  on subset Ea, 
yields

2  /W-pW

That is, on the error set Ea, the smallest match statistic

min f
E a

is less than or equal to the average prior-weighted match 
statistic

avgpf  ■
E q

So when there is a long non-contributor a  tail, with min f  
□  avĝ , ;f on error set Ea, there is scope for improving the 
error bound from 1/a to a smaller number.

The second inequality (2) relates to posterior probability 
mass on error subset Ea, relative to all genotype possibilities 
X

sumq(x) = V q(x) < V q(x) = 1
x e E Q

With a short contributor a  tail, having total mass

sumgDl
E q

on error set Ea, the error bound on the match statistic can be 
further reduced.

These inequalities highlight opportunities for sharpening 
the error estimate Pr{xEEa}. Rather than stopping at the 
match statistic reciprocal 1/a (Taylor, Buckleton et al. 
2015), a more thorough error analysis customizes the FMP 
to the evidence. This analysis invites further study of the 
f(x) factor distribution under prior (i.e., non-contributor) 
and posterior (i.e., contributor) probability assumptions. As 
shown next, this closer examination provides an exact 
calculation of the FMP.

Non-Contributor Distribution
Logarithmic Factor
The logarithm of the Bayes factor is a standard additive 

measure of information (MacKay 2003). Additivity aids in 
understanding, visualizing, computing, combining and char­
acterizing the match statistic. The logarithmic distribution of 
match values for non-contributor genotypes that follow the 
prior probability distribution is examined here.

For each genotype xEX, the match statistic is the Bayes 
factor f(x)=q(x)/p(x). The logarithm of this function is 
log[q(x)/p(x)], dubbed the “weight of evidence,” and for 
base 10 measured in “ban” units (Good 1950). It is desired 
to see how these logarithmic values are distributed accord­
ing to prior distribution p(x) for non-contributors—random 
people in the population who have not contributed their 
DNA to the biological evidence. This amounts to studying 
the deposition of ordered pairs (log q(x)/p(x),p(x)) for every 
genotype xEX as points on a two dimensional graph.

Single Locus
At a single genetic locus, genotype x is a pair of inherited 

alleles. Since the log factor log f(x) is the logarithm of a 
ratio q(x)/p(x), attention is restricted to those genotypes x 
having prior denominator p(x)>0 and posterior numerator 
q(x)>0, giving a well-defined value. Each well-defined 
genotype xEX adds a y-axis ordinate amount p(x) to the 
non-contributor distribution at x-axis abscissa location log
f(x).

Adding together all the ordinate p(x) probability amounts 
at abscissa location y=log f(x) gives the total probability 
mass at one point

u(y) = ^  p(x)
{x e X \ y = lo g f (x )}

More compactly, since log ;f-1(y) is the set of genotypes 
{xEXIy=log ;f(x)} having log factor value y, the non­
contributor probability mass function can be written as

u(y) = 2  p(x)
xe!ogf-l (y)
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The accumulation of probability mass for the log f  
distribution is shown in the Table 1 example. Each genotype 
possibility (x1; x2, x3, x4) is listed in the first column. The 
prior p(x) and posterior q(x) probabilities, before and after 
having seen data, respectively, are given in the next two 
columns. The Bayes factor f(x) column contains the poste- 
rior-to-prior ratio q(x)/p(x) of the preceding two columns. 
The last column is the logarithmic factor log ;f(x). The log 
factor is negative for exclusionary results where f(x)<l, 
positive for inclusionary results with f(x)>l, and zero when 
the factor f(x) for genotype x is inconclusive.

The FIG. 1 histogram shows (log ;f(x), p(x)) table row 
pairs binned at a deciban (i.e., Via of a ban) resolution. Since 
log of 1/2 is around -0.3, bin “-0.3” adds together the 
p(x1)=0.2 andp(x2)=0.3 prior probabilities for non-contribu­
tor genotypes Xj and x2. Genotype x3 has a factor of 1, hence 
a zero log factor, placing a p(x3) probability mass of 0.25 in 
bin “0”. For genotype x4, q(x4)/p(x4)=2, giving a log 2 factor 
of 0.301, which puts p(x4)=!Zi probability mass in bin 
“+0.3”. The cumulative probability shown in FIG. 2 is a step 
function that monotonically increases from 0 to 1, incre­
mentally adding probability mass p(xi) at each abscissa 
point log j{xk).

Multiple Loci
An experiment can entail more than testing one locus. In 

DNA identification, multiple genetic loci are tested in a 
single reaction tube, generating data for a dozen or so loci 
simultaneously. Each tested locus 1 has its own locus geno­
type set Xz and prior probability function pz. After testing, the 
locus data can be analyzed to calculate the posterior prob­
ability qz, factor and log factor log functions.

DNA testing uses short tandem repeat (STR) loci, where 
genotypes are pairs of alleles differentiated by sequence 
length. The loci used in forensic identification have many 
different alleles that help distinguish between people. The 
loci are chosen to be genetically independent of one another, 
either residing on different chromosomes or far apart on the 
same chromosome. This biological independence confers 
statistical independence, where events at one locus convey 
no information about events at another locus. When testing 
multiple STR loci, independent results are multiplied 
together using the product rule.

