DNA Identification: Stochastic Effects

Mark W Perlin, PhD, MD, PhD Cybergenetics, Pittsburgh, PA

TrueAllele ${ }^{\circledR}$ Lectures
Fall, 2010
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

PCR is a random process

PCR efficiency is not 100% efficient. A strand copies with probability p, and doesn't copy with probability 1-p.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Four times the peak height, gives twice the peak certainty

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Peaks are probabilities

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

STR data is a random variable

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Genotype pattern vs. peak data

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Calculate stochastic effects

Computers can solve for genotype probabilities and ơther rándom variables, like peak variation

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Since peaks are probabilities, thresholds introduce error

False allele exclusion rate

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Probability preserves information

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Data probability

- arises from PCR randomness
- models stochastic effects
- helps explain allele drop out
- compares with genotype patterns
- preserves identification information
\qquad
\qquad
- established normative science

