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Quantitative Data

• PCR is a linear process
• peak heights reflect the
  underlying DNA quantity
• use quantitative peak heights
  to explain the observed data
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Genotype Model: 1 + 1 = 2

Consider all possible
allele pair values by

trying out each candidate
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Compare Model to Data
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∏Pr(datapeak|Q=x,…)
joint likelihood function

Likelihood Function
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Genotype: Alternative Value

Consider a different
allele pair value by 

trying out another candidate
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Compare Model to Data
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Likelihood Function

100%sum =
0013, 16
0012, 15
0very small14, 14
0very small13, 14
0very small13, 13

90%large12, 14
5%small12, 13
5%small12, 12

probabilitylikelihoodallele pair

prior × likelihood ⇒ posterior 

All Genotype Possibilities
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Genotype inference
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Try out all value possibilities; 
better fit's more likely it. 

∏Pr(datalocus|Q=x,…)
joint likelihood function

Genotype probability
with data uncertainty

Genotype alternative value
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Bayesian probability

• Assess ALL genotype patterns to find
the probability of each allele pair.

• Similarly compute the data variance.

• Small data variation is RESTRICTIVE:
only few genotype values are possible.

• Large data variation is PERMISSIVE:
many genotype values are possible.
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Likelihood ratio match statistic
reflects genotype uncertainty

LR =
Pr(Q=s|data)

Pr(Q=s)

Genotype certainty concentrates probability
on just a few good bets, and focuses LR.

Genotype uncertainty diffuses probability
across many candidates, and reduces LR.
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Mixture weight inference
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Try out all value possibilities; 
better fit's more likely it. 
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Mixture weight probability
with data uncertainty

Mixture weight alternative

Data variance inference

Pr(V=v|data,…)

posterior
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Try out all value possibilities; 
better fit's more likely it. 

∏Pr(datapeak|V=v,…)
joint likelihood function
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Data variance probability of
data peak uncertainty

Data variance alternative

Quantitative data modeling

• genotype is main variable of interest
• genotype gives identification LR
• mixture weight is explanatory variable
• data variance, stochastic effects
• identification information
   preserved by quantitative modeling