The joint factor f  over all L independent locus tests is the 
product

9

f l / '/= 1

of the locus factors The logarithm of a product is the sum 
of the logarithms. Therefore,

logf = f‘

L

= l°Sf‘ 
1=1

Thus the joint match statistic log f  is the sum of the 
logarithmic locus factors

10

t=i

The joint probability density u of a sum of independent 
random quantities having pmf s u1; u2, . . . , uz is the 
convolution of their pmf s. That is,

u=u1*u2* . . . *uL

For discrete distributions, the convolution u1*u2 is defined 
at value z as

(mi * «2)(z) = ^  «i (y) ■ «2 (z -  y)
ye r

There is a corresponding integral formulation

(«i * m2)(z)= ul (y)u2(z -y )d yJyeV

for continuous or measurable distributions. Therefore, the 
joint non-contributor distribution for joint factor f  is readily 
computed by convolving the additive log factor distribu­
tion functions of each locus 1. Convolution is a built-in 
operation in many computer 12 programming languages, 
such as MATLAB (Natick, Mass.).

To implement this log f  computation, first determine log 
f i  at each locus 1. This can be done by partitioning the 
logarithmic factor abscissa (x-axis) into discrete bins of 
sufficiently fine resolution (e.g., milliban) so as to distin­
guish between most genotype events. Then, for each locus 
genotype xz with locus distributions pz(xz)>0 and qz(xz)>0, 
add ordinate (y-axis) probability mass pz(xz) into the abscissa 
bin for log f f a )  to form the log pmf. Finally, convolve the 
separate log locus pmfs to form the total log f  pmf. 
Alternatively, one can convolve using the cumulative dis­
tribution function (CDF) of log

Convolution can be performed on discrete or continuous 
functions, using probability densities or cumulative distri­
butions. Since the cumulative distribution is the integral of 
probability density, appropriate differentiation of cumulative 
functions or integration of density functions provide a 
variety of convolution formulae. Convolution can also be 
accomplished by function transformation, using Fourier, 
Laplace, discrete Fourier, fast Fourier, polynomial, cosine, 
and other integration kernels (Nussbaumer 1982). Since the 
Fourier transform of a convolution is the product of the 
transformed functions, convolution can be done by Fourier 
inversion of products of functions in transform space.

Exclusionary Power
The log f  non-contributor distribution is an inherent 

property of an inferred genotype, known before any match 
comparison is made to an exemplar genotype. Once poste­
rior probability q(x) has been determined from the data, the 
log f  distribution can be calculated immediately. The non­
contributor distribution describes the power of the genotype 
to statistically exclude non-contributors.
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With informative data, posterior q(x) is different from 
prior p(x), i.e., p*q. Then the average match statistic must be 
exclusionary, as shown next.

The average non-contributor log f  is the expected value

11

E p \logf]=  V p W l o g ^

over every multi-locus genotype (x1; x2, . . .  , xL) in X. 
Since the logarithm of a reciprocal is the negative of the 
logarithm, this expected value equals

The summation is the relative entropy of p and q, which 
equals the expected value under prior probability p of the 
logarithmic ratio of probability functions p and q

= -E p jlo g - jL q J

This expression is the negative value of the Kullback- 
Leibler divergence KL between p and q (Kullback and 
Leibler 1951), or

=-d \p M

Since D[p||q]>0 when p*q (applying Jensen’s inequality 
to the concave logarithm function), yields that E^[log ;f]<0. 
So the expected non-contributor match value is exclusion­
ary. A larger KL^ indicates greater exclusionary power, 
readily calculated as the non-contributor average of the log 
f  distribution.

Tail Probability
To determine the error, interest is drawn to the tail 

probability of the non-contributor pmf u(y) when y>log a. 
This genotype specificity, easily calculated from function 
u(y), is precisely the size of the genotype error set Ea .

To see why the tail probability

Y  “M
y> loga

equals the size of the genotype error set Pr{xEEa}, the u(y) 
tail probability is written as

Y  “0) = Y"' [ Y
y - ‘° s a  y z lo g a [ x £ k gf - l (y)

expanding pmf u as a sum of prior probabilities p(x) over 
non-contributor genotypes x sharing log factor y. Writing out 
the inner summation for the set of genotypes x, yields

= Y  T j p{x)
y> lo g a  [xe  X  \logf (x)= y)

This gives the combined sum
12

= Y
{xeX \lo g f(x)> lo & 2 }

Exponentiating the logarithms on both sides of the sum­
mation’s set condition inequality, the expression equals

Y  pW
{xe X \ lo g f(x )> a }

Since Ea is the genotype error set {xEXIf(x)>a}, the set 
size that is obtained is

=Pr{xEEa}

A small tail probability value is consistent with the 
genotype not having contributed to the evidence. That is, the 
match statistic a  would be far away from the bulk of 
non-contributor match scores. Therefore the error would be 
small, indicating that the observed match statistic is specific 
for the evidence genotype.

Contributor Distribution
Posterior Probability
The logarithmic distribution of match values for contribu­

tor genotypes can similarly be examined, now having pos­
terior probability q(x). The layering of pairs (log q(x)/p(x), 
q(x)) for all genotypes xEX is examined. For each abscissa 
location y=log J(x), the ordinate contributor probability 
mass is

v(.y) = Y
1' ■ i

The joint contributor distribution of the additive log factor 
is readily obtained by convolving the independent locus log 
factor pmfs.

