DNA Identification: Bayesian Belief Update

Mark W Perlin, PhD, MD, PhD Cybergenetics, Pittsburgh, PA

TrueAllele ${ }^{\circledR}$ Lectures Fall, 2010

Cybergenetics © 2003-2010

\qquad
\qquad
\qquad
\qquad

Likelihood Function
$\operatorname{Pr}\{$ data $\mid X=x\}$

How well does each hypothesis explain the data?

Posterior Probability

$$
\operatorname{Pr}\{X=x \mid \text { data }\}
$$

What do we believe after we see the data?
\qquad

\qquad

Bayesian Update
$\operatorname{Pr}\{X=x \mid$ data $\} \propto \operatorname{Pr}\{$ data $\mid X=x\} \cdot \operatorname{Pr}\{X=x\}$
Posterior probability
Likelihood function

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Bayesian Update
$\operatorname{Pr}\{X=x \mid$ data $\} \propto \operatorname{Pr}\{$ data $\mid X=x\} \cdot \operatorname{Pr}\{X=x\}$

Posterior probability \quad| Likelihood function \quad Prior probability |
| :---: |

$\operatorname{Pr}\{X=x \mid$ data $\}=\frac{\operatorname{Pr}\{\text { data| } \mid X=x\} \cdot \operatorname{Pr}\{X=x\}}{\sum_{x^{\prime} \in X} \operatorname{Pr}\left\{\text { data } \mid X=x^{\prime}\right\} \cdot \operatorname{Pr}\left\{X=x^{\prime}\right\}}$
Consider all possibilities
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Parameter Update

Bayes original example

$$
\begin{array}{rlrl}
\operatorname{Pr}(X=x) & \propto x^{a-1} \cdot(1-x)^{b-1} & & \text { Beta distribution } \\
\operatorname{Pr}(k \mid X=x) & \propto x^{k} \cdot(1-x)^{n-k} & & \text { Binomial distribution } \\
\operatorname{Pr}(X=x \mid k) & \propto \operatorname{Pr}(k \mid X=x) \cdot \operatorname{Pr}(X=x) \\
& \propto x^{(k+a)-1} \cdot(1-x)^{(b+n-k)-1} \text { Beta distribution }
\end{array}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Initial belief around $1 / 3$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Final belief: posterior probability

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Initial belief (prior probability)
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Final belief (posterior probability)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Weak prior probability (1/3)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
Strong posterior probability \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad what is the chance of having this rare disease?

Medical Test: Likelihood		
Data	Free of Disease	Got the Disease
Positive Test	False positive Pr(Pos Iree) 5% 5 \%	True positive Pr(Pos I Got) 99\% $(=100 \%-1 \%)$
Negative Test andred	True negative Pr(Neg I Free) 95\% $(=100 \%-5 \%)$	False negative Pr(Neg I Got $)$ 1% 1 in a hundred

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Probability of Disease

With a positive test (Pos),
what is the probability of having the disease (Got)?
$\operatorname{Pr}($ Got \mid Pos $)=\frac{\operatorname{Pr}(\text { Pos } \mid \text { Got }) \cdot \operatorname{Pr}(\text { Got })}{\operatorname{Pr}(\text { Pos } 1 \text { Got }) \cdot \operatorname{Pr}(\text { Got })+\operatorname{Pr}(\text { Pot })}$ $\overline{\operatorname{Pr}(\text { Pos } \mid \text { Got }) \cdot \operatorname{Pr}(\text { Got })+\operatorname{Pr}(\text { Pos } \mid \text { Free }) \cdot \operatorname{Pr}(\text { Free })}$
$(99 \%) \cdot(0.1 \%)$
$=\frac{(99 \%) \cdot(0.1 \%)+(5 \%) \cdot(99.9 \%)}{}$
$=0.1 \%$
$=0.1 \%+5 \%$
$=\frac{0.1 \%}{5.1 \%}=\frac{1}{50}$
$=2 \%$

Prior: 99.9\% disease free

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Positive test: 99% true, 5% false

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Posterior: 98\% disease free

\qquad
\qquad
\qquad
\qquad
\qquad

Parameter x

Odds of Disease

With a positive test (Pos),
what are the odds of having the disease (Got vs. Free)?
Posterior Odds $=\frac{\operatorname{Pr}(\text { Got } \mid \text { Pos })}{\operatorname{Pr}(\text { Free } \mid \text { Pos })}=\frac{\operatorname{Pr}(\text { Pos } \mid \text { Got }) \cdot \operatorname{Pr}(\text { Got })}{\operatorname{Pr}(\text { Pos } \mid \text { Free }) \cdot \operatorname{Pr}(\text { Free })}$
$=\frac{\operatorname{Pr}(\text { Pos } \mid \text { Got })}{\operatorname{Pr}(\text { Pos } \mid \text { Free })} \cdot \frac{\operatorname{Pr}(\text { Got })}{\operatorname{Pr}(\text { Free })}$
$=\frac{99 \%}{5 \%} \cdot \frac{0.1 \%}{99.9 \%}$
Likelihood Ratio. Prior Odds
$=$ (20.) $\frac{1}{1000}$
$=\frac{1}{50}=2 \%$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