Inclusionary Sums
The average contributor log f  match statistic is derived 

from a genotype as the expected value relative to posterior 
probability q as

This relative entropy is the KL divergence

= D [ q \ \ p ]

The KL gives the expected inclusionary information in 
genotype pmf q, relative to prior p.

The tail probability of contributor pmf v(y) when y>log a

Y  v(y)= Y  q(x>
y>toga [x\f <x)>aj

relates to the statistical sensitivity of the match statistic, 
and measures the size of set Ea after examining data

=/>{£„ I data}
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Suppose an exemplar genotype xK has factor ;f (x̂ -). Then 
a large left posterior tail probability value l-Pr{Ea ldata} 
indicates high sensitivity, consistent with the genotype being 
a true contributor to the evidence.

Equality Formulation
Equalities can give more information and insight than 

inequalities. There are fundamental relationships between 
key measures and integrals that hold on the extreme set Ea. 
These relationships are explored here.

Mean Factor Theorem
On any measureable set E, the determination of the 

average value of the measureable function f  with respect to 
a non-negative measure p is

13

s u m f  ■ p

When f  is a Bayes factor q/p, then f-p is q/p-p; cancelling 
out prior p leaves the posterior distribution q, and so

sumo
E

This function average on a set enables a simple descrip­
tion of the underlying mathematics and results for FMP. 

False Match Probability 
Rearranging Terms Yields

sum?
sump = -------

e sump 
E

The focus is the extreme subset
[a'C.V

of domain elements having extreme function values 
exceeding value a.

In forensic DNA, this subset Ea is the set of genotypes x 
whose match statistic f(x) is greater than or equal to the LR 
a=if(xx:) f°r 3 known person of interest K. The FMP is the 
measure of this extreme set

sump
eq

The FMP as a ratio can be written as

sumo
Ea

sump = --------
Eq sump/

E

Reciprocal Factor Bound
Since q is a probability distribution, on subset Ea the 

numerator inequality is

sum? < 1
Eq

Since an average cannot be less than a lower bound, on set 
Ea the denominator inequality is

a  = min/  < avgpf
c-a r

14

The denominator inequality corresponds to the first 
inequality in the Markov-Turing proof, while the numerator 
inequality corresponds to the second one. In combination, 
they give the Markov-Turing result

sum#Ea 1 sump = ------ -  < -
Ea avgpf  a

Shrinkage Factors
The Markov-Turing inequality can be rewritten as an 

equality formula, simply by replacing the two inequality 
steps in the proof with shrinkage factors bounded above by 
one. The shrinkage factors numerically explain the observed 
divergence (whether great or small) between an FMP and the 
generic match statistic reciprocal 1/a.

Numerator and denominator are algebraically separated 
as multiplicative factors

1
sump = -------- • sumo
Eq  d V g p f  Eq

Eq

Multiplying through by 1, written as cUa, yields

1 a
sump = —  -------- • sumo
Eq  CX a V g p f  Eq

Eq

The Markov-Turing inequality is now re-expressed as an 
equality, with its two inequality steps written as shrinkage 
factors.

The LF1S FMP is less than or equal to 1/a because the 
RF1S has 1/a multiplied by two shrinkage factors, each 
guaranteed to be at most one, since

a
avgPf

Eq

and

sum/? < 1
Eq

Logarithmic Transformation
The probabilities and ratios have values between 0 and 1. 

A negative logarithm will transform these quantities to a 
positive order-of-magnitude scale. Applying the function 
“-log10” to both sides of the triple product equation gives
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16

-lo g l0RME = log10Q! + loĝ Q! 1 ■ avgpf  j -  log^sumg-j

5
The positively expressed FMP is represented as a baseline 

guarantee of log a  plus two positive shrinkage terms.
The first shrinkage term

10

logja^1 ■ avgpf  j

expresses by how much the p-averaged match statistic f  on 15 
the extreme set Ea exceeds the minimum LR value of a. The 
second term

or

sum#
e q

a  < -------
sump

e q

This corollary of the mean factor theorem shows that a 
match statistic a  is more conservative than the ratio of its tail 
probabilities.

Population Adjustments
Co-Ancestry Correction
All people share a common ancestry, more so in closely 

related populations. Therefore, human genotypes are not 
entirely independent of each other. The usual Hardy-Wein­
berg equilibrium population probability for a genotype ij

-log/sump'.I E a  ,
20

Pr{X = ij} =
J  = j

2 pipj,  otherwise

measures the tail probability of posterior distribution q for 
genotypes having an LR>a. When one or both of these 
shrinkage terms are large, the FMP may become much 25 
smaller than 1/a.

Tail Probability Ratio
The ratio of tail probabilities on the genotype error set Ea 

under different distributions (contributor vs. non-contribu- 30 
tor) can be calculated directly without revisiting Markov- 
Turing proof. The average factor value on Ea, weighted by 
the non-contributor measure p, is the ratio of sums (i.e., 
integrals)

that assumes independent mating therefore requires some 
adjustment.

A simple and effective correction is to introduce a co­
ancestry coefficient 0 that measures the degree of inbreeding 
within a population. Then the prior genotype probabilities 
become (Ott 1991)

pf +8p:( 1 -  Pi), i = j  
2(1 -9)p iPj ,  otherwise

35

avg„f =
E q

sum f  ■ p
E q

sump
E q

But factor f  is the likelihood ratio q/p, so ;f-p=q, yields the 
equality

accounting for an increase in homozygote (i=l) geno­
types, with a commensurate decrease in heterozygotes (i*j). 

Population Substitution
Bayesian genotype inference updates population prior 

40 p(x) to a posterior q(x). This update is mediated though a 
likelihood function

/i.Yi /Vflala.V .Y, . . . }

45

avgpf  = sump

That is, on Ea the average factor equals the ratio of 50 
posterior to prior tail probabilities.

Clearly on Ea={xGXIf(x)>a} the factor a  is less than or 
equal to J(x), hence

based on observed DNA data, where

q(x)Kl(x)p(x)

So for a different population pc(x)*p(x) having different 
allele frequencies, the posterior qc(x)*q(x) is different as 
well. One genotype posterior qc(x) can be transformed based 
on prior pc(x) to a new q(x) based on p(x). This is easily 
done through the likelihood function 1 using Bayes theorem 
by writing posterior function q as

a  ^  avgpf .

55

q(x) = K*)p(x)
2  Ky)p(x)yeX

Therefore, with a=q(xA-)/p(xi,) for a known exemplar K,

a  ^  avgpf  = ■

60 for any prior function p. In a vectorized computer 12 
language, q can be calculated over the entire domain xEX in 
one step.

In the MATLAB programming language, for example, 
likelihood 1 and prior p column vectors are combined as 1. *p 

65 over l’*p to produce the posterior genotype probability 
vector q. In practice, one can exhaustively compute a 
genotype qc(x) using any prior pc(x), and use Bayes theorem
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to swap in a new population p(x) later on. Changing popu­
lations does not necessitate extensive genotype re-compu- 
tation.

Case Example
Sexual Assault
On New Year’s night, 1 Jan. 2014, a woman was sexually 

assaulted when walking home through a park at 3 am in 
Southampton, England. The police collected vaginal swabs 
from the victim, and submitted them to a forensic laboratory 
for DNA testing with an SGMplus® kit (Applied Biosys­
tems, Foster City, Calif.). Searching the DNA evidence 
against England’s national DNA database (NDNAD) iden­
tified 13 candidate suspects based on allele similarity. Other 
non-biological factors, such as geographical location, 
singled out homeless Stuart Ashley Burton as the likely 
perpetrator.

Cybergenetics (Pittsburgh, Pa.) applied the TrueAllele® 
Casework software to the SGMplus data, separating out the 
genotypes of two contributors. The major 85% contributor 
matched the victim with a statistic of a trillion. Comparing 
the minor 15% genotype distribution q(x) with Burton’s 
known genotype xk, relative to a Caucasian population p(x), 
gave a Bayes factor fyx -̂) of 67,890 with log f(x^)=4.8318 
ban.

TrueAllele can bin locus log fy(x) values for genotypes x, 
weighted by prior probabilities pz(x), to form non-contribu­
tor densities uz(y) along a y=log f  scale. Convolving these 
uz locus densities will produce a joint non-contributor dis­
tribution u(y), shown in FIG. 3. This u distribution has an 
average exclusionary power

17

of KL =-3.4397 ban, with a standard deviation of 
1.6253 ban.

False Match Probability
Burton’s fyx^) match statistic of 67.9 thousand has log 

;f(x^) of 4.8318 ban, which gives a right tail probability of
0.9197xl0-6, or 1/1 ,087 ,000 . Therefore, the chance that a 
non-contributor (someone who did not contribute their DNA 
to the vaginal swab evidence) has a match statistic of 67.9 
thousand or more, is one in 1.087 million. This exact FMP 
is a number 16 times more specific than the generic 1/a 
reciprocal error estimate of one in 67.9 thousand. The two 
inequalities in the Markov-Turing derivation show the 
source of this improvement in the FMP estimate.

The first inequality (1) says that the smallest factor f(x) on 
the genotype error set Ea={xEXIf(x)>a} cannot exceed the 
average factor on that set, or

Y  /W pW
a  = f ( x K) = min/  < avgpf  = ----

Ea eq 2j P\x>

Substituting into this expression the values of fyx -̂) and 
the two sums in this case yields

/ ( * , )  = 67 ,890,225,900 = ^ ^

A larger genotype error set Ea gives a longer non-con­
tributor tail

Y  p(x)

and a potentially greater discrepancy between min f  and avg 
jo Flere the avg jVrnin f  relative gain is 3.3274.

The second Markov-Turing inequality (2) notes that the 
contributor distribution tail probability on Ea cannot exceed 
1,

Y   ̂1

In this example the contributor tail has mass

Y  = 0.2175

so its reciprocal value 4.5969 gives the “FMP to 1/LR” 
gain at this second step. Short contributor tails will yield 
higher gains at this stage.

Combining the Two Inequality Gains Gives

gain=(gain l)(gain 2)

=(3.3274)(4.5969)

=15.2959

This value approximates the observed overall 1/LR to 
FMP ratio of 16.0162. (When 0 is zero, the predicted and 
observed gains are almost identical.) In this case, the 16-fold 
improvement in the error bound from the automatic 
1/LR=!/s7,89o to the more exact FMP=!/i,o87,ooo instills greater 
confidence that the match statistic is not falsely including an 
innocent person.

Verifying Accuracy
To verify FMP accuracy, a cumulative distribution for the 

evidence genotype was independently calculated by Monte 
Carlo simulation. Ten thousand non-contributor genotypes 
were randomly drawn from a Great Britain Caucasian 
(GBC) population. The TrueAllele VUIer software com­
pared the evidence genotype with these randomly simulated 
exemplars, relative to a GBC population, to calculate match 
statistics and their base 10 logarithms. A co-ancestry theta of 
1% was used.

CDFs for the convolution-based log f  values (blue) and 
the Monte Carlo simulated values (red) are shown in FIG. 4. 
The two CDF curves are quite similar. A Kolmogorov- 
SmirnolF test rejected the null hypothesis that the two 
distributions are statistically different (p=0.2475). The K-S 
statistic was 0.0102, with a critical value of 0.0136.

The two distributions are statistically indistinguishable. 
But whereas convolving probability functions gives exact 
values throughout the entire log factor range, Monte Carlo 
approximation has limited sampling in the sparse probability 
tail regions. Since error determination focuses on the tail 
regions, exact convolution is preferable to Monte Carlo 
simulation for determining accurate FMP probability.
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Database Identification
When a DNA database search of evidence returns mul­

tiple people k=l, . . . , K, they can be differentiated by their 
match statistic. For each retrieved known genotype xK, 
determining the posterior-to-prior probability ratio q(x^)/p 
(x^) gives a Bayes factor of .f(x^) that can be used to 
compare the retrieved genotypes (Table 2, column 2).

In the Southampton rape case, the genotypes show largely 
positive log f(x) values (Table 2, column 3 & FIG. 5). This 
is because they were all retrieved from a database search 
through allelic similarity to the same evidence genotype 
q(x). However, relative to the evidence, Burton’s genotype 
has a log f  value of 4.8318. This value is over 4 ban greater 
the 0.4731 ban match statistic average of the other twelve, 
and over 3 ban away from the largest neighboring value of 
1.7455 ban (Table 2, column 3).

The FMP can provide additional information useful for 
differentiating between similar genotypes found from a 
database search. The FMPs of the 12 less likely suspects 
range from 1 in 10, to 1 in 800 (Table 2, last column). 
However, Burton’s log f  error is 1 in 1.087 million, which 
is highly specific. This FMP shows that it is extremely 
unlikely that he is a non-contributor whose genotype pro­
duced the 67,890 match statistic by chance.

Based on the DNA match statistics, and other evidence, 
Burton pleaded guilty to the New Year’s Day sexual assault. 
He was sentenced to twelve years in prison.

Measure Theory
The Lebesgue theory of measurable sets, functions and 

integrals generalizes continuous functions and Riemann 
integration to handle pathological situations (Wheeden and 
Zygmund 1977). Lebesgue measure and integration work 
with finite and infinite sets, over discrete and continuous 
domains, and eliminate technical issues involving sets of 
measure zero and infinite discontinuities.

General Measures
For a set X, a a-algebra E of subsets of X contains X, and 

is closed under set complementation and countable set 
unions. A measure p is a nonnegative function on measure- 
able subsets E in 2 for which p(nEis-)=2p(Eis-), whenever 
{EU is a countable family of disjoint sets in 2.

A measure space is a triple (X, 2, p). A real-valued 
function f(x) defined for x in a measureable set E in 2 is a 
measureable function when {xEElf(x)>a} is a measureable 
set for all finite real numbers a E Q  The Lebesgue integral 
fEf  dp of a measureable function f  over a measureable set E 
with respect to measure p is more robust than its Riemann 
counterpart, and enjoys many useful convergence properties.

Pushforward Measure
Let (X, 2, p) be a measure space, and f  a measureable 

function from X to D 1. Let (□, ST ) be the space of real 
numbers with the Borel a-algebra &T . Then the pushfor­
ward measure J»(p) is a nonnegative measure defined as

for every Borel set B in . The resulting measure space 
(□, &T , f»(p)) is the one induced on □  by measure space 
(X, 2, p) and function f.

In particular, for any aED, consider the half infinite 
interval

\yC  y  a ]

Taking the inverse image under function f ,  yields

(■*)>«}

is the subset of X having f(x)>a. The measure of this 
subset Ea

HUUKU1 («,“ ))
describes the size of Ea» Given a measure space (X, 2, p), 

the pushforward measure J»(p) specifies a distribution func­
tion on □.

When p is a probability measure, so that p(X)=l,

Thus subset probability p(Ea) is pushed forward from (X, 
2, p), and equals the tail probability Jcl“dj!»(p) on the infinite 
interval (a, oo) in the measure space (□, gg' , J»(p)). On any 
probability space (X, 2, p), the pushforward measure for f  
induces a probability distribution function on the real line.

General FMP
The section on “Tail probability” showed that tail prob­

ability

20

“09
y > b g a

equals the genotype error set probability Pr{xEEa}. This 
equality follows immediately from measure theory when the 
tail probability is defined through a pushforward measure.

In general, pushing f  forward from X to □  reduces the 
problem of finding a measure p(Ea) in a multidimensional 
probability space (X, 2, p) to that of calculating an integral 
in the one dimensional probability space (D1, , J»(p)).
This integral is the right tail probability j!cl“dj!»(p) of f  
starting from point a, which is the same as one minus the 
cumulative distribution JUALfUp) of f  ending at a. The 
pushforward dimension reduction translates subset probabil­
ity in (X, E, p) into a simpler integral over D 1.

When the measure p is the prior distribution p(x), the 
pushforward measure J»(p) describes the non-contributor 
factor distribution. When p is the posterior q(x), pushfor­
ward measure J»(q) gives the contributor factor distribution. 
Using log f  in place of f  pushes forward onto □  the 
corresponding log factor distribution.

Operation
A preferred way to operate a method for determining 

probability of error in identifying evidence is comprised of 
the steps:

a. Obtaining Prior and Posterior Probability Distributions 
from a Plurality of Independent Tests Conducted on an Item 
of Evidence;

Each test has a set of possible outcomes. Prior to con­
ducting the tests, there is a prior probability distribution of 
these outcomes. The tests are conducted, developing data for 
each test. Using Bayes theorem, the observed data update 
belief to produce a posterior probability distribution over the 
outcomes. With DNA analysis, STR tests are analyzed by 
Bayesian software such as TrueAllele to give genotype 
probabilities.

b. Entering the Probability Distributions into a Non- 
Transitory Memory of a Computer;

The prior and posterior probabilities for every test can be 
entered as input into the computer 12. Alternatively, these 
probabilities may already reside in memory 14 from earlier 
computer 12 operations.
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c. For Each Test, Forming a Factor Distribution from the 
Test’s Probability Distributions with the Computer Using a 
Software Program 16 Stored in the Non-Transitory Memory 
of the Computer;

Computer software can calculate a test’s factor as the ratio 
of posterior to prior probability for each possible outcome, 
and then calculate the logarithm of this ratio. At each test 1, 
partition the logarithmic factor x-axis abscissa into discrete 
bins of sufficiently fine resolution (e.g., milliban) so as to 
distinguish between most outcome events. Then, for each 
test outcome xz with test distributions pz(xz)>0 and q/xz)>0, 
add a y-axis amount of prior probability mass pz(xz) into the 
x-axis abscissa bin at log ,fz(xz)- When done, the bin distri­
bution forms the prior-weighted log pmf.

d. Convolving the Independent Factor Distributions to 
Form a Joint Factor Distribution by the Computer Using the 
Software Program 16;

The computer software program 16 convolves the sepa­
rate log test pmfs. Because the tests and their distributions 
are independent, the convolution forms the total log f  pmf. 
The computer 12 weights the log f  values by prior p(x) to 
form the non-contributor log f  distribution, which provides 
exclusionary information about the evidence. It weights by 
posterior q(x) to form the contributor distribution, which 
provides inclusionary information about the evidence.

e. Calculating a Tail Probability from the Joint Factor 
Distribution by the Computer Using the Software Program 
16 to Determine a Probability of Error in Identifying the 
Evidence;

The computer program adds together the probability 
amounts in the x-axis bins, starting from point a, to numeri­
cally calculate the tail probability

Y j  u(y).
y> lo g a

This calculated value is the false match probability of error 
Pr{xeE„}.

f. Storing the Probability of Error in the Non-Transitory 
Memory of the Computer; and

Once the probability of error has been calculated, this 
error value is stored in computer memory 14. The value can 
be retrieved later on via a computer screen, graphical 
display, hardcopy printout, email message, database appli­
cation, or network communication.

g. Reporting the Probability of Error from the Computer 
to a Party Interested in Identifying the Evidence.

The probability of error can be reported to help identify 
the evidence. In a forensic DNA report, the error language 
can be stated as: “A false positive would occur if a non­
contributor (someone who didn’t contribute their DNA) to 
the evidence had a match statistic of (state the a=j!(xi,) 
factor value for exemplar K) or more. The chance of a false 
positive for this comparison is (state the calculated 
Pr{xEEa} error value).”

Applications
Computing Capability
The claimed invention has application whenever a like­

lihood ratio is used, providing a rapid, accurate and reusable 
way to calculate the error of the LR. The method is accurate 
because exact numerical calculation is done to within any 
desired resolution over the entire range of log(LR) values. 
The method is rapid because function convolution is very

21
fast, and the invention transforms multiplicative LR distri­
butions into additive log(LR) distributions that can be con­
volved.

Whereas the prior art entails recalculation of tail prob­
abilities with every new exemplar’s factor value, the inven­
tion precomputes the entire evidence log(LR) distribution, 
relative to prior or posterior probability. This precomputa­
tion enables reuse of the distribution when comparing the 
evidence with different exemplars. Such multiple compari­
sons are done with the assessment of genotypes retrieved 
from DNA databases.

The invention permits error determination over much 
larger type spaces than the prior art. STR multiplexes in 
DNA identification have between 5 to 50 independent locus 
tests. Each test produces data for about 10 common allele 
sizes, and 100 less common alleles. Genotypes are unor­
dered pairs of such alleles, so the full model space for one 
locus can have 1000’s of possible genotype values. With 25 
independent loci there can then be 100025, or 1075, possible 
joint genotype values to assess.

In the prior art, simple genotyping methods consider 
relatively few of these possibilities, and so examine only a 
small portion of the genotype space. This limited examina­
tion can give incorrect LR values, but greatly reduces the 
time to calculate LR and tail probability errors. When 
examining an entire genotype space, however, such limited 
approaches fail to calculate LR error in an acceptable 
amount of time.

In contrast to this limited determination of genotype, LR, 
and error, the claimed invention can calculate error even 
when considering all possible genotype values. A computer 
12 quickly assembles the exact log(LR) distribution for each 
locus test through a rapid binning procedure. It then uses a 
fast convolution procedure to assemble the separate additive 
tests into a composite log(LR) joint distribution. This fast 
divide-and-conquer procedure over independent loci enables 
a complete examination of LR error, which the computer 12 
can accomplish in seconds.

Forensic Science
Forensic identification entails producing a match statistic 

to quantify the strength of match of evidence items, relative 
to coincidence. Across all forensic disciplines, the scientifi­
cally accepted match statistic is the likelihood ratio (Aitken 
and Taroni 2004). Therefore error determination of LR 
values through rapid and accurate tail probabilities can be 
universally applied throughout all of forensic science.

Without limitation, representative disciplines of forensic 
identification include DNA testing, fingerprint comparison, 
glass evidence, blood spatter, firearms and toolmarks, and 
impression evidence such as tire or foot marks. Every 
forensic discipline involves LR statistics, so the error deter­
mination of the claimed invention applies to reported LR 
values in all of forensic identification.

The invention determines contributor and non-contributor 
LR distributions in advance of making any comparison with 
an exemplar. These match statistic distributions describe the 
probative force of forensic evidence. The average log(LR) 
value of the non-contributor distribution measures the exclu­
sionary power of the evidence. The average log(LR) value of 
the contributor distribution (or KL statistic) measures the 
inclusionary power of the evidence. These evidence mea­
sures can help in determining the utility of evidence, since 
a greater ability to include or exclude possibilities provides 
more identification informative.

Criminal Justice
The claimed invention is useful in criminal investigation. 

When forensic modalities produce an investigative lead, the
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probative value of that lead can be expressed as a LR. The 
error of that LR describes the chance of making a mistake. 
An exact error estimate helps in predicting how useful an 
item of evidence may be in an investigation. With DNA 
databases, retrieved exemplars may be similar, and so their 
false match probabilities offer a way to rank the genotypes 
for use as possible leads.

In court, the claimed invention assists a trier of fact in 
assessing forensic or other evidence. The error gives a 
probability of making a mistake, for example associating the 
wrong person with a crime. Jurors and judges may not be 
conversant with Bayesian reasoning and likelihood ratios, 
but non-experts understand the frequency of error. The 
invention provides a probability of identifying someone 
unconnected to the evidence, despite a positive log(LR) 
match statistic. That chance of error, can help implicate 
guilty defendants when low, and exonerate innocent defen­
dants when high.

Any party can apply the invention to help undermine 
weak forensic evidence. Calculating a false match probabil­
ity on a reported match statistic can show when the evidence 
is less (or more) informative than claimed. With DNA 
testing, computer programs produce locus genotype prob­
abilities on mixtures and other samples. By entering these 
genotype probabilities and the reported LR values, the 
invention’s computer 12 program can calculate error rates 
for the LR values generated by other programs.

Other Applications
The claimed invention has utility in biometrics (e.g., 

facial recognition, iris identification, etc.) by providing an 
error probability whenever a likelihood ratio is calculated. 
The invention’s error rate is useful in intelligence gathering, 
for example in image recognition, pattern detection, and 
document identification. The LR is used in natural language 
processing, where the claimed invention can determine error 
rates.

Genetic testing produces likelihood ratios, so the inven­
tion can provide error probabilities for LR values that are 
customized to the genetic evidence. Parentage testing 
(whether paternal or maternal) reports an LR, known as the 
“paternity index,” for which the invention can calculate a 
false match probability. More general kinship analysis for 
identifying missing persons also entails prior and posterior 
genotype probability, so the invention can calculate error 
probability in those applications.

In medical testing and diagnosis, likelihood ratios help 
determine the extent to which a test result is associated with 
a disease. The LR helps clinicians assess a positive test 
result, ascribing the outcome to a specific disease or to 
chance. The invention calculates an error probability for an 
LR test outcome, framing the error in understandable fre­
quency terms for misdiagnosing a patient in the population. 
Customizing the LR and error to specific patient populations 
(e.g., by swapping in appropriate prior probability) can lead 
to more accurate diagnosis when using the same clinical 
data.

The invention has consumer applications, such as deter­
mining error when matching customers to products. In 
finance, the invention can help assess market trends, for 
example by comparing past and future probability assess­
ments, and calculating error for the statistics of a particular 
hypothesis or decision.

CONCLUSION

In identification science there can be a very large (finite or 
infinite) number of possible types. Observable types that
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exist in the physical world can be conceptualized as random 
samples drawn from this type space. Probability and infor­
mation statements made about observed types refer to the 
full sample space of all possible types.

A prior probability distribution describes the chance of 
observing a type before examining data. A posterior distri­
bution over the type space updates these probabilities based 
on examined data. The Bayes factor of a type in the sample 
space is a ratio (where defined) of posterior to prior prob­
abilities. The log factor is an additive information measure 
of Bayes update for a type.

When stating a factor for a type exemplar relative to 
evidence, there is a chance of false match error. Specifically, 
this error is the probability of misidentifying a non-con­
tributor type as a contributor because it coincidentally has a 
factor value at least as large as a match statistic. This 
probability of falsely matching the wrong exemplar by 
chance is the FMR This error can be quantified by calcu­
lating the size of the subset of misidentified types having 
spuriously large factors.

The FMP can be costly to calculate exactly on a very large 
type space. Flowever, when a type is formed from a collec­
tion of independent subtypes, the factor is a numerical 
product of the subtype factor values. The logarithm function 
transforms such products into sums. Therefore, convolution 
of the additive log factor subtype distributions efficiently 
computes their joint log factor distribution. Evaluating the 
tail probability of this joint distribution beyond a fixed log 
factor value gives the measure of the type subset showing 
false matches.

A trier of fact does not want to make a mistake by wrongly 
convicting an innocent person. Most jurors do not know 
Bayes theorem or logarithms. Few have studied mathemati­
cal probability, and fewer still have learned conditional 
probability. They rarely know about likelihood (the prob­
ability of data given a hypothesis), much less the likelihood 
ratio that contrasts two competing hypotheses. But they do 
understand error rates, and they want to avoid making an 
error.

Considering all the people in the world, what is the chance 
that a reported match statistic identifies the wrong person? 
DNA mathematics lets us randomly embed the seven and a 
half billion (1010) people in the world into a dense space of 
a trillion trillion (1024) possible genotypes. Population 
genetics can estimate prior genotype probability, while 
Bayesian update on evidence data can produce a posterior 
genotype distribution. Prior and posterior combine to give a 
Bayes factor function over the entire genotype space.

The inverse of the factor function connects extreme match 
values to a corresponding error subset of types. The one 
dimensional tail probability of extreme match values gives 
the multidimensional measure of non-contributor types. 
Actual objects in the physical world have types that are 
samples from the full type space. To determine a false match 
probability relative to all the people in the world, it is easier 
to reduce the problem to calculating a univariate function 
and its tail probability. Logarithmic transformation of inde­
pendent factors permits rapid calculation of these tail prob­
abilities through function convolution.

The LR summarizes the probative value of evidence in 
forensic identification. The FMP puts an error rate to that LR 
value, customized to the evidence in a particular case. Both 
numbers are important to a trier of fact—the LR’s strength 
of match, and the FMP’s chance of error. While 1/LR is 
always an upper bound on LR error, calculating the FMP can 
provide an exact estimate of misidentification frequency.
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The FMP gives additional error rate information about an 
LR match statistic, simply expressed as the chance of 
making a mistake.

Table 1. Forming log f  values from prior and posterior 
probability.

TABLE 1

25

Forming log f  values from prior and posterior probability.

Type
X

Prior
p(x)

Posterior
q(x)

Factor
f(x)

log factor 
log f(x)

1 0.20 0.10 0.5 -0.301
2 0.30 0.15 0.5 -0.301
3 0.25 0.25 1.0 0.000
4 0.25 0.50 2.0 0.301

Table 2. The DNA match statistics and error probabilities 
in the Southampton case. Each row represents a different 
retrieved DNA database genotype, with “SB” the accused. 
The last column’s “one in” value is the reciprocal of the false 
match probability in the adjacent column.

TABLE 2

The DNA match statistics and error probabilities in the 
Southampton case. Each row represents a different retrieved 

DNA database genotype, with “SB” the accused.
The last column’s “one in” value is the reciprocal o f the false 

______________ match probability in the adjacent column._______________

Item LR log(LR) Pr(error) one in:

1 1/(17.7) -1.2485 0.09155110 11
2 1/(2.72) -0.4339 0.03595410 28
3 1.21 0.0824 0.01818210 55
4 1.54 0.1878 0.01569030 64
5 2.01 0.3025 0.01330630 75
6 3.35 0.5248 0.00958381 104
7 3.35 0.5248 0.00958381 104
8 5.21 0.7166 0.00713871 140
9 5.90 0.7709 0.00655932 152

10 17.8 1.2513 0.00297871 336
11 17.9 1.2535 0.00296855 337
12 55.6 1.7455 0.00123809 808
SB 67,900 4.8318 0.00000092 1,090,000
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The invention claimed is:
1. A method for performing a criminal investigation 

comprising the steps of:
obtaining a biological sample of a DNA mixture having 

DNA of at least 2 individuals; 
comparing an evidence genotype from the DNA mixture 

with a known exemplar genotype to form a compari­
son;

expressing a probative value of a lead based on the 
evidence genotype as a likelihood ratio; 

determining an error of the likelihood ratio; and 
predicting how useful the lead may be in the investigation 

based on the error.
2. A method for considering evidence of a crime com­

prising the steps of:
obtaining a biological sample of a DNA mixture having 

DNA of at least 2 individuals from a fire arm; 
comparing an evidence genotype from the DNA mixture 

with a known exemplar genotype to form a compari­
son;

determining genotype probabilities and associated likeli­
hood ratio values with respect to evidence from the fire 
arm and the comparison;

calculating error rates for the likelihood ratio values; and 
assessing evidence based on its error rates for the likeli­

hood ratio values.
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3. A method for recognizing an individual comprising the 
steps of:

determining a likelihood ratio from facial recognition of 
an individual;

calculating an error probability of the likelihood ratio; and 5
finding a risk of incorrectly identifying the individual 

based on the error probability.
4. The method of claim 1 wherein the comparing step

includes the step of determining a match statistic from the 
comparison. to

5. The method of claim 4 wherein the predicting step 
includes the step of identifying the evidence genotype is 
associated with a contributor to the DNA sample.
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